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ABSTRACT 
The Web is a dynamic, ever changing collection of information. 
This paper explores changes in Web content by analyzing a crawl 
of 55,000 Web pages, selected to represent different user 
visitation patterns. Although change over long intervals has been 
explored on random (and potentially unvisited) samples of Web 
pages, little is known about the nature of finer grained changes to 
pages that are actively consumed by users, such as those in our 
sample. We describe algorithms, analyses, and models for 
characterizing changes in Web content, focusing on both time (by 
using hourly and sub-hourly crawls) and structure (by looking at 
page-, DOM-, and term-level changes). Change rates are higher in 
our behavior-based sample than found in previous work on 
randomly sampled pages, with a large portion of pages changing 
more than hourly. Detailed content and structure analyses identify 
stable and dynamic content within each page. The understanding 
of Web change we develop in this paper has implications for tools 
designed to help people interact with dynamic Web content, such 
as search engines, advertising, and Web browsers. 

Categories and Subject Descriptors 
H.5.4 [Information Systems]: Information Interfaces and 
Presentation (e.g., HCI) – Hypertext/Hypermedia: User issues. 

General Terms: Human Factors, Measurement. 

Keywords: Web page dynamics, change, re-finding. 

1. INTRODUCTION 
The content on the Web is different from most other types of 
content we normally interact with because it changes regularly. 
For example, while most documents on a person’s desk remain 
constant, with perhaps only an annotation or two added over time, 
even Web pages we think of as relatively static, like the WSDM 
conference home page, change in subtle ways (see Figure 1). 
In this paper, we characterize Web change by analyzing a multi-
week Web crawl of 55,000 pages. The pages in the crawl were 
selected to represent a range of visitation patterns, and our dataset 
is unique in that it reflects how the observed Web is changing. 
Understanding this segment of the Web is important for crawlers 
and search engines that must keep pace with changing content, as 
well as applications intended to help people interact with dynamic 
Web content. Our research confirms a number of previously 
identified trends in Web evolution and highlights several 

important differences for pages that are visited by users compared 
with those selected at random. Through analysis of hourly, sub-
hourly, and concurrent crawls we explore page change on a fine-
grained time scale. We find that many pages change in a way that 
can be represented using a two-segment, piece-wise linear model 
that would be unobservable in a coarser crawl. 
We further extend previous work by characterizing the nature of 
the changes to Web page content and structure. The analysis of 
content change presented in this paper focuses on understanding 
which terms within a page appear consistently over time, and 
which come and go. We introduce the notion of the staying power 
of a term within a document over time. It appears there is a bi-
modal distribution of terms, with most terms either being very 
stable over time or changing very rapidly. Stable terms reflect the 
ongoing central topic of a page as well as common function words 
or navigational elements. Our analyses can inform algorithms for 
improved search engine ranking and contextualized advertising. 
We also explore the dynamics of Web page structure through 
analysis of DOM-level changes. In particular we concentrate on 
short-term survivability of various DOM elements, an important 
metric for Web clipping and template extraction applications 
which rely on the DOM structure to function [1][3][6].  The large 
amounts of data analyzed in our DOM analysis necessitated the 
creation of an efficient algorithm for tracking the motion of blocks 
of text, changes in the DOM structure, and identification of blocks 
of simultaneously changing content. The algorithm we develop 
can be used for both analysis and higher level tasks like predicting 
content flow in the page and block identification. 
We begin this paper with a discussion of related work and a 
detailed description of our unique dataset. We then explore both 
content and structural change in greater detail. We conclude with 
a discussion of future work and potential applications.  
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Figure 1. Web content changes regularly. Here changes to the
WSDM 2009 homepage are highlighted. 



2. RELATED WORK 
Characterizing the amount of change on the Web has been of 
considerable interest to researchers [4], [8], [11], [12], [13], [14], 
[16]. For example, Cho and Garcia-Molina [4] crawled 720,000 
pages once a day for a period of four months and looked at how 
the pages changed. Ntoulas, Cho, and Olston [14] studied page 
change through weekly snapshots of 150 websites collected over a 
year. They found that most pages did not change according to a 
bag-of-words measure of similarity. Even for pages that did 
change, the changes were minor. Frequency of change was not a 
great predictor of the degree of change, but the degree of change 
was a good predictor of the future degree of change. 
Perhaps the largest scale study of Web page change was 
conducted by Fetterly et al. [8]. They crawled 150 million pages 
once a week for 11 weeks, and compared the change across pages. 
Like Ntoulas, Cho, and Olston [14], they found a relatively small 
amount of change, with 65% of all page pairs remaining exactly 
the same. The study additionally found that past change was a 
good predictor of future change, that page length was correlated 
with change, and that the top-level domain of a page was 
correlated with change (e.g., edu pages changed more slowly than 
com pages). The longest longitudinal study we are aware of is the 
360 page sample studied between 1996 and 2001 by Koehler [12], 
finding that page change plateaus as a page ages.  
More recently, Olston and Panday [15] crawled 10,000 random 
Web pages and 10,000 pages sampled from the Open Directory 
every two days for several months. Their analyses measured both 
change frequency and information longevity (the average lifetime 
of a shingle), and found only a moderate correlation between the 
two. They developed new crawl policies that are sensitive to 
information longevity. In a study of changes observed via a proxy, 
Douglis et al. [7] identified a relationship between revisitation 
rates and change. However, the study was limited to content 
visited by a restricted population (AT&T Labs), and pages were 
not actively crawled for changes between visits.  
Researchers have also looked at how search results change over 
time [19], [20]. The focus in these studies was on understanding 
the dynamics of search engines and the consequences change has 
for searchers who want to return to previously viewed pages. 
Our study differs from previous work in the pages we selected to 
crawl (sampled from pages that we know have been visited), the 
granularity of the crawl (hourly and sub-hourly crawls), and in the 
level of detail with which we analyze changes in the content and 
structure of Web pages. Through analysis of our unique dataset 
we are able to contribute to the general understanding of Web 
change as well as develop new algorithms for exploring and 
utilizing changes in a number of applications.  

