
Improving Automatic Interface Generation
with Smart Templates

 Jeffrey Nichols, Brad A. Myers, and Kevin Litwack
Human Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

http://www.cs.cmu.edu/~pebbles/puc/

{jeffreyn, bam, klitwack}@cs.cmu.edu

ABSTRACT

Figure 1. Arrangements of media playback controls gener-

ated automatically from the media-control Smart Template.

One of the challenges of using mobile devices for ubiquitous re-
mote control is the creation of the user interface. If automatically
generated designs are used, then they must be close in quality to
hand-designed interfaces. Automatically generated interfaces can
be dramatically improved if they use standard conventions to
which users are accustomed, such as the arrangement of buttons
on a telephone dial-pad or the conventional play, stop, and pause
icons on a media player. Unfortunately, it can be difficult for a
system to determine where to apply design conventions because
each appliance may represent its functionality differently. Smart
Templates is a technique that uses parameterized templates in the
appliance model to specify when such conventions might be
automatically applied in the user interface. Our templates easily
adapt to existing appliance models and interface generators on
different platforms can apply appropriate design conventions
using templates.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: User interfaces – auto-
matic generation. H.5.2 [User Interfaces]: Graphical user
interfaces (GUIs), Voice I/O – handheld computer interfaces,
speech user interfaces.

General Terms
Algorithms, Design, Human Factors, Languages

Keywords
Automatic interface generation, Pebbles, handheld computers,
appliances, personal digital assistants (PDAs), personal universal
controller (PUC)

1. INTRODUCTION
A common problem for automatic interface generators has been
that their interface designs do not conform to domain-specific
design patterns that users are accustomed to. For example, an
automated tool is unlikely to produce a standard telephone keypad

layout. This problem is challenging for two reasons: the user in-
terface conventions used by designers must be described, and the
interface generators must be able to recognize where to apply the
conventions through analysis of the interface specification. Some
systems [7] have dealt with this problem by defining specific
rules for each application that apply the appropriate design con-
ventions. Other systems [2] rely on human designers to add
design conventions to the interfaces after they are automatically
generated. We have built the first system we are aware of that
applies design conventions automatically for a wide variety of
applications without defining specific rules for each generated
interface.

We are building a system called the personal universal controller
(PUC) that automatically generates user interfaces for remotely
controlling all the appliances in a user’s environment [3]. Unlike
most previous model-based work, user interfaces generated by a
PUC are intended for immediate use by people who are not
trained interface designers. Therefore the user interfaces must be
complete and usable without further modification. We do not
expect that a user will want to walk up to their office photocopier
with an important document, pull out their PUC device, and then
spend time fixing the layout of their copier user interface. We
have created PUC interface generators for multiple platforms,
including PocketPC, Microsoft’s Smartphone, desktop computers,
and speech interfaces.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
Copyright is held by the author/owner(s).
IUI’04, Jan. 13–16, 2004, Madeira, Funchal, Portugal.
ACM 1-58113-815-6/04/0001.

We have recently added a feature to the PUC system called Smart
Templates, which extend the primitive types in the PUC appliance

<group name=”Counter” is-a=”time-duration”>
 <labels> <label>Counter</label> </labels>

 <state name=”Hours”>
 <type>
 <integer/>
 </type>
 </state>

 <state name=”Minutes”>
 <type>
 <integer>
 <min>0</min> <max>59</max>
 </integer>
 </type>
 </state>
</group>

<state name=”SongLength” is-a=”time-duration”>
 <type>
 <string/>
 </type>

 <labels> <label>Length</label> </labels>
<

/state>

Figure 2. Two examples of time-duration Smart Template
instances from PUC appliance specifications.

specification language with high-level semantic information. For
example, the media-controls template defines that a state vari-
able with an enumerated type containing members labeled Play
and Stop controls the playback of some media. PUC interface
generators can use the information added by a Smart Template to
apply design conventions and make interfaces more usable. If an
interface generator does not recognize a template however, a user
interface can still be created because Smart Templates are con-
structed from the primitive elements of our specification
language.

An important innovation is that Smart Templates are parameter-
ized, which allows them to cover both the common and unique
functions of an appliance. For example, the media playback tem-
plate supports play and stop, but also optional related functions
such as next track for CDs, fast-forward and reverse-play for tape
players, and “play new” for phone answering machines (see
Figure 1). Smart Templates also give appliances the flexibility to
choose a functional representation that matches their internal
implementation. For example, our time-duration Smart Tem-
plate allows single state variables with integer or string types, or
multiple state variables (e.g. a state for hours and another for
minutes).

