
The Web Changes Everything:
Understanding the Dynamics of Web Content

Eytan Adar
University of Washington

Seattle, WA, USA

eadar@cs.washington.edu

Jaime Teevan, Susan T. Dumais
Microsoft Research
Redmond, WA, USA

{teevan, sdumais}@microsoft.com

Jonathan L. Elsas
Carnegie Mellon University

Pittsburgh, PA, USA

jelsas@cs.cmu.edu

ABSTRACT
The Web is a dynamic, ever changing collection of information.
This paper explores changes in Web content by analyzing a crawl
of 55,000 Web pages, selected to represent different user
visitation patterns. Although change over long intervals has been
explored on random (and potentially unvisited) samples of Web
pages, little is known about the nature of finer grained changes to
pages that are actively consumed by users, such as those in our
sample. We describe algorithms, analyses, and models for
characterizing changes in Web content, focusing on both time (by
using hourly and sub-hourly crawls) and structure (by looking at
page-, DOM-, and term-level changes). Change rates are higher in
our behavior-based sample than found in previous work on
randomly sampled pages, with a large portion of pages changing
more than hourly. Detailed content and structure analyses identify
stable and dynamic content within each page. The understanding
of Web change we develop in this paper has implications for tools
designed to help people interact with dynamic Web content, such
as search engines, advertising, and Web browsers.

Categories and Subject Descriptors
H.5.4 [Information Systems]: Information Interfaces and
Presentation (e.g., HCI) – Hypertext/Hypermedia: User issues.

General Terms: Human Factors, Measurement.

Keywords: Web page dynamics, change, re-finding.

1. INTRODUCTION
The content on the Web is different from most other types of
content we normally interact with because it changes regularly.
For example, while most documents on a person’s desk remain
constant, with perhaps only an annotation or two added over time,
even Web pages we think of as relatively static, like the WSDM
conference home page, change in subtle ways (see Figure 1).
In this paper, we characterize Web change by analyzing a multi-
week Web crawl of 55,000 pages. The pages in the crawl were
selected to represent a range of visitation patterns, and our dataset
is unique in that it reflects how the observed Web is changing.
Understanding this segment of the Web is important for crawlers
and search engines that must keep pace with changing content, as
well as applications intended to help people interact with dynamic
Web content. Our research confirms a number of previously
identified trends in Web evolution and highlights several

important differences for pages that are visited by users compared
with those selected at random. Through analysis of hourly, sub-
hourly, and concurrent crawls we explore page change on a fine-
grained time scale. We find that many pages change in a way that
can be represented using a two-segment, piece-wise linear model
that would be unobservable in a coarser crawl.
We further extend previous work by characterizing the nature of
the changes to Web page content and structure. The analysis of
content change presented in this paper focuses on understanding
which terms within a page appear consistently over time, and
which come and go. We introduce the notion of the staying power
of a term within a document over time. It appears there is a bi-
modal distribution of terms, with most terms either being very
stable over time or changing very rapidly. Stable terms reflect the
ongoing central topic of a page as well as common function words
or navigational elements. Our analyses can inform algorithms for
improved search engine ranking and contextualized advertising.
We also explore the dynamics of Web page structure through
analysis of DOM-level changes. In particular we concentrate on
short-term survivability of various DOM elements, an important
metric for Web clipping and template extraction applications
which rely on the DOM structure to function [1][3][6]. The large
amounts of data analyzed in our DOM analysis necessitated the
creation of an efficient algorithm for tracking the motion of blocks
of text, changes in the DOM structure, and identification of blocks
of simultaneously changing content. The algorithm we develop
can be used for both analysis and higher level tasks like predicting
content flow in the page and block identification.
We begin this paper with a discussion of related work and a
detailed description of our unique dataset. We then explore both
content and structural change in greater detail. We conclude with
a discussion of future work and potential applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WSDM’09, February 9-12, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-390-7…$5.00.

Figure 1. Web content changes regularly. Here changes to the
WSDM 2009 homepage are highlighted.

2. RELATED WORK
Characterizing the amount of change on the Web has been of
considerable interest to researchers [4], [8], [11], [12], [13], [14],
[16]. For example, Cho and Garcia-Molina [4] crawled 720,000
pages once a day for a period of four months and looked at how
the pages changed. Ntoulas, Cho, and Olston [14] studied page
change through weekly snapshots of 150 websites collected over a
year. They found that most pages did not change according to a
bag-of-words measure of similarity. Even for pages that did
change, the changes were minor. Frequency of change was not a
great predictor of the degree of change, but the degree of change
was a good predictor of the future degree of change.
Perhaps the largest scale study of Web page change was
conducted by Fetterly et al. [8]. They crawled 150 million pages
once a week for 11 weeks, and compared the change across pages.
Like Ntoulas, Cho, and Olston [14], they found a relatively small
amount of change, with 65% of all page pairs remaining exactly
the same. The study additionally found that past change was a
good predictor of future change, that page length was correlated
with change, and that the top-level domain of a page was
correlated with change (e.g., edu pages changed more slowly than
com pages). The longest longitudinal study we are aware of is the
360 page sample studied between 1996 and 2001 by Koehler [12],
finding that page change plateaus as a page ages.
More recently, Olston and Panday [15] crawled 10,000 random
Web pages and 10,000 pages sampled from the Open Directory
every two days for several months. Their analyses measured both
change frequency and information longevity (the average lifetime
of a shingle), and found only a moderate correlation between the
two. They developed new crawl policies that are sensitive to
information longevity. In a study of changes observed via a proxy,
Douglis et al. [7] identified a relationship between revisitation
rates and change. However, the study was limited to content
visited by a restricted population (AT&T Labs), and pages were
not actively crawled for changes between visits.
Researchers have also looked at how search results change over
time [19], [20]. The focus in these studies was on understanding
the dynamics of search engines and the consequences change has
for searchers who want to return to previously viewed pages.
Our study differs from previous work in the pages we selected to
crawl (sampled from pages that we know have been visited), the
granularity of the crawl (hourly and sub-hourly crawls), and in the
level of detail with which we analyze changes in the content and
structure of Web pages. Through analysis of our unique dataset
we are able to contribute to the general understanding of Web
change as well as develop new algorithms for exploring and
utilizing changes in a number of applications.