3. METHODOLOGY 
In this paper we study how approximately 55,000 Web pages 
change. Here we described how the pages were selected, how they 
were crawled, and how change to the pages was measured. 

3.1 How Pages Were Selected 
Our goal in selecting Web pages for study was to sample pages 
with a diversity of revisitation patterns. This is a significant 
departure from other studies that have traced the evolution of 
subsets of Web pages (typically gathered by breadth-first crawls 
from seed pages) regardless of use. In our work, we have captured 
a sample representing those pages which are actually revisited and 
consumed by users in different ways.  

To construct our sample we made use of URLs collected from the 
logs of opt-in users of the Live Search toolbar. The toolbar 
provides augmented search features and reports anonymized 
usage behavior to a server. Pages were pulled from a sample of 
those visited by 612,000 people for a five week period starting 
August 1, 2006. We restricted our sample to English speaking 
users in the United States, and attempted to remove robots and 
other anomalous users (a complete description of how these users 
were selected and filtered is available elsewhere [2]). 
As we were interested in pages with different popularities and 
different revisitation patterns, we defined several attributes for 
each page which were then used to systematically sample pages 
for further analysis. Specifically, we considered the number of 
unique visitors to a page (unique-visitors), the average inter-
arrival (i.e., revisit) times for a page (inter-arrival time), and the 
average number of revisits per user for a page (per-user revisits). 
Most pages in the raw data were visited by very few people 
overall, with a small number of revisits per person and at low 
(fast) inter-arrival times. To sample from the space without over-
selecting from the tail we applied a pseudo-exponential binning to 
find thresholds for the unique-visitor (minimum of two) and per-
user revisits. For the inter-arrival time criteria, we opted to use 
thresholds that correspond to well understood time periods (e.g., 
10 seconds, minute, hour, day, week).  
In total, there were four bins for the unique-visitor criteria, five 
for the per-user revisit criteria, and six for the inter-arrival time 
criteria (for a combination of 4 x 5 x 6 = 120 possible bins). Each 
URL was annotated with three bin numbers, and we sampled from 
this space. Some oversampling of popular pages was added by 
explicitly including the top 5000 most visited pages. The Web 
pages were crawled to ensure that they were still publicly 
available (in conformance with the robots.txt), and those that were 
not were removed. The final sample included 54,788 URLs with 
an average of 468.3 (median 650) URLs in each of the 120 bins.  
Each page was categorized into topical categories using standard 
text classification techniques [18]. The topical categories used are 
similar to those in the first two levels of the Open Directory 
(www.dmoz.org). A second classifier, used by Live Search, 
identified various genres (e.g., children, mail, pornography, etc.).  
Additionally, pages were grouped by the number of unique 
visitors (as described above), the URL depth (how deep the page 
is within the site), and top level domain. 

3.2 How Pages Were Crawled 
To understand how the content of these Web pages change over 
time, we crawled each URL hourly for 5 weeks, starting May 24, 
2007. (Because of some randomization in the crawler, the time 
between subsequent re-crawls may be slightly more or less than 
an hour). For those pages that displayed a substantial number of 
hourly changes a secondary crawl was initiated over the course of 
four days to capture sub-hour changes, as described in Section 
4.1.2. Finally, for pages that displayed many changes at the two-
minute interval, a third crawl was constructed to collect the page 
twice at the same time from two synchronized machines. All three 
crawls capture changes at a much finer grain than previous work. 
The full HTML text of the page was collected and stored for each 
retrieved version. 

3.3 How Change Was Measured 
We explore how the Web changes by examining the crawled data 
in several ways. An extremely coarse measurement of change can 
make use of document checksums that detect any difference. In a 



way this is unsatisfying as both large and small changes, as well 
as content and structural changes, are treated the same.  

Previous work has focused on measuring textual differences by, 
for example, calculating the differences between blocks of text [8] 
or word frequencies [14]. We begin our study by utilizing a 
similar approach, based on the Dice coefficient, to represent the 
amount of textual change. The Dice coefficient, which measures 
the overlap in text between various document versions, allows us 
to develop a high level model of page change over time (i.e., 
Dice(Wi, Wk)=2*|Wi Wk|/(|Wi|+|Wk|), where Wi and Wk are sets 
of words for the document at time i and k respectively). A high 
Dice coefficient (i.e., 1) reflects high similarity, whereas a low 
Dice coefficient (i.e., 0) indicates no similarity.  Having identified 
this model we further refine our metrics to explore term-level 
document change.  By comparing term occurrence within a page 
with a background language model, we identify the specific terms 
that change or persist in a document. 

We augment this analysis of content change with a study of 
structural change. We develop several algorithms to identify and 
track the movement of DOM elements within the documents and 
describe the persistence of structural blocks over time.  

