
Improving Automatic Interface Generation
with Smart Templates

Jeffrey Nichols, Brad A. Myers and Kevin Litwack
Human Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

{jeffreyn, bam, klitwack}@cs.cmu.edu
http://www.pebbles.hcii.cmu.edu/puc/

ABSTRACT

Figure 1. Different arrangements of media playback controls
automatically generated for several different appliances from a
single Smart Template (media-controls).

One of the challenges of using mobile devices for ubiqui-
tous remote control is the creation of the user interface. If
automatically generated designs are used, then they must be
close in quality to hand-designed interfaces. Automatically
generated interfaces can be dramatically improved if they
use standard conventions to which users are accustomed,
such as the arrangement of buttons on a telephone dial-pad
or the conventional play, stop, and pause icons on a media
player. Unfortunately, it can be difficult for a system to
determine where to apply design conventions because each
appliance may represent its functionality differently. Smart
Templates is a technique that uses parameterized templates
in the appliance model to specify when such conventions
might be automatically applied in the user interface. We
show that our templates easily adapt to existing appliance
models and that interface generators on different platforms
can apply appropriate design conventions using templates.

Keywords
Automatic interface generation, Pebbles, handheld com-
puters, appliances, personal digital assistants (PDAs),
personal universal controller (PUC)

INTRODUCTION
Everyday home and office appliances, including photo-
copiers, televisions, DVD players, and telephones, are
being designed with increasingly many complex functions.
Unfortunately, the user interfaces for these appliances often
get harder to use as more computerized features are added
[1]. One solution to this problem is to move the interface
on every appliance to an intermediary intelligent “user in-
terface” device. Such a device could improve interfaces for
users by creating similar interfaces for appliances that have
similar functions, and by combining the interfaces for a
group of related appliances into a single user interface.

We are building a system called the personal universal
controller (PUC) that supports UI devices with these fea-
tures. The system relies on intelligent automatic user
interface generators that build interfaces from abstract de-
scriptions of the appliances. A PUC controller device,
which might be a personal digital assistant (PDA), a mobile
phone, or even a wristwatch, engages in two-way commu-
nication with each appliance that it controls, first
downloading the appliance’s description, automatically
generating a user interface, and then sending control sig-
nals and receiving feedback on the appliance’s state. The
PUC appliance specification language includes only ab-
stract information about the functionality of the appliance
and no specific information about which user interface con-
trols should be used or where they should be placed on the
screen.

Submitted for Publication.

A well-known problem for automatic interface generators
has been their inability to recognize when to apply user
interface conventions because of the vast differences in
appliances. We have added a new feature to the PUC called
Smart Templates, which is novel because it simultaneously

gives the interface generator semantic information and the
appliance implementer flexibility to choose a representa-
tion for that semantic information. Interface generators are
free to interpret the semantic information and apply design
conventions as necessary. If an interface generator does not
recognize the template, it can still be rendered because all
templates are defined using the primitive elements of our
specification language [7]. An important innovation is that
our Smart Templates are parameterized, which allows them
to cover both the common and unique functions of an ap-
pliance. For example, the media playback template
supports play and stop, but also optional related functions
such as next track for CDs, fast-forward and reverse play
for tape players, and “play new” for phone answering ma-
chines (see Figure 1). We have used Smart Templates to
represent complex features such as various kinds of media
playback controls and to extend our built-in type system
with basic elements such dates and times.
A key difference between the PUC system in general and
most previous model-based work is that our automatically
generated interfaces are expected to be complete and usable
without further modification. We do not expect that a user
will want to walk up to their office photocopier with an
important document, pull out their PUC controller device,
and then spend time fixing the organization and layout of
their copier user interface. In order to meet this require-
ment, the PUC system has several novel features. Our
appliance specification language includes multiple versions
of every label and the interface generators intelligently
choose which label to use based on available space and
other factors. The language also includes dependency in-
formation, which describes whether features of the
appliance are available with respect to the state of the ap-
pliance. Dependency information is not only useful for
enabling and disabling user interface controls, but also for
determining how a user interface can be structured.
We have built three different interface generators. Two
generate graphical user interfaces for Microsoft’s Pock-
etPC and Microsoft’s Smartphone. Another generates
speech user interfaces using the Universal Speech Inter-
faces framework [12]. Each of the graphical generators

builds interfaces of a different style; the PocketPC genera-
tor creates standard graphical interfaces that can also be
used on desktop computers. The Smartphone generator
creates list-based interfaces that are suitable for a device
with only four navigation buttons and no touch-screen. Our
specification language and interface generators are de-
scribed in more detail elsewhere [7].