3. METHODOLOGY
In this paper we study how approximately 55,000 Web pages
change. Here we described how the pages were selected, how they
were crawled, and how change to the pages was measured.

3.1 How Pages Were Selected
Our goal in selecting Web pages for study was to sample pages
with a diversity of revisitation patterns. This is a significant
departure from other studies that have traced the evolution of
subsets of Web pages (typically gathered by breadth-first crawls
from seed pages) regardless of use. In our work, we have captured
a sample representing those pages which are actually revisited and
consumed by users in different ways.

To construct our sample we made use of URLs collected from the
logs of opt-in users of the Live Search toolbar. The toolbar
provides augmented search features and reports anonymized
usage behavior to a server. Pages were pulled from a sample of
those visited by 612,000 people for a five week period starting
August 1, 2006. We restricted our sample to English speaking
users in the United States, and attempted to remove robots and
other anomalous users (a complete description of how these users
were selected and filtered is available elsewhere [2]).
As we were interested in pages with different popularities and
different revisitation patterns, we defined several attributes for
each page which were then used to systematically sample pages
for further analysis. Specifically, we considered the number of
unique visitors to a page (unique-visitors), the average inter-
arrival (i.e., revisit) times for a page (inter-arrival time), and the
average number of revisits per user for a page (per-user revisits).
Most pages in the raw data were visited by very few people
overall, with a small number of revisits per person and at low
(fast) inter-arrival times. To sample from the space without over-
selecting from the tail we applied a pseudo-exponential binning to
find thresholds for the unique-visitor (minimum of two) and per-
user revisits. For the inter-arrival time criteria, we opted to use
thresholds that correspond to well understood time periods (e.g.,
10 seconds, minute, hour, day, week).
In total, there were four bins for the unique-visitor criteria, five
for the per-user revisit criteria, and six for the inter-arrival time
criteria (for a combination of 4 x 5 x 6 = 120 possible bins). Each
URL was annotated with three bin numbers, and we sampled from
this space. Some oversampling of popular pages was added by
explicitly including the top 5000 most visited pages. The Web
pages were crawled to ensure that they were still publicly
available (in conformance with the robots.txt), and those that were
not were removed. The final sample included 54,788 URLs with
an average of 468.3 (median 650) URLs in each of the 120 bins.
Each page was categorized into topical categories using standard
text classification techniques [18]. The topical categories used are
similar to those in the first two levels of the Open Directory
(www.dmoz.org). A second classifier, used by Live Search,
identified various genres (e.g., children, mail, pornography, etc.).
Additionally, pages were grouped by the number of unique
visitors (as described above), the URL depth (how deep the page
is within the site), and top level domain.

3.2 How Pages Were Crawled
To understand how the content of these Web pages change over
time, we crawled each URL hourly for 5 weeks, starting May 24,
2007. (Because of some randomization in the crawler, the time
between subsequent re-crawls may be slightly more or less than
an hour). For those pages that displayed a substantial number of
hourly changes a secondary crawl was initiated over the course of
four days to capture sub-hour changes, as described in Section
4.1.2. Finally, for pages that displayed many changes at the two-
minute interval, a third crawl was constructed to collect the page
twice at the same time from two synchronized machines. All three
crawls capture changes at a much finer grain than previous work.
The full HTML text of the page was collected and stored for each
retrieved version.

3.3 How Change Was Measured
We explore how the Web changes by examining the crawled data
in several ways. An extremely coarse measurement of change can
make use of document checksums that detect any difference. In a

way this is unsatisfying as both large and small changes, as well
as content and structural changes, are treated the same.

Previous work has focused on measuring textual differences by,
for example, calculating the differences between blocks of text [8]
or word frequencies [14]. We begin our study by utilizing a
similar approach, based on the Dice coefficient, to represent the
amount of textual change. The Dice coefficient, which measures
the overlap in text between various document versions, allows us
to develop a high level model of page change over time (i.e.,
Dice(Wi, Wk)=2*|Wi Wk|/(|Wi|+|Wk|), where Wi and Wk are sets
of words for the document at time i and k respectively). A high
Dice coefficient (i.e., 1) reflects high similarity, whereas a low
Dice coefficient (i.e., 0) indicates no similarity. Having identified
this model we further refine our metrics to explore term-level
document change. By comparing term occurrence within a page
with a background language model, we identify the specific terms
that change or persist in a document.

We augment this analysis of content change with a study of
structural change. We develop several algorithms to identify and
track the movement of DOM elements within the documents and
describe the persistence of structural blocks over time.

4. CONTENT CHANGE
4.1 Overview
We begin our analysis of content change by looking at the
frequency and amount of change that occurred for each page
individually in our sample. As an example, a page may not change
at all for several days after it is first crawled, but change a lot
when it finally does. The same page may then begin to experience
small changes at frequent intervals. All of the changes that are
made to a page over the period of our crawl can be represented as
a scatter plot like the ones shown in Figure 2. Each point
represents an instance where the page changes. The amount of
time elapsed since the last change is represented along the x-axis,
and the amount of change that occurs, measured using the Dice
coefficient, is represented along the y-axis. For example, the plot
for the New York Time’s homepage in Figure 2a shows most
changes occur with every crawl (i.e., every 60 minutes), although
some happen after two. In contrast, Figure 2b represents a page
that provides horoscopes and shows larger changes occurring on a
daily basis.