4. CONTENT CHANGE 
4.1 Overview 
We begin our analysis of content change by looking at the 
frequency and amount of change that occurred for each page 
individually in our sample. As an example, a page may not change 
at all for several days after it is first crawled, but change a lot 
when it finally does. The same page may then begin to experience 
small changes at frequent intervals. All of the changes that are 
made to a page over the period of our crawl can be represented as 
a scatter plot like the ones shown in Figure 2. Each point 
represents an instance where the page changes. The amount of 
time elapsed since the last change is represented along the x-axis, 
and the amount of change that occurs, measured using the Dice 
coefficient, is represented along the y-axis. For example, the plot 
for the New York Time’s homepage in Figure 2a shows most 
changes occur with every crawl (i.e., every 60 minutes), although 
some happen after two. In contrast, Figure 2b represents a page 
that provides horoscopes and shows larger changes occurring on a 
daily basis.  

In our collection, 18971 pages (34%), displayed no change during 
the studied interval. On average, documents that displayed some 
change (35997 pages) did so every 123 hours and the average 
Dice coefficient for the change was 0.794. Figure 3a shows the 
distribution of average inter-change times, and Figure 3b shows 
the average inter-version Dice coefficients. 

4.1.1 Change by Page Type 
The mean time between changes, and the mean Dice coefficient 
for the changes that did occur, are shown in Table 1, broken down 
along several different lines including: the number of visitors, top-
level domain, URL depth, and 6 most prevalent categories. For 
each page, we calculate the average time between changes (i.e., 
the inter-version time) as well as the amount of change (as 
reflected by the Dice similarity).  This roughly corresponds to the 
centroid of the points for each page in Figure 2.  The mean inter-
version time (in hours) and Dice coefficient are then calculated for 
pages of the same class (e.g., News pages or pages in the .edu 
domain).  In this section we concentrate on the mean inter-arrival 
times and similarities, returning to the knot data in subsequent 
sections.  All differences in the table are significant (p<0.0001) 

with the exception of differences in mean change interval that are 
less than 10 hours, and differences in the mean Dice coefficient 
that are less than 0.02. Additionally, the .org top-level domain 
Dice coefficient is only significantly different from .net.  

When broken down by unique visitors, we observe that pages that 
are more popular tend to change more frequently than less popular 
pages. This most likely explains why the percentage of pages in 
our sample that displayed no change was nearly half of what has 
been observed in prior studies ([4], [8]). Pages that are revisited 
(as all pages in our sample are) change more often than pages 
collected using other sampling techniques. However, while the 

 

 
Figure 2. The interval between successive changes, plotted 
against the amount of change for two pages. Note that the NY 
Times page changes on every crawl (i.e., every 60 min.). 

Table 1. Pages change at different rates and change different 
amounts. This table shows the mean interval between 
changes, the mean amount of change to a page, and the mean 
knot point, broken down by page type. 

 Inter-version means Knot Point Location 
Hours  Dice Hours Dice 

Total 123 .7940 145 .7372 

V
is

ito
rs

 2 138 .8022 .146* .7594* 
3 - 6 125 .8268 143* .7692* 
7 - 38 106 .8252 145* .7458* 
39+ 102 .8123 139* .7621* 

D
om

ai
n 

.gov 169 .8358 153 .8177 

.edu 161 .8753 200 .8109 

.com 126 .7882 145 .7408 

.net 125 .7642 132 .7195 

.org 95 .8518 129 .6743 

U
R

L
 d

ep
th

 

5+ 199 .6782 173 .7150 
4 176 .7401 159 .7413 
3 167 .7363 160 .7378 
2 127 .7804 144 .7340 
1 104 .8200 137 .7432 
0 80 .8584 141 .7334 

C
at

eg
or

y 
Industry/trade 218 .6649 156 .6680 
Music 147 .8013 166 .7693 
Porn 137 .7649 140 .7365 
Personal pages 88 .8288 124 .7347 
Sports/recreation 66 .8975 137 .7138 
News/magazines 33 .8700 104 .6415 

                                                                            *Not significant 



number of unique visitors is related to the rate of change, it does 
not appear to correspond to the amount of change. 
Looking at change by top-level domain, it appears that 
educational and government domain addresses do not change as 
frequently or as much as pages in other domains do. This is 
consistent with prior research ([8], [11]), and may reflect the fact 
that sites in these domains typically provide richer and less 
transient content that only requires small, infrequent updates. 
Pages with deep URL structure change less frequently than pages 
at the root, but change more when they do. This may be because 
top level pages are used as jumping points into the site, with a 
high navigational to content ratio. Thus while new ads or short 
teaser links to new deep content are often added, these are fairly 
minor changes. Internal pages, which may have a low navigation 
to content ratio, will see large changes when they do change.  
The final breakdown of change shows that pages from different 
topical categories change at different rates and by different 
amounts.  Pages from categories like News, Sports and Personal 
pages change the most frequently as would be expected. The 
amount of change, however, is not generally as large as that seen 
for categories that change less frequently. 

4.1.2 Change over Short Intervals 
Because 22818 of the pages in our sample changed nearly every 
hour, we initiated two sub-hour crawls (fast-change and instant-
change) to gain a better understanding of how these pages 
changes at intervals of less than an hour. Fast-change pages were 
collected by taking a single snapshot of the page, a second one at 
2 minutes, a third at 16, and a fourth at 32. This was done over a 
period of three days, with each sample shifted by 4 hours in order 
to capture different conditions (e.g., during the day versus at 