Figure 2. A rendering of a play control in an early PUC that
represents the play, stop, and pause functions with a pull-down
selection list, and previous and next track with separate buttons.
The bottom view shows the selection list pulled down.

The first version of the PUC system [7] had several prob-
lems. First of all, the type system used in our specification
language supported only types similar to those that are built
into programming languages, and thus could not express
complex semantics. Even relatively basic types such as
dates and times could not be expressed. Clearly our system
must be able to deal with these complex types if it is to
generate high quality user interfaces. Unlike for program-
ming languages however, it is unreasonable to allow
specification designers to extend the set of types in their
specification because the interface generators must be able
to properly deal with each type. In practice, this often re-
quires that new rules be added to each interface generator.
One solution to this problem would be to add some new
types for basic cases like date and time. This presents a
problem for building the PUC system into appliances how-
ever, because appliances may use different representations,
even for common types. For example, one appliance might
implement time as an integer representing the number of
seconds since some epoch, whereas another appliance
might use a human-readable string. We believe it is impor-
tant to support the wide-range of possible appliance
implementations while still providing consistency to users.
Another problem with our first system was that our inter-
face generators did not use conventional layouts in their
automatic designs. For example, a set of play controls on a
stereo are often represented as several buttons on hand-
designed interfaces, whereas our automatic designs used a
pull-down selection list (see Figure 2). There are many
situations where conventional layouts or designs could be
applied in everyday appliance interfaces (e.g., the dialpad
on a telephone, parallel vertical sliders for a graphic equal-
izer, a power button with standard icon, a volume slider
with standard right triangle icon, proper left/right orienta-
tion of a control for audio balance, etc.). Creating
interfaces that are consistent with what users expect will
increase the usability of our automatically generated inter-
faces.
In order to solve these problems with extensible types and
conventional layouts, we developed Smart Templates,
which are pre-defined groupings of state variables and
commands, the primary elements of the PUC specification
language. Each Smart Template supports a number of dif-
ferent representations. In order to represent a date, for
example, a template will allow the appliance to use a single
state with a string type, two states with integer types repre-
senting the day and month, or three states with integer
types representing the day, month, and year. The ability to

have different representations gives the specification writer
flexibility to pick one that matches the appliance imple-
mentation.

Figure 3. The standard controls used for manipulating durations
of time, as generated by our system, on all three of our platforms.

Since the templates are implemented using the primitive
elements of the language, interface generators can choose
not to recognize some Smart Templates. In some cases it
may even be preferable for an interface generator to ignore
a Smart Template. For example, many of the conventions
that can be applied to graphical interfaces do not have simi-
lar analogs for speech interfaces. The time and date Smart
Templates would be used by a speech interface, but it
might not be necessary to use the media controls template
because the rendering from primitive elements would be
the same. For those templates that are not recognized, the
primitive type information is available and sufficient to
generate a full user interface for the same functions.
When the interface generator does recognize a Smart Tem-
plate, it can take a number of actions to improve the
generated interface for the user. For many templates an
interface generator will want to use special layout rules.
For example, the PocketPC generator uses special rules to
create the different arrangements of media controls shown
in Figure 1. For certain templates, the interface generator is
able to use platform-specific controls to improve interface
consistency for the user. For example, each of our interface
generators chooses the time manipulation control appropri-
ate for its platform when a time Smart Template is
encountered (see Figure 3).
As noted above, the personal universal controller (PUC)
has been described elsewhere [7], including the require-
ments for our specification language and infrastructure [8]
and the early user studies that form the basis for our work
[6]. All of these papers mention the need to describe high-
level semantic information in the specification language,
but here we present the first discussion of the solution to
that problem.
This paper begins by discussing related work and then
gives more background on the PUC specification language.
The following section discusses Smart Templates in more
detail, examining how the templates are defined and how
we have implemented them in our interface generators. We
finish with future work and some concluding thoughts.