In our collection, 18971 pages (34%), displayed no change during
the studied interval. On average, documents that displayed some
change (35997 pages) did so every 123 hours and the average
Dice coefficient for the change was 0.794. Figure 3a shows the
distribution of average inter-change times, and Figure 3b shows
the average inter-version Dice coefficients.

4.1.1 Change by Page Type
The mean time between changes, and the mean Dice coefficient
for the changes that did occur, are shown in Table 1, broken down
along several different lines including: the number of visitors, top-
level domain, URL depth, and 6 most prevalent categories. For
each page, we calculate the average time between changes (i.e.,
the inter-version time) as well as the amount of change (as
reflected by the Dice similarity). This roughly corresponds to the
centroid of the points for each page in Figure 2. The mean inter-
version time (in hours) and Dice coefficient are then calculated for
pages of the same class (e.g., News pages or pages in the .edu
domain). In this section we concentrate on the mean inter-arrival
times and similarities, returning to the knot data in subsequent
sections. All differences in the table are significant (p<0.0001)

with the exception of differences in mean change interval that are
less than 10 hours, and differences in the mean Dice coefficient
that are less than 0.02. Additionally, the .org top-level domain
Dice coefficient is only significantly different from .net.

When broken down by unique visitors, we observe that pages that
are more popular tend to change more frequently than less popular
pages. This most likely explains why the percentage of pages in
our sample that displayed no change was nearly half of what has
been observed in prior studies ([4], [8]). Pages that are revisited
(as all pages in our sample are) change more often than pages
collected using other sampling techniques. However, while the

Figure 2. The interval between successive changes, plotted
against the amount of change for two pages. Note that the NY
Times page changes on every crawl (i.e., every 60 min.).

Table 1. Pages change at different rates and change different
amounts. This table shows the mean interval between
changes, the mean amount of change to a page, and the mean
knot point, broken down by page type.

 Inter-version means Knot Point Location
Hours Dice Hours Dice

Total 123 .7940 145 .7372

V
is

ito
rs

 2 138 .8022 .146* .7594*
3 - 6 125 .8268 143* .7692*
7 - 38 106 .8252 145* .7458*
39+ 102 .8123 139* .7621*

D
om

ai
n

.gov 169 .8358 153 .8177

.edu 161 .8753 200 .8109

.com 126 .7882 145 .7408

.net 125 .7642 132 .7195

.org 95 .8518 129 .6743

U
R

L
 d

ep
th

5+ 199 .6782 173 .7150
4 176 .7401 159 .7413
3 167 .7363 160 .7378
2 127 .7804 144 .7340
1 104 .8200 137 .7432
0 80 .8584 141 .7334

C
at

eg
or

y
Industry/trade 218 .6649 156 .6680
Music 147 .8013 166 .7693
Porn 137 .7649 140 .7365
Personal pages 88 .8288 124 .7347
Sports/recreation 66 .8975 137 .7138
News/magazines 33 .8700 104 .6415

 *Not significant

number of unique visitors is related to the rate of change, it does
not appear to correspond to the amount of change.
Looking at change by top-level domain, it appears that
educational and government domain addresses do not change as
frequently or as much as pages in other domains do. This is
consistent with prior research ([8], [11]), and may reflect the fact
that sites in these domains typically provide richer and less
transient content that only requires small, infrequent updates.
Pages with deep URL structure change less frequently than pages
at the root, but change more when they do. This may be because
top level pages are used as jumping points into the site, with a
high navigational to content ratio. Thus while new ads or short
teaser links to new deep content are often added, these are fairly
minor changes. Internal pages, which may have a low navigation
to content ratio, will see large changes when they do change.
The final breakdown of change shows that pages from different
topical categories change at different rates and by different
amounts. Pages from categories like News, Sports and Personal
pages change the most frequently as would be expected. The
amount of change, however, is not generally as large as that seen
for categories that change less frequently.

4.1.2 Change over Short Intervals
Because 22818 of the pages in our sample changed nearly every
hour, we initiated two sub-hour crawls (fast-change and instant-
change) to gain a better understanding of how these pages
changes at intervals of less than an hour. Fast-change pages were
collected by taking a single snapshot of the page, a second one at
2 minutes, a third at 16, and a fourth at 32. This was done over a
period of three days, with each sample shifted by 4 hours in order
to capture different conditions (e.g., during the day versus at

night), for a total of 8 four-sample rounds. For those pages that
displayed changes during the initial 2 minute delay (10616 pages),
instant-change data was collected by simultaneously requesting
the page on two synchronized machines. Although this data does
not necessarily inform us about rates of change, it does tell us if
pages change through some automated process on every request
rather than changing as a result of some human-driven process.
Table 2 presents high level statistics for this analysis. We
calculate the number of documents that changed at least once
during sampling as well as the number of pages that change in all
samples. The range between the two approximates the lower and
upper bound on the true number of pages that change at a given
rate. In all cases, the Dice similarity is high, reflecting small
amounts of change in the short time-scales. As the change interval
gets longer, the amount of change a page undergoes increases.
Manual analysis of documents displaying instant change reveals
many instances of randomly changing advertisements.
Additionally, details about how fast a page was served (e.g.,
“Page served in 0.00252 secs,”) to whom (e.g., “IP address is..”),
and to how many (e.g., “There are 665 users online,” or, “Visitor
number 81434,”) resulted in changes in the concurrent crawl.
Because the content of these pages is driven by the visiting client,
it is important to recognize that many of the changes detected by a
crawler may be insubstantial as they are driven by the crawler
itself. We return later to a discussion of how we might detect
interesting versus non-interesting changes, though we note that a
simple pattern for these automated changes could be easily
learned by automated analysis of the textual differences between
two instantly-changing documents.