night), for a total of 8 four-sample rounds. For those pages that 
displayed changes during the initial 2 minute delay (10616 pages), 
instant-change data was collected by simultaneously requesting 
the page on two synchronized machines. Although this data does 
not necessarily inform us about rates of change, it does tell us if 
pages change through some automated process on every request 
rather than changing as a result of some human-driven process.  
Table 2 presents high level statistics for this analysis. We 
calculate the number of documents that changed at least once 
during sampling as well as the number of pages that change in all 
samples. The range between the two approximates the lower and 
upper bound on the true number of pages that change at a given 
rate. In all cases, the Dice similarity is high, reflecting small 
amounts of change in the short time-scales. As the change interval 
gets longer, the amount of change a page undergoes increases. 
Manual analysis of documents displaying instant change reveals 
many instances of randomly changing advertisements. 
Additionally, details about how fast a page was served (e.g., 
“Page served in 0.00252 secs,”) to whom (e.g., “IP address is..”), 
and to how many (e.g., “There are 665 users online,” or, “Visitor 
number 81434,”) resulted in changes in the concurrent crawl. 
Because the content of these pages is driven by the visiting client, 
it is important to recognize that many of the changes detected by a 
crawler may be insubstantial as they are driven by the crawler 
itself. We return later to a discussion of how we might detect 
interesting versus non-interesting changes, though we note that a 
simple pattern for these automated changes could be easily 
learned by automated analysis of the textual differences between 
two instantly-changing documents. 

4.2 Summarizing a Page’s Change over Time 
Thus far we have only discussed changes between two successive 
versions of a page. Such analysis does not capture a page’s change 
trajectory over a period a time or the more detailed content of that 
change. A page that has one restricted area of change that updates 
every time it is crawled (e.g., an advertising block) will show very 
similar amounts of change between successive versions as a blog 
that adds a new entry every crawl. But, over time, the content of 
the page with the advertising block changes very little, while the 
content of the blog changes a lot. 

4.2.1 Change Curve 
To quantify the change of each Web page over time we define the 
notion of a change curve. A change curve represents the amount 
of textual change (as measured by the Dice coefficient) from a 

 
Figure 3. Histograms of a) the average time between changes in our dataset for all sequential pairs of Web pages 
downloaded from the same URL, and b) the average amount the content changed, as measured by the Dice Coefficient.

Table 2. Change properties for sub-hour crawls. 

Interval 

Docs. with change (% of 54816) Mean / 
Median Dice 
sim. (given 

change) 

Change in any 
sample     

(upper bound) 

Change in all 
samples   

(lower bound) 
Instant (0 min.) 6303   (11.5%) 3549    (6.5%) .937 / .985 

2 minutes 10616 (19.3%) 4952    (9%) .937 / .982 
16 minutes 12503 (22.8%) 6206    (11.3%) .927 / .975 
32 minutes 13126 (23.9%) 6445    (11.8%) .920 / .969 
60 minutes 35997 (65.7%) 22818  (41.6%) .867 / .950 

 



fixed point in the document’s 
history. For each page we select, at 
random (biased to the first week of 
samples), up to n starting points (n=5 
in the analyses reported below).  We 
define Dt to represent the Web page 
content at time t, and Dr1 to be the 
content at the first randomly selected 
time.  Content, for this analysis, is 
defined to be the page stripped of 
markup. The value of the change 
curve at each time point, t, is 
calculated as the average Dice 
coefficient from each of the 
randomly selected starting points to 
the Web page content t time steps in 
future. 
Change curves allow us to 
summarize a Web page’s evolution 
over time. Several example curves 
can be seen in Figure 4. We observe 
that most documents change rapidly 
from the initial starting point as 
content shifts off the page or is 
changed during the initial hours. For 
example, in a news homepage, 
specific news stories may move off the page at a certain rate as 
new articles are added. This causes a rapid falloff in the Dice 
coefficient. At some point, the curve levels off, as the similarity of 
all subsequent versions to the initial version is approximately 
equal. This creates a change curve with a “hockey stick” form (see 
Figure 4).  
Note that not all versions of the page after the curve levels off are 
the same. It is rather their similarity to the original starting point 
that is the same. In the news example, at the inflection point or 
knot, where the curve levels off, all stories that were present in the 
initial sample have moved off the page. Every page following the 
inflection point has different stories from the starting point, and 
this represents the constant Dice coefficient in the level portion. 
The part of the site that remains similar to the initial sample is the 
text that always resides on the page, including navigational 
content and terms that appear regularly in all stories. In general, 
the textual content past the inflection point that is similar to the 
starting point is template information and a rough representation 
of the underlying language model of the page.   
Manual analysis of the change curves identified three main types: 
knotted (made up of two piecewise linear segments, the “hockey 
stick” shape), flat (one unchanging, zero slope line), and sloped 
(one sloped line with no obvious knot).   

4.2.2 Identifying the Knot 
To compare the change curves of different Web pages to each 
other, we model the curves using the characteristic hockey stick 
shape. We do this by identifying the curve’s knot and fitting two 
linear regressions to the curve, one up to the knot, and the other 
following it. Piecewise linear regression is a well known problem 
which requires either knowing the knot location a priori or 
determining it through a grid search with a well defined objective 
function. To find the knot point efficiently, we have defined a 
heuristic scheme that works well in practice.  
The algorithm works by first fitting one linear segment to the full 
change curve. The leftmost intercept of the fit curve to the change 
curve becomes our initial guess for the knot location. A segment 