RELATED WORK
A number of systems exist for controlling appliances, many
of which support the automatic generation of user inter-
faces. Hodes et al. propose an idea similar to the PUC
called a “universal interactor” [2], but their work focuses
more on the infrastructure issues and less on the generated
interfaces. The XWeb [10] project automatically generates
an interface from an XML-based specification language.
XWeb includes less information in its specification lan-
guage however, and does not deal well with appliance
modes. The Stanford ICrafter [11] is a system for distribut-
ing appliance interfaces to a number of different clients.
While it does support automatic generation, it is typically

used for distributing hand-designed user interfaces. SUPPLE
[15] uses a decision-theoretic approach to find the optimal
layout and choice of controls for a user interface. It does
not use design conventions in its layouts however, though
that might be possible with extensions to their description
language, which seems to be similar to ours. The Ubiqui-
tous Interactor (UBI) [9] creates automatic designs that
may apply rules from the appliance manufacturer to add
branding or other qualities to the user interface. It is possi-
ble that the UBI’s customization forms could cause the
interface generator to use design conventions, but it is not
clear whether these would be portable between different
appliances. With the possible exception of UBI, none of
these systems have any support for applying conventional
layouts in their automatic designs, though all could proba-
bly be extended with the Smart Template idea in the future.
Earlier model-based systems had some support for using
conventional layouts in their automatic designs. ITS [16]
allows the specification of style rules, which could be
shared across multiple applications. A style rule could cre-
ate a conventional layout if it found particular relationships
in ITS’s action or dialog layers. In practice, however, it
was found that it was difficult to write and share style
rules. HUMANOID [13] has the ability to apply custom dis-
plays to application-specific types. These displays are
specific to the application however, and it is not clear
whether they can be easily shared among applications. The
display would also need to be modified if the representa-
tion of the type changed between applications, which is not
necessary with Smart Templates. Most other model-based
systems offered interface designers the ability to modify
the interfaces after they were generated [3, 14]. An impor-
tant principle of Smart Templates is that no modifications
are necessary since they allow conventional layouts to be
applied automatically during interface generation.

PUC SPECIFICATION LANGUAGE
Before describing Smart Templates, we first provide a brief
overview of the PUC’s XML-based specification language
and the features of the language that are discussed later in
this paper. Full documentation is available on our project
web site [5].
The functions of an appliance are represented by state vari-
ables and commands. State variables have primitive types
that define the data they contain, such as integer, string, or
enumeration. The interface generators infer from the type

<group name=”Counter” is-a=”time-duration”>
 <labels>
 <label>Counter</label>
 </labels>

 <state name=”Hours”>
 <type>
 <integer>
 <min>0</min>
 <max>8</max>
 </integer>
 </type>
 </state>

 <state name=”Minutes”>
 <type>
 <integer>
 <min>0</min>
 <max>59</max>
 </integer>
 </type>
 </state>
</group>

<state name=”SongLength” is-a=”time-duration”>
 <type>
 <integer>
 <min>0</min>
 <max>4440</max>
 </integer>
 </type>

 <labels>
 <label>Length</label>
 </labels>
</state>

Figure 4. Two examples of time-duration Smart Template
instances from PUC appliance specifications.

Table 1. Smart templates defined for the PUC system.
Name Represents…

date Any date

datetime The aggregate of the date and time-
absolute types.

image Any image, for use with our future bi-
nary primitive type.

media-controls The interactions that control the play-
back of any audio/visual media

mute-mic Mute for a microphone, as on a tele-
phone

mute-speaker Mute for speakers, as on a television or
stereo.

power The power button on any appliance.

phone-dialpad The dialing pad on a telephone

time-absolute The time-of-day.

time-duration A duration of time, such as the length of
a song or the counter on a VCR.

volume The volume control on a stereo or tele-
phone.

the type the operations that are possible on the state vari-
able, so it is not required that a command be supplied for
the common manipulations of the state variable. Com-
mands can be used to specify manipulations that cannot be
inferred directly from a variable’s type. One example of a
command is the seek function for a radio station. The sta-
tion itself might be represented as a variable, but seek
cannot be inferred from the variable because the controller
cannot know in advance what the next radio station with
good reception will be. After the seek command is invoked,
the appliance can change the radio station variable’s value
as appropriate.
Organization is specified in our language via a hierarchy of
groups. Variables and commands can be placed anywhere
in the hierarchy, not just at the leaves. The hierarchy is
used for structuring the interface and making layout deci-
sions. We encourage specification designers to make the
hierarchy deep so that space-constrained interface genera-
tors have as much information as possible about how
controls can be grouped. Interface generators for larger
screens can ignore the deeper branches and group more
controls onto a single panel.
Another important feature of our specification language is
dependency information. This information describes
whether a state variable or command is available for use
based on the values of the appliance’s other state variables.
Dependency information defines when an interface element
should be enabled or disabled and is also used by our inter-
face generators to determine which branches of the
hierarchy are more important. Dependencies are defined
using several different relations (e.g., equals, greater-than,
less-than, defined, etc.) that are grouped with the logical
operators AND and OR. Not only does dependency infor-
mation allow graphical interfaces to display an indicator of
whether the function is available (such as graying out un-
available controls), but it can also be useful for inferring
information about the panel structure and layout of the in-
terface. Appliances with modes especially benefit from this
approach, because each mode is typically associated with
several functions that are active only in that mode. In such
cases, an interface generator can decide to place the func-
tions for different modes on different overlapping panels.