4.2 Summarizing a Page’s Change over Time
Thus far we have only discussed changes between two successive
versions of a page. Such analysis does not capture a page’s change
trajectory over a period a time or the more detailed content of that
change. A page that has one restricted area of change that updates
every time it is crawled (e.g., an advertising block) will show very
similar amounts of change between successive versions as a blog
that adds a new entry every crawl. But, over time, the content of
the page with the advertising block changes very little, while the
content of the blog changes a lot.

4.2.1 Change Curve
To quantify the change of each Web page over time we define the
notion of a change curve. A change curve represents the amount
of textual change (as measured by the Dice coefficient) from a

Figure 3. Histograms of a) the average time between changes in our dataset for all sequential pairs of Web pages
downloaded from the same URL, and b) the average amount the content changed, as measured by the Dice Coefficient.

Table 2. Change properties for sub-hour crawls.

Interval

Docs. with change (% of 54816) Mean /
Median Dice
sim. (given

change)

Change in any
sample

(upper bound)

Change in all
samples

(lower bound)
Instant (0 min.) 6303 (11.5%) 3549 (6.5%) .937 / .985

2 minutes 10616 (19.3%) 4952 (9%) .937 / .982
16 minutes 12503 (22.8%) 6206 (11.3%) .927 / .975
32 minutes 13126 (23.9%) 6445 (11.8%) .920 / .969
60 minutes 35997 (65.7%) 22818 (41.6%) .867 / .950

fixed point in the document’s
history. For each page we select, at
random (biased to the first week of
samples), up to n starting points (n=5
in the analyses reported below). We
define Dt to represent the Web page
content at time t, and Dr1 to be the
content at the first randomly selected
time. Content, for this analysis, is
defined to be the page stripped of
markup. The value of the change
curve at each time point, t, is
calculated as the average Dice
coefficient from each of the
randomly selected starting points to
the Web page content t time steps in
future.
Change curves allow us to
summarize a Web page’s evolution
over time. Several example curves
can be seen in Figure 4. We observe
that most documents change rapidly
from the initial starting point as
content shifts off the page or is
changed during the initial hours. For
example, in a news homepage,
specific news stories may move off the page at a certain rate as
new articles are added. This causes a rapid falloff in the Dice
coefficient. At some point, the curve levels off, as the similarity of
all subsequent versions to the initial version is approximately
equal. This creates a change curve with a “hockey stick” form (see
Figure 4).
Note that not all versions of the page after the curve levels off are
the same. It is rather their similarity to the original starting point
that is the same. In the news example, at the inflection point or
knot, where the curve levels off, all stories that were present in the
initial sample have moved off the page. Every page following the
inflection point has different stories from the starting point, and
this represents the constant Dice coefficient in the level portion.
The part of the site that remains similar to the initial sample is the
text that always resides on the page, including navigational
content and terms that appear regularly in all stories. In general,
the textual content past the inflection point that is similar to the
starting point is template information and a rough representation
of the underlying language model of the page.
Manual analysis of the change curves identified three main types:
knotted (made up of two piecewise linear segments, the “hockey
stick” shape), flat (one unchanging, zero slope line), and sloped
(one sloped line with no obvious knot).

4.2.2 Identifying the Knot
To compare the change curves of different Web pages to each
other, we model the curves using the characteristic hockey stick
shape. We do this by identifying the curve’s knot and fitting two
linear regressions to the curve, one up to the knot, and the other
following it. Piecewise linear regression is a well known problem
which requires either knowing the knot location a priori or
determining it through a grid search with a well defined objective
function. To find the knot point efficiently, we have defined a
heuristic scheme that works well in practice.
The algorithm works by first fitting one linear segment to the full
change curve. The leftmost intercept of the fit curve to the change
curve becomes our initial guess for the knot location. A segment

is then fit to the portion of the change curve occurring before the
knot. The knot point is incremented as long as the mean-squared
error of the first segment does not increase. Figure 4 shows the
fitted segments for different pages. In situations when no knot
point appears within the sampled time period (i.e., a knot point at
0 hours or the two segments have nearly identical slopes), we fit
one segment which is either continuously sloped or flat (an
unchanging page). Of course, sloped pages may eventually level
off in a hockey stick pattern, but we do not have sufficient
evidence to conclude when, or even if, this might happen.
The combination of knot point and characteristic regression
information (slopes and intercepts) provides a representation of
the data which can be used to automatically classify the curves as
knotted, flat, or sloped. Using 200 random, manually labeled
curves as a training/test example, we are able to achieve over 93%
accuracy with a classifier based on Additive Logistic Regression
[9]. We find that the classifier is somewhat conservative in
deciding on the knotted category, resulting in very few false
positives but a number of false negatives which are categorized as
sloped. In the end, our algorithm classified 819 pages (of 36767)
as flat (2%), 10462 as sloped (28%), and 25486 as knotted (70%).
For all pages with knot points, the mean time is 145 hours
(median time 92 hours), and the mean Dice coefficient is 0.74
(median Dice 0.80).
Table 1 shows the average knot point for pages broken down in a
number of different ways, including by top-level domain, URL
depth, and category. The change time (in hours) reflects how long
it takes to reach steady state content, and the Dice coefficient
represents the amount of overlap at that time (the x/y coordinates
of the knot point). All of the differences in change intervals that
are greater than four hours are significant, except that .gov domain
is only significantly different from .edu. All differences in Dice
coefficient greater than 0.01 are significant.
We note a few interesting points about these change curves.
Knot location: Different pages (e.g., Figure 4b and 4d) level off at
different Dice values. This level represents the eventual

Figure 4. Several example change curves depicting Dice coefficients over time.