is then fit to the portion of the change curve occurring before the 
knot. The knot point is incremented as long as the mean-squared 
error of the first segment does not increase. Figure 4 shows the 
fitted segments for different pages. In situations when no knot 
point appears within the sampled time period (i.e., a knot point at 
0 hours or the two segments have nearly identical slopes), we fit 
one segment which is either continuously sloped or flat (an 
unchanging page). Of course, sloped pages may eventually level 
off in a hockey stick pattern, but we do not have sufficient 
evidence to conclude when, or even if, this might happen. 
The combination of knot point and characteristic regression 
information (slopes and intercepts) provides a representation of 
the data which can be used to automatically classify the curves as 
knotted, flat, or sloped. Using 200 random, manually labeled 
curves as a training/test example, we are able to achieve over 93% 
accuracy with a classifier based on Additive Logistic Regression 
[9]. We find that the classifier is somewhat conservative in 
deciding on the knotted category, resulting in very few false 
positives but a number of false negatives which are categorized as 
sloped. In the end, our algorithm classified 819 pages (of 36767) 
as flat (2%), 10462 as sloped (28%), and 25486 as knotted (70%). 
For all pages with knot points, the mean time is 145 hours 
(median time 92 hours), and the mean Dice coefficient is 0.74 
(median Dice 0.80). 
Table 1 shows the average knot point for pages broken down in a 
number of different ways, including by top-level domain, URL 
depth, and category. The change time (in hours) reflects how long 
it takes to reach steady state content, and the Dice coefficient 
represents the amount of overlap at that time (the x/y coordinates 
of the knot point).  All of the differences in change intervals that 
are greater than four hours are significant, except that .gov domain 
is only significantly different from .edu. All differences in Dice 
coefficient greater than 0.01 are significant. 
We note a few interesting points about these change curves.   
Knot location: Different pages (e.g., Figure 4b and 4d) level off at 
different Dice values.  This level represents the eventual 

 
Figure 4. Several example change curves depicting Dice coefficients over time. 



(dis)similarity of the page once content 
has “decayed” off. Allrecipes, with much 
more navigation and structure retains more 
content over time than the bare Craigslist 
page that primarily consists of new ads.  
The time of the knot point (i.e., its x-
coordinate) reflects the rate at which the 
most quickly changing data, does change.  
Note the difference between Figures 4c 
and 4d that have the same eventual Dice 
value, but different knot locations in time.  
The Los Angeles Craigslist page (Figure 
4d), with many more new home products 
being sold, has a knot point at 10 hours 
versus Anchorage’s 29 (4c). 
Unique visitors: Unlike inter-version 
means, there is no statistical difference in 
where the knot point falls as a function of 
unique visitors. This is consistent with the 
fact that while popular pages change more 
often, they change less when they do, and 
thus require the same amount of time to 
“stabilize” as less popular pages.   
URL Depth: The deeper the page is in the 
page hierarchy the further the knot point, 
potentially indicating that content on pages 
deep within a site “decay” at a slower rate. 
Category: Perhaps unsurprisingly, News 
and Sports pages have an earlier knot point 
as content in these pages is likely to be 
replaced quickly.  Industry/trade pages, 
including corporate home pages, display a 
much more gradual rate of content decay 
before reaching the knot point.  

4.3 Term-Level Change 
The above analysis explores how page 
content changes across an entire Web 
page. This type of page evolution analysis 
tells us about the rate at which the page 
changes as a whole, but not specifically 
how the textual content is evolving.  In this section we present 
several ways to characterize the content change at the term level. 
Doing this allows us to explore the types of changes that occur in 
different parts of the change curve. After identifying the common 
hockey-stick change pattern, we continued crawling (over a six 
month period from June to December 2007) to study text content 
changes in greater detail. Previous attempts to study page content 
change at the sub-document level have focused on chunk-level 
measurements, such as page tiling and hashing techniques [8][15]. 
While these techniques give some sense of the volume and 
frequency of page content that changes over time, they do not 
shed any insight into the nature of those changes. 
Most basically, we are interested in how page vocabulary changes 
as a page updates. Figure 5 shows several term lifespan plots 
which visualize the dynamics of vocabulary change over time. 
Time is shown along the x-axis, and terms are shown as horizontal 
lines on the y-axis. When a term occurs in the document at a given 
time, a point is drawn, and when the term is absent no point is 
drawn. Terms are ordered by their first occurrence in the page, 
and then by their longevity. The change curves in Figure 4 are 
essentially a summary of the term lifespan plots in Figure 5. 
Change curves can be generated by selecting a reference vertical 

slice in a lifespan plot and measuring the overlap of terms in that 
slice with those in subsequent slices.  
The longevity plots are denser at the bottom indicating that the 
most constant terms tend to appear early in the observation period, 
and those that are more ephemeral tend to appear later. We 
observed there is a qualitative difference between the bottom and 
top terms; intuitively, the terms near the bottom characterize 
aspects such as the central topic of the page, as well as 
navigational elements, while those towards the top may be 
seasonal or related to a small niche of the pages central topic. 
To characterize how likely a term is to appear over time, we 
defined a measure of the staying power of a term in a Web page: 

,  
1

     

where w is a word; 0…  indexes timestamps; Dt is a 
document at time t;  is the interval between time stamps and I(.) 
is an indicator function. Intuitively, the measure is roughly 
equivalent to the following probabilistic interpretation: 

,  | ,  

  
Figure 5. Term lifespan plots for several pages.  The lower right hand plot has been 
replaced with the BestBuy homepage. Time (in days) is shown along the x-axis, and 
terms are along the y-axis, ordered by their first occurrence in the documents. 
Representative terms at various levels are shown along both sides. 