SMART TEMPLATES
A Smart Template augments the grouping and primitive
type information in the appliance specification language
with knowledge about the semantics of the data. Smart
Templates are defined in advance by template writers, who
specify the fixed set of states and commands that can be
included in a template. Some items are required and others
are optional to allow for the different functions an appli-
ance may support and their implementations (see Figure 4
for two supported examples for one particular template).
Smart Templates are used in the appliance specification to
add semantic information to either a group or state variable
with the special is-a attribute (see Figure 4). Adding this

attribute requires the appliance specification to conform to
the definition of that Smart Template. Finally, Smart Tem-
plates are rendered by interface generators based upon the
chosen template and the content that was included within
the template in the appliance specification.
This section divides the discussion of Smart Templates into
two parts. First we discuss how templates are defined,
elaborate on their flexibility for different representations of
appliance data, and discuss the Smart Templates that we
have defined so far. In the second sub-section we show
how interface generators render Smart Templates with
common controls and conventional layouts to ensure con-
sistency for the user. Renderings are shown for several of
our templates on each of our graphical interface generation
platforms.

Definition
A template writer starts by selecting the state variables and
commands that the template may contain, and then defines
the names, types, values, and other properties that these
elements must have. The challenge for the template writer
is to find the different combinations of states and com-
mands that an appliance implementer is likely to use. This
makes it easier for appliance specification writers to use the
templates, because there is no need to modify the appli-
ance’s internal data representation in order to interface with
the controller infrastructure. For example, Windows Media
Player makes the duration of a song available as a single
integer while our Sony DV Camcorder makes the playback
counter available as a string (see Figure 5). Using our
time-duration Smart Template, both of these represen-
tations can be handled appropriately by an interface
generator, while still providing a consistent look and feel to
users.
Allowing many combinations of states and commands in a
template definition also allows a single Smart Template to
be applied across multiple kinds of appliances. For exam-
ple, the media-controls template optionally allows
commands for next track and previous track for use with
CD and MP3 players, a reverse play option for use with
some tape players, and even a “play new” command for
phone answering machines and voicemail systems (that
plays only the messages that are tagged as being new).
We have defined a number of Smart Templates for use in
the PUC system, shown in Table 1, and we intend to define
many more in the future. In this paper we describe two
representative templates, time-duration and media-
controls, in detail and omit the others for brevity. All
template definitions can be viewed on our web site [5].
The time-duration template allows many different state
combinations to represent a length of time. One state may
be used with any of the following primitive types:
• Integer, representing the number of seconds from zero.

An upper bound may be added if appropriate, as is
shown in the second example in Figure 4.

• Fixed point number, which uses the decimal portion of
the number to represent milliseconds.

• String, with the string value provided in one of several
formats (e.g., “xx:xx:xxx”).

A time-duration may also be represented with multiple
states using the integer type, as shown in the first example
in Figure 4. In this case, each state represents one unit of
time and indicates this by using a pre-defined name, such
as Hours, Minutes, or Seconds. Each state has bounds to
match its unit. For example, if an Hours state is present,
then the state representing minutes must have a value from
0 to 59. We believe these representations cover all of the
common ways that an appliance might represent a length of
time, but we can extend the definition if we find another
representation.
The media-controls template allows interface genera-
tors to apply standard controls and icons to media
playback. This template can be used on a variety of appli-
ances, including CD players, audio tape players, VCRs,
and answering machines. Two representations of play con-
trols are allowed by this template: a single state with an
enumerated type, or a set of commands. If a single state is
used, then each item of the enumeration must be labeled.
Some labels must be used, such as Play and Stop, and oth-
ers are optional, such as Record. If multiple commands are
used, then each command must represent a function such as
Play and Stop. Again, some functions must be represented
by a command and others are optional. This template also
allows three extra commands for functions that are com-
monly included in the same group as the play controls: the
previous and next track functions for CD and MP3 players,
and the play new function for answering machines.