(dis)similarity of the page once content
has “decayed” off. Allrecipes, with much
more navigation and structure retains more
content over time than the bare Craigslist
page that primarily consists of new ads.
The time of the knot point (i.e., its x-
coordinate) reflects the rate at which the
most quickly changing data, does change.
Note the difference between Figures 4c
and 4d that have the same eventual Dice
value, but different knot locations in time.
The Los Angeles Craigslist page (Figure
4d), with many more new home products
being sold, has a knot point at 10 hours
versus Anchorage’s 29 (4c).
Unique visitors: Unlike inter-version
means, there is no statistical difference in
where the knot point falls as a function of
unique visitors. This is consistent with the
fact that while popular pages change more
often, they change less when they do, and
thus require the same amount of time to
“stabilize” as less popular pages.
URL Depth: The deeper the page is in the
page hierarchy the further the knot point,
potentially indicating that content on pages
deep within a site “decay” at a slower rate.
Category: Perhaps unsurprisingly, News
and Sports pages have an earlier knot point
as content in these pages is likely to be
replaced quickly. Industry/trade pages,
including corporate home pages, display a
much more gradual rate of content decay
before reaching the knot point.

4.3 Term-Level Change
The above analysis explores how page
content changes across an entire Web
page. This type of page evolution analysis
tells us about the rate at which the page
changes as a whole, but not specifically
how the textual content is evolving. In this section we present
several ways to characterize the content change at the term level.
Doing this allows us to explore the types of changes that occur in
different parts of the change curve. After identifying the common
hockey-stick change pattern, we continued crawling (over a six
month period from June to December 2007) to study text content
changes in greater detail. Previous attempts to study page content
change at the sub-document level have focused on chunk-level
measurements, such as page tiling and hashing techniques [8][15].
While these techniques give some sense of the volume and
frequency of page content that changes over time, they do not
shed any insight into the nature of those changes.
Most basically, we are interested in how page vocabulary changes
as a page updates. Figure 5 shows several term lifespan plots
which visualize the dynamics of vocabulary change over time.
Time is shown along the x-axis, and terms are shown as horizontal
lines on the y-axis. When a term occurs in the document at a given
time, a point is drawn, and when the term is absent no point is
drawn. Terms are ordered by their first occurrence in the page,
and then by their longevity. The change curves in Figure 4 are
essentially a summary of the term lifespan plots in Figure 5.
Change curves can be generated by selecting a reference vertical

slice in a lifespan plot and measuring the overlap of terms in that
slice with those in subsequent slices.
The longevity plots are denser at the bottom indicating that the
most constant terms tend to appear early in the observation period,
and those that are more ephemeral tend to appear later. We
observed there is a qualitative difference between the bottom and
top terms; intuitively, the terms near the bottom characterize
aspects such as the central topic of the page, as well as
navigational elements, while those towards the top may be
seasonal or related to a small niche of the pages central topic.
To characterize how likely a term is to appear over time, we
defined a measure of the staying power of a term in a Web page:

,
1

where w is a word; 0… indexes timestamps; Dt is a
document at time t; is the interval between time stamps and I(.)
is an indicator function. Intuitively, the measure is roughly
equivalent to the following probabilistic interpretation:

, | ,

Figure 5. Term lifespan plots for several pages. The lower right hand plot has been
replaced with the BestBuy homepage. Time (in days) is shown along the x-axis, and
terms are along the y-axis, ordered by their first occurrence in the documents.
Representative terms at various levels are shown along both sides.

Or the likelihood of observing a word in document D at two
different timestamps, t and , where and are
sampled uniformly.
In Figure 6, we show how the staying power is distributed across
terms for several sample pages. There is a clear bi-modal
distribution, with most of the vocabulary clustered at the ends.
Terms with high staying power are likely to be in multiple crawls
of the page, and those with low staying power are unlikely to
occur in multiple crawls of the page.
As we saw with the longevity plots, terms with high staying
power are either descriptive of the document’s ongoing central
topic, represent common words, or are navigation elements. In an
attempt to distinguish the set of vocabulary that is potentially
more informative of the document’s central topic as well as
having a strong staying power, we looked at the divergence or
clarity of these terms with regard to the collection as a whole.
Previously, divergence has been used to measure how strongly a
subset of documents is distinguished from a collection, and has
been applied to the task of query difficulty prediction [5]. In that
setting, the K-L divergence between a retrieved set of documents
and the collection as a whole is used as a means to predict query
difficulty—the more divergent the two sets are, the more likely
the retrieved documents are to reflect a coherent (and relevant)
subset of Web content. Here, we’re applying a similar measure to
identify which terms distinguish the language of a single
document from that of the collection.
Our term divergence measure is a term’s contribution to the K-L
divergence of the document from the collection language model.

, |
|
|

The probabilities are computed as un-smoothed maximum
likelihood estimates:

| ∑ ;

| |
 | ∑ ;

| |

Where tf and ctf refer to document and collection term frequency
respectively, |D| and |C| refer to the length of the document and
collection respectively. This divergence measure can be thought
of as a probabilistic form of TF-IDF weighting, favoring terms
with a high likelihood of occurrence in the document and a low
overall likelihood of occurrence in the collection. The divergence
can be measured for the document over all crawled instances as
shown in the equation above (divergence), or for a single crawled

instance (divergence at t) by just taking a single term of the
summations above.
Table 3 shows several sets of terms for two sample pages. In the
left columns, terms with a high divergence at t value are shown,
for t=0, the first crawl in our collection. In bold are terms with a
low staying power (0.2). These terms represent ephemeral
vocabulary which are descriptive of the page at the time (here t=0)
but are not descriptive on an ongoing basis. In the right columns,
we show terms with high staying power in the documents
(0.8) broken down by whether they have high or low
divergence from the collection model. In this example, we see
how the divergence measure can separate terms such as function
words which are always present in the documents (low
divergence) from those that are more descriptive of the
document’s content (high divergence). The analyses shown in
Table 3 suggest that measures such as staying power and
divergence are useful in identifying terms that are both
characteristic and discriminating for the document as it evolves
over time. In Section 6 we describe how such differences might be
used to improve summarization and ranking.
In this section, we have explored how Web page content changes
over time. We confirmed previous findings, and built on those
findings to better understand how different types of pages change
and what the nature of those changes is. We next describe how
page structure changes over time and develop methods to
efficiently analyze such changes.