The PUC specification language and interface generators have
been described elsewhere [3]. That paper mentions the need to
describe high-level semantic information in our specification
language, but does not offer a solution. This paper is the first
discussion of how the PUC incorporates high-level semantic in-
formation.

2. RELATED WORK
Earlier model-based systems had some support for using design
conventions in their generated interfaces. ITS [7] allows the
specification of style rules, which could be shared across multiple
applications. A style rule could create a conventional layout if it
found particular relationships in ITS’s action or dialog layers. In
practice, however, it was found that it was difficult to write and
share style rules. HUMANOID [6] has the ability to apply custom
displays to application-specific types. These displays are specific
to the application however, and it is not clear whether they can be
easily shared among applications. The display would also need to
be modified if the representation of the type changed between
applications. Most other model-based systems offer interface
designers the ability to modify the interfaces after they were gen-
erated [2]. An important principle of Smart Templates is that no
modifications are necessary since they allow conventional layouts
to be applied automatically during interface generation.
A number of systems exist for controlling appliances, many of
which support the automatic generation of user interfaces [1, 5].
Of these, only the Ubiquitous Interactor (UBI) [4] has a technique
for incorporating design conventions, although it is unclear
whether UBI’s customization forms are portable between differ-
ent appliances. The Smart Template technique that we present
here is general, and could probably be added to all of these sys-
tems.

3. SMART TEMPLATES
A Smart Template augments the grouping and primitive type
information in our appliance specification language with knowl-
edge about the semantics of the data. Smart Templates are defined

in advance by template writers, who specify the set of states and
commands that can be included in a template. Some items are
required and others are optional to allow flexibility in the differ-
ent functions an appliance may support and their
implementations. Smart Templates are used in the appliance
specification to add semantic information to either a group or
state variable with the special is-a attribute (see Figure 2). Add-
ing this attribute requires the appliance specification to conform
to the definition of that Smart Template. Finally, Smart Templates
are rendered by interface generators based upon the chosen tem-
plate and the content that was included within the template in the
appliance specification.

3.1 Definition
A template writer starts by selecting the state variables and com-
mands that the template may contain, and then defines the names,
types, values, and other properties that these elements must have.
The challenge for the template writer is to find the different com-
binations of states and commands that an appliance implementer
is likely to use. This makes it easier for appliance specification
writers to use the templates, because there is no need to modify
the appliance’s internal data representation in order to interface
with the controller infrastructure. For example, Windows Media
Player makes the duration of a song available as a single integer
while our Sony DV Camcorder makes the playback counter avail-
able as a string. Using our time-duration Smart Template, both
of these representations can be handled appropriately by an inter-
face generator, while still providing a consistent look and feel to
users.
Allowing many combinations of states and commands in a tem-
plate definition also allows a single Smart Template to be applied
across multiple kinds of appliances. Two representations of play
controls are allowed by the media-controls template: a single
state with an enumerated type, or a set of commands. If a single
state is used, then each item of the enumeration must be labeled.
Some labels must be used, such as Play and Stop, and others are
optional, such as Record. If multiple commands are used, then

each command must represent a function such as Play and Stop.
Some functions must be represented by a command and others are
optional. This template also allows three commands for functions
that are commonly included in the same group as the play con-
trols, including the previous and next track functions for CD and
MP3 players, and the play new function for answering machines.
We have defined several templates and plan to define many more.

3.2 Rendering
Smart Templates allow interface generators to use platform-
specific controls that are consistent with other user interfaces on
the same device. In the case of our time-duration Smart Tem-
plate implementation, each platform has a different standard
control for manipulating time that our interface generators use.
Unfortunately, none of our platforms have built-in controls for
media playback, so our media-controls Smart Template does
not benefit in the same way. The Smartphone media-controls
implementation does mimic the interface used by the Smartphone
version of Windows Media Player however, and thus is consistent
with another application on that device (see Figure 3).
Smart Templates are also able to intelligently choose a rendering
based upon the contents of the template. For example, each im-
plementation of the time-duration template only renders the
time units that are meaningful, and each implementation of our
media-controls Smart Template renders buttons for only the
functions that are available. The media-controls implementa-
tions on the PocketPC and desktop extend this by intelligently
laying out the buttons on one or more lines depending on space,
enlarging buttons of greater importance such as Play, and using a
grid to create aesthetically pleasing arrangements (see Figure 1).