Rendering
We have implemented the time-duration and media-
controls Smart Templates in all of our graphical inter-
face generators: PocketPC, Smartphone, and desktop. We
have not yet implemented any Smart Templates for our
speech interface generator, but we plan to do this in the
near future. With these templates we have already seen
many of the benefits we expected from our approach.
Smart Templates allow interface generators to use plat-
form-specific controls that create consistency with other
user interfaces on the same device. Using standard controls
is a great improvement over the primitive controls that our
interface generators would choose before Smart Templates
(see Figure 2 and Figure 7). In the case of our time-
duration Smart Template implementation, each platform
has a different standard control for manipulating time that
our interface generators use (see Figure 3). Unfortunately,
none of our platforms have built-in controls for media
playback, so our media-controls Smart Template does
not benefit in the same way. The Smartphone media-
controls implementation does mimic the interface used
by the Smartphone version of Windows Media Player

however, so it still maintains some consistency with an-
other application that is likely to be used on the
Smartphone (Figure 8 shows examples on each platform).

Figure 5. Two full user interfaces automatically generated on the
PocketPC. Both interfaces show the media-controls and time-
duration Smart Templates rendered together. On the left is an inter-
face for a Sony DV Camcorder and on the right is an interface for
Windows Media Player. The media player interface shows time as a
scrollbar, because the play-back time is bounded by song length.

Figure 6. A rendering of a time-duration Smart Template with an
upper bound equal to another time-duration template.

Figure 7. A rendering of an interface for manipulating time on an
early PUC. Scrollbars were used in this rendering because all the
units were bounded. In other cases, text fields would have been used.

Figure 8. Media controls rendered for a Windows Media Player
interface on each of our three platforms. At the top is the desktop, the
middle is PocketPC, and the bottom shows Smartphone. The Smart-
phone control maintains consistency for the user by copying the
layout for the Smartphone version of Windows Media Player, the
only media player application we could find on that platform. This
interface overloads pause and stop with the play button.

Smart Templates are also able to intelligently choose a
rendering based upon the contents of the template. For
example, each implementation of the time-duration
template only renders the time units that are meaningful,
and each implementation of our media-controls Smart
Template renders buttons for only the functions that are
available. The media-controls implementations on the
PocketPC and desktop take this further by intelligently
laying out the buttons on one or more lines depending on
space, enlarging buttons of greater importance such as
Play, and using a grid to create aesthetically pleasing ar-
rangements (see Figure 1).
An interface generator may also choose to use a different
control based on the contents of a Smart Template. Our
time-duration template implementations use different
controls depending on whether the duration is bounded.
For example, a slider is used by the PocketPC and desktop
interface generators provided that the time has a minimum
and maximum constraint. In Figure 5, the “Time” on the
Sony Camcorder interface on the left does not have an
upper bound and is read-only, so a label is used rather
than a text field or a scrollbar. It is also possible for an
appliance to specify that one variable has bounds in terms
of another, as in a media player where the maximum
value of the playback counter is the length of the currently
playing song. Our implementations have a special-case
rendering for these situations as shown in Figure 6 and
also in the Windows Media Player interface shown in the
right half of Figure 5.

Implementation
A large part of creating a Smart Template is implementing
the rendering code for interface generators. As a Smart
Template becomes more flexible for the appliance speci-
fication designer, more work is required for the
implementer of the interface generator. Furthermore, this
work must be repeated on every interface generation plat-
form. We have created a framework for our interface
generators to decrease the implementation cost, and have
also found in practice that code can often be re-used
across templates and even across platforms.
The code written for an interface generator to handle a
Smart Template is typically made up of two parts:
• Control Choice, which analyzes the content that

makes up a particular instance of a template and de-
cides which control(s) should be rendered to
represent it. If multiple controls are chosen, then the
Smart Template code is also responsible for laying
out the controls in an intelligent way. Often layouts
are constructed using rules similar to those used
throughout our interface generators (see [7]). In some

cases, special purpose rules are required, such as to
always put the play button on the left.

• Data Translation, which translates the appliance state
values into a format that can be understood by the cho-
sen control(s), and then translates data from the control
back into state values after the user has made a change.