Or the likelihood of observing a word in document D at two 
different timestamps, t and , where  and  are 
sampled uniformly. 
In Figure 6, we show how the staying power is distributed across 
terms for several sample pages. There is a clear bi-modal 
distribution, with most of the vocabulary clustered at the ends. 
Terms with high staying power are likely to be in multiple crawls 
of the page, and those with low staying power are unlikely to 
occur in multiple crawls of the page.  
As we saw with the longevity plots, terms with high staying 
power are either descriptive of the document’s ongoing central 
topic, represent common words, or are navigation elements. In an 
attempt to distinguish the set of vocabulary that is potentially 
more informative of the document’s central topic as well as 
having a strong staying power, we looked at the divergence or 
clarity of these terms with regard to the collection as a whole.  
Previously, divergence has been used to measure how strongly a 
subset of documents is distinguished from a collection, and has 
been applied to the task of query difficulty prediction [5]. In that 
setting, the K-L divergence between a retrieved set of documents 
and the collection as a whole is used as a means to predict query 
difficulty—the more divergent the two sets are, the more likely 
the retrieved documents are to reflect a coherent (and relevant) 
subset of Web content. Here, we’re applying a similar measure to 
identify which terms distinguish the language of a single 
document from that of the collection.  
Our term divergence measure is a term’s contribution to the K-L 
divergence of the document from the collection language model. 

, |
|
|  

The probabilities are computed as un-smoothed maximum 
likelihood estimates: 

| ∑ ;

| |
       | ∑ ;

| |
 

Where tf and ctf refer to document and collection term frequency 
respectively, |D| and |C| refer to the length of the document and 
collection respectively. This divergence measure can be thought 
of as a probabilistic form of TF-IDF weighting, favoring terms 
with a high likelihood of occurrence in the document and a low 
overall likelihood of occurrence in the collection. The divergence 
can be measured for the document over all crawled instances as 
shown in the equation above (divergence), or for a single crawled 

instance (divergence at t) by just taking a single term of the 
summations above. 
Table 3 shows several sets of terms for two sample pages. In the 
left columns, terms with a high divergence at t value are shown, 
for t=0, the first crawl in our collection. In bold are terms with a 
low staying power ( 0.2). These terms represent ephemeral 
vocabulary which are descriptive of the page at the time (here t=0) 
but are not descriptive on an ongoing basis. In the right columns, 
we show terms with high staying power in the documents 
( 0.8) broken down by whether they have high or low 
divergence from the collection model. In this example, we see 
how the divergence measure can separate terms such as function 
words which are always present in the documents (low 
divergence) from those that are more descriptive of the 
document’s content (high divergence). The analyses shown in 
Table 3 suggest that measures such as staying power and 
divergence are useful in identifying terms that are both 
characteristic and discriminating for the document as it evolves 
over time. In Section 6 we describe how such differences might be 
used to improve summarization and ranking. 
In this section, we have explored how Web page content changes 
over time. We confirmed previous findings, and built on those 
findings to better understand how different types of pages change 
and what the nature of those changes is.  We next describe how 
page structure changes over time and develop methods to 
efficiently analyze such changes. 

5. STRUCTURAL CHANGE 
In previous sections we have ignored the structure of a Web page. 
Nonetheless, structural changes represent an important way a page 
can change. A page with exactly the same textual content as a 
previous version can still be very different because that content is 
organized and presented in a different way. 
In considering structural change we would like to compare the 
tree structure of each version of the Web page to one or many 

Table 3. Terms from two websites. (left columns) Terms 
with a high divergence at t value, with t=0, the first day of 
our crawl. Terms with low staying power( 0.2  in bold. 
(right columns) Terms with a high staying power and 
high/low divergence values. 

Allrecipes.com Craigslist.org (Los Angeles) 
Div. @ t=0 0.8 Div. @ t=0 0.8 
recipes 
cooking 
recipe 
advice 
more 
salads 
cookbook 
tips 
sandwiches 
cooks 
easy 
pork 
survey 
bbq 
menus 
salad 
widgets 
cheese 
cool 
delivered 

High divergence: 
cooks 
cookbooks 
ingredient 
desserts 
rachael 
digest 
newsroom 
trusted 
 
Low divergence: 
home 
you 
search 
free 
your 
com 
with 
this 
all 

pic 
porter 
ranch 
nuys 
kenmore 
refrigerator 
angeles 
dryer 
west 
hollywood 
washer 
los 
stove 
santa 
vacuum 
sfv 
koreatown 
conditioner 
refrigerator 
microwave  

High divergence:
refrigerator 
dryer 
kenmore 
southbay 
washer 
whirlpool 
antelope 
microwave 
 
Low divergence: 
pic 
new 
all 
los 
beach 
sale 
with 
west 
items 

 
Figure 6. Histogram of staying power (  values    
for four Web pages. 



other instances. Various efforts have attempted to address this 
difficult problem (extensively surveyed by Grandi [10]). The tree 
alignment problem is complex to implement, expensive to 
calculate, and usually only treats pairs of trees. Ideally, we would 
like to analyze a thousand or more instances of the same page tree 
rapidly and use the same algorithm to solve multiple problems. In 
particular we would like to test for the presence or absence of 
various DOM elements (described by XPath) and potential 
changes within them.  Additionally, we would like to identify 
blocks of content that are changing synchronously.  
To do so we develop a simple algorithm that serializes an HTML 
document in such a way that different forms of lexicographic 
sorting and aggregation can answer these questions. A limitation 
of this approach is that it is unable to detect the amount of change 
in content directly. We return to a possible solution below. But 
despite its limitations, it has the significant advantage of being 
implementable as a basic map-reduce style problem and scaled. 