5. STRUCTURAL CHANGE
In previous sections we have ignored the structure of a Web page.
Nonetheless, structural changes represent an important way a page
can change. A page with exactly the same textual content as a
previous version can still be very different because that content is
organized and presented in a different way.
In considering structural change we would like to compare the
tree structure of each version of the Web page to one or many

Table 3. Terms from two websites. (left columns) Terms
with a high divergence at t value, with t=0, the first day of
our crawl. Terms with low staying power(0.2 in bold.
(right columns) Terms with a high staying power and
high/low divergence values.

Allrecipes.com Craigslist.org (Los Angeles)
Div. @ t=0 0.8 Div. @ t=0 0.8
recipes
cooking
recipe
advice
more
salads
cookbook
tips
sandwiches
cooks
easy
pork
survey
bbq
menus
salad
widgets
cheese
cool
delivered

High divergence:
cooks
cookbooks
ingredient
desserts
rachael
digest
newsroom
trusted

Low divergence:
home
you
search
free
your
com
with
this
all

pic
porter
ranch
nuys
kenmore
refrigerator
angeles
dryer
west
hollywood
washer
los
stove
santa
vacuum
sfv
koreatown
conditioner
refrigerator
microwave

High divergence:
refrigerator
dryer
kenmore
southbay
washer
whirlpool
antelope
microwave

Low divergence:
pic
new
all
los
beach
sale
with
west
items

Figure 6. Histogram of staying power (values
for four Web pages.

other instances. Various efforts have attempted to address this
difficult problem (extensively surveyed by Grandi [10]). The tree
alignment problem is complex to implement, expensive to
calculate, and usually only treats pairs of trees. Ideally, we would
like to analyze a thousand or more instances of the same page tree
rapidly and use the same algorithm to solve multiple problems. In
particular we would like to test for the presence or absence of
various DOM elements (described by XPath) and potential
changes within them. Additionally, we would like to identify
blocks of content that are changing synchronously.
To do so we develop a simple algorithm that serializes an HTML
document in such a way that different forms of lexicographic
sorting and aggregation can answer these questions. A limitation
of this approach is that it is unable to detect the amount of change
in content directly. We return to a possible solution below. But
despite its limitations, it has the significant advantage of being
implementable as a basic map-reduce style problem and scaled.

5.1 Serializing DOM Structures
In order to analyze many versions of a page simultaneously we
convert the HTML pages into a form suitable for processing. We
construct a serialized form that minimally consists of a version
ID, the XPath, and a hash of the textual content of each DOM
node. By sorting on different fields, we group elements that we
would like to track. For example, by sorting on the XPath and
version, we can identify when the content within the path changes
or if the node vanishes at a particular point.
More concretely, to generate the serialized version, the algorithm
proceeds by progressing in a depth first parse of the HTML tree of
the document through a standard SAX parser (HTML documents
are “cleaned” with the tidy tool for XML validity). When the
system reaches the start of a new HTML element (e.g., “<div>” or
“<h1>”) the algorithm notes this in a stack. Textual content that is
encountered is also pushed onto the stack. When an ending
element tag is reached (e.g., “</h1>” or “</div>”) the system
emits a hash value of the text within the tags (as well as a hash of
the children of that node). The system will also output the XPath
used to arrive at the nodes in both set and direct access notation.
For example, given “<a>foo bar” at time k,
the system will output a stream of two lines:
/a[0]/b[0] (/a/b)[0] hash(“bar”) hash(“bar”) k

/a[0] (/a)[0] hash(“foo”) hash(“foo bar”) k

Each line corresponds to a temporally-annotated tuple: {full_path,
type_path, node_hash, subtree_hash, version}. The type path
reflects the full typing of the node based on its position in the
hierarchy. Although the two are equivalent, we find that having
two versions of the path, and in particular the type path, useful for
detecting motion of elements between tree siblings. Similarly,
having both a hash of the content of the node as well as the
subtree allows us to isolate the cause of a change. We create this
output for every version of the document. For example, if the k+1
version of the document contained the text “<a>foo
baz” our stream would be:
/a[0]/b[0] (/a/b)[0] hash(“baz”) hash(“baz”) k+1

/a[0] (/a)[0] hash(“foo”) hash(“foo baz”) k+1

/a[0]/b[0] (/a/b)[0] hash(“bar”) hash(“bar”) K

/a[0] (/a)[0] hash(“foo”) hash(“foo bar”) K

We may additionally keep track of other features for later filtering
(e.g., the length of the text, hash of tag attributes, etc.).
We define two operations on this dataset: sort(sorting variables),
which outputs a sorted stream, and reduce(reduction variables),
which outputs a set of sets. The sort function corresponds to
“map” but for our purposes simply lexicographically sorts the
serialized stream in the order of the sorting variables (e.g.,
sort(node_hash,version) would first sort by the node_hash and
then by version). The reduce operation groups sorted data based
on some matching parameters (e.g., reduce(version) would
generate a set of sets where each subset was one version:
{{k},{k+1},…{k+n}}).
By sorting on different columns in different orders and linearly
processing the files, we are able to track the movement and
lifespan of a specific piece of text in the hierarchy, track the
number and lifespan of pieces of text at a specific location, and
combine these operations in various ways. The use of shingles as
a hash value [17] is worth exploring in the future as we can take
advantage of our algorithm to rapidly eliminate exact matches,
and testing approximate ones when necessary. The benefit of our
approach is that it is a) linear in the number of tree nodes and
versions, and b) can be parallelized by mapping different sub-trees
to different processors.