4. FUTURE WORK
In the immediate future we plan to define and implement many
new Smart Templates in our system. As we connect our system to
more appliances, we expect that we will find many more uses for
Smart Templates. A goal of our work is to create a comprehensive
list of templates for common appliances available for others.
We also plan to implement Smart Templates in our speech inter-
face generator. This should improve certain aspects of those
interfaces, especially for common types such as date and time.
The current speech generator does not speak a time properly (say-
ing one colon two four, for 1:24) because it does not know that
the value represents a time. With a Smart Template, the speech
system will be able to use the extra semantic information to im-

prove its speaking ability. We believe there are many other
situations where semantic information can benefit our speech
interface generator.

Figure 3. Generated user interfaces for controlling Windows

Media Player. On the left, two screens from a Smartphone
interface. On the right, a screen from a PocketPC interface.

Finally, we intend to conduct user studies to compare the inter-
faces generated by a PUC with the interfaces developed by
manufacturers’ for their own appliances. Our goal is to show that
users’ performance with our generated interfaces match or exceed
their performance with the manufacturers’ interfaces.

5. CONCLUSION
We have described Smart Templates, a technique for improving
automatically generated interfaces. This technique is novel be-
cause it uses parameterized templates to allow automatic interface
generators to create interfaces that are consistent and more usable.
Parameterization makes appliance specifications easier to create
because it does not require appliances to be implemented in a
particular way. Smart Templates can be used by interface genera-
tors to render basic elements such as time and more complex
structures such as the playback controls for a media player. If an
interface generator does not recognize a template, it can still be
rendered because templates are described in terms of the primitive
elements of our description language. Automatic interface genera-
tors can use Smart Templates to improve their interfaces by using
layouts that are consistent with other interfaces on the same de-
vice and with other appliances in the world.

6. ACKNOWLEDGEMENTS
This work was conducted as a part of the Pebbles project. The speech
interface was implemented as a part of the Universal Speech Interfaces
project. This work was funded in part by grants from NSF, Microsoft,
General Motors, DARPA, and the Pittsburgh Digital Greenhouse, and
equipment grants from Mitsubishi Electric Research Laboratories, Vivid-
Logic, Lutron, and Lantronix. The National Science Foundation funded
this work through a Graduate Research Fellowship for the first author and
under Grant No. IIS-0117658. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect those of the National Science Foundation.

7. REFERENCES
[1] Gajos, K., Weld, D. “SUPPLE: Automatically Generating User Inter-

faces,” in Intelligent User Interfaces. 2004. Funchal, Portugal:
[2] Kim, W.C. and Foley, J.D. “Providing High-level Control and Expert

Assistance in the User Interface Presentation Design,” in Proceed-
ings INTERCHI'93: Human Factors in Computing Systems. 1993.
Amsterdam, The Netherlands: pp. 430-437.

[3] Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris, T.K.,
Rosenfeld, R., Pignol, M. “Generating Remote Control Interfaces for
Complex Appliances,” in UIST 2002. Paris, France: pp. 161-170.

[4] Nylander, S. “Different Approaches to Achieving Device Independ-
ence,” in Technical Report TR2003-XX. 2003. Swedish Institute of
Computer Science:

[5] Olsen Jr., D.R., Jefferies, S., Nielsen, T., Moyes, W., and
Fredrickson, P. “Cross-modal Interaction using Xweb,” in Proceed-
ings UIST'00: ACM SIGGRAPH Symposium on User Interface
Software and Technology. 2000. San Diego, CA: pp. 191-200.

[6] Szekely, P., Luo, P., and Neches, R. “Beyond Interface Builders:
Model-Based Interface Tools,” in Proceedings INTERCHI'93: Hu-
man Factors in Computing Systems. 1993. Amsterdam, The
Netherlands: pp. 383-390.

[7] Wiecha, C., Bennett, W., Boies, S., Gould, J., and Greene, S., “ITS:
A Tool for Rapidly Developing Interactive Applications.” ACM
Transactions on Information Systems, 1990. 8(3): pp. 204-236.

	INTRODUCTION
	RELATED WORK
	SMART TEMPLATES
	Definition
	Rendering

	FUTURE WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