5.1 Serializing DOM Structures 
In order to analyze many versions of a page simultaneously we 
convert the HTML pages into a form suitable for processing. We 
construct a serialized form that minimally consists of a version 
ID, the XPath, and a hash of the textual content of each DOM 
node. By sorting on different fields, we group elements that we 
would like to track. For example, by sorting on the XPath and 
version, we can identify when the content within the path changes 
or if the node vanishes at a particular point. 
More concretely, to generate the serialized version, the algorithm 
proceeds by progressing in a depth first parse of the HTML tree of 
the document through a standard SAX parser (HTML documents 
are “cleaned” with the tidy tool for XML validity). When the 
system reaches the start of a new HTML element (e.g., “<div>” or 
“<h1>”) the algorithm notes this in a stack. Textual content that is 
encountered is also pushed onto the stack. When an ending 
element tag is reached (e.g., “</h1>” or “</div>”) the system 
emits a hash value of the text within the tags (as well as a hash of 
the children of that node). The system will also output the XPath 
used to arrive at the nodes in both set and direct access notation. 
For example, given “<a>foo <b>bar</b></a>” at time k, 
the system will output a stream of two lines: 
/a[0]/b[0] (/a/b)[0] hash(“bar”) hash(“bar”) k 

/a[0] (/a)[0] hash(“foo”) hash(“foo bar”) k 

Each line corresponds to a temporally-annotated tuple: {full_path, 
type_path, node_hash, subtree_hash, version}. The type path 
reflects the full typing of the node based on its position in the 
hierarchy. Although the two are equivalent, we find that having 
two versions of the path, and in particular the type path, useful for 
detecting motion of elements between tree siblings.   Similarly, 
having both a hash of the content of the node as well as the 
subtree allows us to isolate the cause of a change. We create this 
output for every version of the document. For example, if the k+1 
version of the document contained the text “<a>foo 
<b>baz</b></a>” our stream would be: 
/a[0]/b[0] (/a/b)[0] hash(“baz”) hash(“baz”) k+1 

/a[0] (/a)[0] hash(“foo”) hash(“foo baz”) k+1 

/a[0]/b[0] (/a/b)[0] hash(“bar”) hash(“bar”) K 

/a[0] (/a)[0] hash(“foo”) hash(“foo bar”) K 

We may additionally keep track of other features for later filtering 
(e.g., the length of the text, hash of tag attributes, etc.).  
We define two operations on this dataset: sort(sorting variables), 
which outputs a sorted stream, and reduce(reduction variables), 
which outputs a set of sets. The sort function corresponds to 
“map” but for our purposes simply lexicographically sorts the 
serialized stream in the order of the sorting variables (e.g., 
sort(node_hash,version) would first sort by the node_hash and 
then by version). The reduce operation groups sorted data based 
on some matching parameters (e.g., reduce(version) would 
generate a set of sets where each subset was one version: 
{{k},{k+1},…{k+n}}).  
By sorting on different columns in different orders and linearly 
processing the files, we are able to track the movement and 
lifespan of a specific piece of text in the hierarchy, track the 
number and lifespan of pieces of text at a specific location, and 
combine these operations in various ways. The use of shingles as 
a hash value [17] is worth exploring in the future as we can take 
advantage of our algorithm to rapidly eliminate exact matches, 
and testing approximate ones when necessary. The benefit of our 
approach is that it is a) linear in the number of tree nodes and 
versions, and b) can be parallelized by mapping different sub-trees 
to different processors.  

5.2 Tracking DOM Element Lifespan 
Using the mechanism described above we are able to calculate the 
lifespan of various DOM elements within our crawled pages over 
time. We achieve this by applying: 

sort(full_path,version) 
S = reduce(full_path) 
foreach s in S: calculate the difference between the 
minimum version id  and last reported id 

Letting S be the set of sets, s a subset within S. This algorithm is 
somewhat of a simplification as, in reality, we only test for the 
vanishing point for those paths present in the original crawl. 
Additionally, we ignore nodes that have not survived the first hour 
since these tend to be unrelated to document structure and 
frequently contain simple formatting.  
Table 4 presents the survival rates for DOM elements in pages 
that were successfully parsed (37,160 pages). The survivability of 
elements is quite high, even after 5 weeks (median survival of 
99.8%). The large amount of survivable structure suggests that 
XPath-based extractions (e.g., [1]) over short periods would 
continue to function. The algorithm may also identify unstable 
content and indicate where XPath extractions are inappropriate. 

5.3 Analyzing Blocks  
Extending the ideas above, we can further calculate the 
persistence of any content anywhere within the document. This is 
particularly interesting for situations where content may move (as 
in the case of blogs or news sites) but also informs us about how 
long we might expect certain content to last on the page before 
vanishing.  To calculate this we can execute the following: 

sort(subtree_hash, full_path, version) 
S = reduce(subtree_hash) 
for s in S: find the minimum and maximum version for 
each tuple, t, in s at the given location( as specified by 
the path). Calculate the difference between the minimum 
and maximum (the lifespan), and recalculate the 
average lifespan for that path.  

Table 4: Percent of persistent DOM elements  

 2 hour 1 day 1 week 2 weeks 4 weeks 5 weeks 

Mean 99.3% 97.4% 91.7% 87.9% 86.4% 84.3% 



Again the algorithm is a slight simplification for readability as we 
only consider the initial time that the content entered the node. 
The output of this analysis is a measure of how long we can 
expect a piece of text that starts at a given location to survive.  
Figure 7 shows a simple visual rendering of give sample pages 
from our crawl processed using this approach. The opaque (red) 
regions are those that change the most rapidly, and the white 
regions are the most stable.  Navigation and other persistent 
elements (e.g., search bars) tend to have higher survival rates, 
whereas text ads change rapidly. Notice, for example, the 
navigation bar on the left side of the amazon.com bestsellers page 
in Figure 7c contains highly survivable content as well as the top 
item which persisted much longer than other elements in the list.  
This algorithm can be adapted to group different nodes with 
similar average life spans (e.g., when a new article is posted on 
the top of a blog, generally all posts below move, thus the average 
change rate of all posts is matched). Considering the rendered 
location of DOM elements, may allow us to identify blocks of 
changing content.  
Metrics for structural changes are frequently task specific.  By 
creating a flexible serialized processing scheme we are able to 
rapidly test and measure structural change in different ways.  We 
are presently continuing to expand this technique, tying it more 
closely in with notions of content change.   
Having explored Web change on both content and structure, we 
turn to a discussion of ways our models and algorithms can be 
used to help people better interact with dynamic Web content. 