5.2 Tracking DOM Element Lifespan
Using the mechanism described above we are able to calculate the
lifespan of various DOM elements within our crawled pages over
time. We achieve this by applying:

sort(full_path,version)
S = reduce(full_path)
foreach s in S: calculate the difference between the
minimum version id and last reported id

Letting S be the set of sets, s a subset within S. This algorithm is
somewhat of a simplification as, in reality, we only test for the
vanishing point for those paths present in the original crawl.
Additionally, we ignore nodes that have not survived the first hour
since these tend to be unrelated to document structure and
frequently contain simple formatting.
Table 4 presents the survival rates for DOM elements in pages
that were successfully parsed (37,160 pages). The survivability of
elements is quite high, even after 5 weeks (median survival of
99.8%). The large amount of survivable structure suggests that
XPath-based extractions (e.g., [1]) over short periods would
continue to function. The algorithm may also identify unstable
content and indicate where XPath extractions are inappropriate.

5.3 Analyzing Blocks
Extending the ideas above, we can further calculate the
persistence of any content anywhere within the document. This is
particularly interesting for situations where content may move (as
in the case of blogs or news sites) but also informs us about how
long we might expect certain content to last on the page before
vanishing. To calculate this we can execute the following:

sort(subtree_hash, full_path, version)
S = reduce(subtree_hash)
for s in S: find the minimum and maximum version for
each tuple, t, in s at the given location(as specified by
the path). Calculate the difference between the minimum
and maximum (the lifespan), and recalculate the
average lifespan for that path.

Table 4: Percent of persistent DOM elements

 2 hour 1 day 1 week 2 weeks 4 weeks 5 weeks

Mean 99.3% 97.4% 91.7% 87.9% 86.4% 84.3%

Again the algorithm is a slight simplification for readability as we
only consider the initial time that the content entered the node.
The output of this analysis is a measure of how long we can
expect a piece of text that starts at a given location to survive.
Figure 7 shows a simple visual rendering of give sample pages
from our crawl processed using this approach. The opaque (red)
regions are those that change the most rapidly, and the white
regions are the most stable. Navigation and other persistent
elements (e.g., search bars) tend to have higher survival rates,
whereas text ads change rapidly. Notice, for example, the
navigation bar on the left side of the amazon.com bestsellers page
in Figure 7c contains highly survivable content as well as the top
item which persisted much longer than other elements in the list.
This algorithm can be adapted to group different nodes with
similar average life spans (e.g., when a new article is posted on
the top of a blog, generally all posts below move, thus the average
change rate of all posts is matched). Considering the rendered
location of DOM elements, may allow us to identify blocks of
changing content.
Metrics for structural changes are frequently task specific. By
creating a flexible serialized processing scheme we are able to
rapidly test and measure structural change in different ways. We
are presently continuing to expand this technique, tying it more
closely in with notions of content change.
Having explored Web change on both content and structure, we
turn to a discussion of ways our models and algorithms can be
used to help people better interact with dynamic Web content.

6. USING CHANGE ANALYSES
Previous studies of Web change have typically been used to
inform search engine crawler policies, the idea being that pages

that change a lot are more likely to get stale and should be
crawled more often. In this section we explore some of the ways
our findings may be used. Like earlier work, our results can be
used to refine crawler policies. In addition, because the sample of
Web pages we studied was selected based on how people use the
Web pages, we believe our results also have implications for tools
that support human interaction with dynamic Web content,
including Web services like search engines and client-side
applications like Web browsers or toolbars.
Crawling. One important observation for Web crawlers in our
analysis is that some types of change are more meaningful. By
looking at what type of content is changing, crawlers can focus on
meaningful change. For example, the fast crawl highlights the
importance of ignoring change to advertising content or change
that occurs as a result of touching a page (e.g., changes to visit
counters or information about page load time).
Our analysis of the terms that change in a page suggest some of
the static content may be more valuable for characterizing a page,
and thus more valuable to the search engine index. Crawlers could
be updated to take into account several archived versions of a
page to identify the characteristic static component, and then not
worry about crawling the page to capture every new, relatively
unimportant change. Further identifying those pages for which the

Figure 8. Summarizing change in the result snippet.

Figure 7. Renderings of the lifespan of elements on a number of pages (darker red blocks are shorter life spans) including a)
boston.com, b) televisionwithoutpity.com (note the groups of similarly colored content), c) the DVD bestseller list on Amazon, d)
gas prices in various cities on GasBuddy.com, and e) a list of earthquakes at the USGS. Not all blocks marked.

dynamic component is important (perhaps because the queries that
lead to a page do so via matches with the dynamic component, or
because the queries are similarly dynamic) would allow crawlers
to focus on those pages in particular.
Ranking. A similar approach could be applied to improve Web
search engines. Characteristics of Web pages, such as the knot
point, that summarize page-level changes, over time could be used
as features for improved ranking. In addition terms may warrant
different weight for retrieval based on whether they appear in the
static or dynamic portion of a Web page. The characterization of
the page in the index could mirror the page’s change patterns, and
queries could be mapped to the appropriate aspect, either in
general (e.g., static content is always weighted higher) or on a per-
query basis (e.g., some queries bias towards dynamic content
while others bias towards static content). Similar ideas could be
used to improve selection of keywords for contextual ads.
User Interaction. A search engine with a rich understanding of
Web dynamics could also benefit its end users in more direct,
obvious ways by exposing page change in its user interface.
Searchers who are revisiting previous information sources may be
interested in re-finding [20] previously viewed content or in
viewing newly available content. Both behaviors can better
supported. For searchers interested in new content (identified
either by the query alone or by the user’s query history), the
search result summaries could highlight the new content, such as
seen in Figure 8. Additionally, many search engines have a
“cached page” functionality. This is useful in instances when the
page content has changed but the user is interested in the previous
version (detectable by analysis of revisitation patterns [2]). This
functionality could be further enhanced by comparing the cached
version of the page with the live version, and exposing the
differences, such as is shown in Figure 1.
The ability to expose and interact with change would be
particularly useful within a client-side, Web browser context,
where a user’s history of interaction is known. The pages in a
browser cache could be better exposed in ways similar to the
above suggestions as to how a search engine might expose them,
allowing the user a personal view into what’s changed since their
last visit. A browser could also act as a personal Web crawler for
its user, and pre-fetch pages that are particularly likely to
experience meaningful change. This would allow for a faster Web
experience and give users the ability to access new content in
offline environments. Combining pre-fetching with predictive
revisitation patterns seems particularly valuable, and is an area of
future work we’re actively pursuing.

7. CONCLUSION AND FUTURE WORK
In this paper, we have described algorithms, analyses, and models
for characterizing the evolution of Web content. Our analysis
gives insight into how Web content changes on a finer grain than
previous research, both in terms of the time intervals studied (we
consider hourly and sub-hourly crawls instead of weekly or daily
crawls) and the detail of change analyzed (in addition to looking
at page-level changes, we explore DOM- and term-level changes).
Change rates are higher in our behavior-based sample than has
been found in previous work on randomly sampled pages, with a
large portion of pages changing more than hourly. Detailed
content and structure analyses identify stable and dynamic content
within each page.

Looking forward, we hope to refine and test the designs described
in Section 6, and to better characterize the impact of document
change on revisitation. As observed in Table 1, the amount of
change to a Web page’s content appears to vary greatly as a
function its visitor count (i.e., popularity). We believe that
understanding revisitation patterns and intent can help us identify
meaningful change and support interaction with cached content
when appropriate.

ACKNOWLEDGEMENTS
We would like to thank Dan Liebling, Ronnie Chaiken, Bill
Ramsey, and Dennis Fetterly for their help in obtaining and
analyzing the data. We also appreciate helpful discussions with
Sara Adar and Dan Weld.

REFERENCES
[1] Adar E., M. Dontcheva, J. Fogarty, D. S. Weld. Zoetrope: Interacting

with the Ephemeral Web. UIST ’08, 239-248, 2008.
[2] Adar, E., J. Teevan, and S. T. Dumais. Large scale analysis of Web

revisitation Patterns. CHI ’08, 1197-1206, 2008.
[3] Bolin, M., M. Webber, P. Rha, T. Wilson, and R. C. Miller,

Automation and Customization of Rendered Web Pages, UIST ’05,
163-172, 2005.

[4] Cho, J. and H. Garcia-Molina. The evolution of the Web and
implications for an incremental crawler. VLDB ’00, 200-209, 2000.

[5] Cronin-Townsend, S., Y. Zhou, W. B. Croft. Predicting query
performance. SIGIR’02, 299-306, 2002.

[6] Dontcheva, M., S. Drucker, D. Salesin, and M. F. Cohen, Changes in
Webpage Structure over Time, TR2007-04-02, UW, CSE, 2007.

[7] Douglis, F., A. Feldmann, B. Krishnamurthy, and J. Mogul. Rate of
change and other metrics: A live study of the World Wide Web.
USENIX Symposium on Internet Technologies and Systems, 1997.

[8] Fetterly, D., M. Manasse, M. Najork, and J. Wiener. A large-scale
study of the evolution of Web pages. WWW ‘03, 669-678, 2003.

[9] Friedman, J., T. Hastie, and R. Tibshirani, Additive logistic
regression: A statistical view of boosting. Annals of Statistics,
28(20), 337-407, 2000.

[10] Grandi, F., Introducing an annotated bibliography on temporal and
evolution aspects in the World Wide Web. SIGMOD Records, 33(2),
84-86, 2004.

[11] Kim, J. K., and S. H. Lee. An empirical study of the change of Web
pages. APWeb ‘05, 632-642, 2005.

[12] Koehler, W. Web page change and persistence: A four-year
longitudinal study. JASIST, 53(2), 162-171, 2002.

[13] Kwon, S. H., S. H. Lee, and S. J. Kim. Effective criteria for Web
page changes. In Proceedings of APWeb ’06, 837-842, 2006.

[14] Ntoulas, A., Cho, J., and Olston, C. What’s new on the Web? The
evolution of the Web from a search engine perspective. WWW ’04 ,
1-12, 2004.

[15] Olston, C. and Pandey, S. Recrawl scheduling based on information
longevity. WWW ’08, 437-446, 2008.

[16] Pitkow, J. and Pirolli, P. Life, death, and lawfulness on the electronic
frontier. CHI ’97, 383-390, 1997.

[17] Ramaswamy, L., A. Iyengar, L. Liu, and F. Douglis, Automatic
Detection of Fragments in Dynamically Generated Web Pages,
WWW’04, 443-454.

[18] Sebastiani, F. Machine learning in automated text categorization.
ACM Computing Surveys 34(1), 1-47, 2002.

[19] Selberg, E. and Etzioni, O. On the instability of Web search engines.
In Proceedings of RIAO ’00, 2000.

[20] Teevan, J., E. Adar, R. Jones, and M. A. Potts. Information re-
retrieval: repeat queries in Yahoo's logs. SIGIR ‘07, 151-158, 2007.