6. USING CHANGE ANALYSES 
Previous studies of Web change have typically been used to 
inform search engine crawler policies, the idea being that pages 

that change a lot are more likely to get stale and should be 
crawled more often. In this section we explore some of the ways 
our findings may be used. Like earlier work, our results can be 
used to refine crawler policies. In addition, because the sample of 
Web pages we studied was selected based on how people use the 
Web pages, we believe our results also have implications for tools 
that support human interaction with dynamic Web content, 
including Web services like search engines and client-side 
applications like Web browsers or toolbars. 
Crawling. One important observation for Web crawlers in our 
analysis is that some types of change are more meaningful. By 
looking at what type of content is changing, crawlers can focus on 
meaningful change. For example, the fast crawl highlights the 
importance of ignoring change to advertising content or change 
that occurs as a result of touching a page (e.g., changes to visit 
counters or information about page load time).  
Our analysis of the terms that change in a page suggest some of 
the static content may be more valuable for characterizing a page, 
and thus more valuable to the search engine index. Crawlers could 
be updated to take into account several archived versions of a 
page to identify the characteristic static component, and then not 
worry about crawling the page to capture every new, relatively 
unimportant change. Further identifying those pages for which the 

 
Figure 8. Summarizing change in the result snippet. 

 
Figure 7. Renderings of the lifespan of elements on a number of pages (darker red blocks are shorter life spans) including a) 
boston.com, b) televisionwithoutpity.com (note the groups of similarly colored content), c) the DVD bestseller list on Amazon, d) 
gas prices in various cities on GasBuddy.com, and e)  a list of earthquakes at the USGS. Not all blocks marked. 



dynamic component is important (perhaps because the queries that 
lead to a page do so via matches with the dynamic component, or 
because the queries are similarly dynamic) would allow crawlers 
to focus on those pages in particular. 
Ranking. A similar approach could be applied to improve Web 
search engines. Characteristics of Web pages, such as the knot 
point, that summarize page-level changes, over time could be used 
as features for improved ranking. In addition terms may warrant 
different weight for retrieval based on whether they appear in the 
static or dynamic portion of a Web page. The characterization of 
the page in the index could mirror the page’s change patterns, and 
queries could be mapped to the appropriate aspect, either in 
general (e.g., static content is always weighted higher) or on a per-
query basis (e.g., some queries bias towards dynamic content 
while others bias towards static content). Similar ideas could be 
used to improve selection of keywords for contextual ads. 
User Interaction. A search engine with a rich understanding of 
Web dynamics could also benefit its end users in more direct, 
obvious ways by exposing page change in its user interface. 
Searchers who are revisiting previous information sources may be 
interested in re-finding [20] previously viewed content or in 
viewing newly available content.  Both behaviors can better 
supported. For searchers interested in new content (identified 
either by the query alone or by the user’s query history), the 
search result summaries could highlight the new content, such as 
seen in Figure 8. Additionally, many search engines have a 
“cached page” functionality. This is useful in instances when the 
page content has changed but the user is interested in the previous 
version (detectable by analysis of revisitation patterns [2]). This 
functionality could be further enhanced by comparing the cached 
version of the page with the live version, and exposing the 
differences, such as is shown in Figure 1. 
The ability to expose and interact with change would be 
particularly useful within a client-side, Web browser context, 
where a user’s history of interaction is known. The pages in a 
browser cache could be better exposed in ways similar to the 
above suggestions as to how a search engine might expose them, 
allowing the user a personal view into what’s changed since their 
last visit. A browser could also act as a personal Web crawler for 
its user, and pre-fetch pages that are particularly likely to 
experience meaningful change. This would allow for a faster Web 
experience and give users the ability to access new content in 
offline environments. Combining pre-fetching with predictive 
revisitation patterns seems particularly valuable, and is an area of 
future work we’re actively pursuing. 

7. CONCLUSION AND FUTURE WORK 
In this paper, we have described algorithms, analyses, and models 
for characterizing the evolution of Web content. Our analysis 
gives insight into how Web content changes on a finer grain than 
previous research, both in terms of the time intervals studied (we 
consider hourly and sub-hourly crawls instead of weekly or daily 
crawls) and the detail of change analyzed (in addition to looking 
at page-level changes, we explore DOM- and term-level changes). 
Change rates are higher in our behavior-based sample than has 
been found in previous work on randomly sampled pages, with a 
large portion of pages changing more than hourly. Detailed 
content and structure analyses identify stable and dynamic content 
within each page. 

Looking forward, we hope to refine and test the designs described 
in Section 6, and to better characterize the impact of document 
change on revisitation. As observed in Table 1, the amount of 
change to a Web page’s content appears to vary greatly as a 
function its visitor count (i.e., popularity). We believe that 
understanding revisitation patterns and intent can help us identify 
meaningful change and support interaction with cached content 
when appropriate. 
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