The data translation code is usually the most time-
consuming and tedious part of a template implementation,
because each combination of state variables must be con-
sidered. Fortunately, we have found that it is easy to share
the data translation code across platforms1 because many
controls use the same data representations. In some cases, it
may be possible to share translation code between Smart
Templates, such as for the time-duration and time-
absolute templates.
The control choice code can rarely be shared across plat-
forms or templates, because each implementation often
includes layout rules that are platform and/or template-
specific. Some of the tasks can be abstracted out however,
such as extracting particular states from the template’s con-
tent or certain kinds of analyses like determining if a state
is bounded or if a state has a dependency on another state.
We have created a framework that is used by all of our
templates and reduces the amount of effort required to im-
plement a Smart Template.

FUTURE WORK
In the immediate future we plan to define and implement
many new Smart Templates in our system. As we connect
our system to more appliances, we expect that we will find
many more uses for Smart Templates. An eventual goal of
our work is to create a comprehensive list of templates for
common appliances and to make the list available to others.
Since Smart Templates are rendered differently on different
platforms, it should be possible for a template renderer to
take advantage of the special features of its platform. For
example, on a phone with a jog-dial, the volume Smart
Template could automatically use the jog-dial as its control
rather than rendering a slider on the screen. In general, it is
a difficult problem to decide how to allocate user interface
features to the physical buttons and dials on a device, be-
cause the position of the buttons and the functions
commonly assigned to the buttons must be taken into ac-
count. Smart Templates can help interface generators make
these kinds of decisions by providing extra semantic infor-
mation that is not normally available in the specification
language.
As mentioned earlier, we also plan to implement Smart
Templates in our speech interface generator. This promises
to greatly improve certain aspects of the interfaces, espe-
cially for common types such as date and time. The

1 It is possible for us to re-use code across platforms because all of our

implementations use Microsoft’s .NET Compact Framework, which is
supported on all of our platforms.

currently speech generator does not speak a time properly
(saying one colon two four, for 1:24) because it does not
know that the value represents a time. With a Smart Tem-
plate, the speech system will be able to use the extra
semantic information to improve its speaking ability. We
also hope to explore the use of Smart Templates for provid-
ing higher quality speech interactions to certain variables.
For example, the volume Smart Template could suggest to
the speech system that louder and softer should be used to
manipulate a volume state variable, instead of generic
commands such as set volume to 10. We believe there are
many other situations where semantic information can
benefit our speech interface generator.
In some cases, an interface generator may desire to render
two or more Smart Templates as one element in a user in-
terface. In these cases, it does not necessarily make sense to
define another Smart Template that combines the others
together. Instead, code could be written to find related in-
stances of Smart Templates in an appliance specification
and to render those templates as a combined control. This
could be used for rendering mute and volume functions
together, or even for combining date and time choices into
a single control.
We believe that Smart Templates can also help make our
generated interfaces localized for the culture of the user.
Specifically, this should be done for the date and time
Smart Templates, which should appear differently depend-
ing on the user’s home locale. The interface generator
should be able to localize interfaces transparently by ex-
tracting information from the user’s device, and this is
something we will implement in the future.
Finally, we intend to conduct user studies to compare our
generated interfaces to the interfaces developed by manu-
facturers’ for their own appliances. These studies would
extend our earlier studies comparing hand-designed user
interfaces to manufacturers’ interfaces [6] and follow a
similar format. Our goal is to show that users’ performance
with our generated interfaces matches or exceeds their per-
formance with the manufacturers’ interfaces.

CONCLUSION
We have described Smart Templates, a technique for im-
proving automatically generated interfaces. This technique
is novel because it uses parameterized templates to allow
automatic interface generators to create more usable inter-
faces that are consistent for users. Parameterization of the
templates makes appliance specifications easier to create
because it does not require the appliance to be implemented
in a particular way. Smart Templates can be used by inter-
face generators to render basic elements such as time and
more complex structures such as the playback controls for
a media player. Automatic interface generators can use
these templates to improve their interfaces by using con-
ventional layouts and controls that are consistent with other
interfaces on the same device. This technique was applied

on three different platforms: Microsoft’s PocketPC and
Smartphone, and also on desktop computers.

ACKNOWLEDGEMENTS
This work was conducted as a part of the Pebbles [4] pro-
ject, with the help of many other people including Michael
Higgins and Joseph Hughes of MAYA Design, Thomas K.
Harris, Roni Rosenfeld, Mathilde Pignol, Rajesh Seen-
ichamy, and Stefanie Shriver of Carnegie Mellon
University. The speech interface was implemented as a part
of the Universal Speech Interfaces project [12]. We would
also like to thank Krzysztof Gajos and Desney Tan for
comments on an early version of this paper. This work was
funded in part by grants from NSF, Microsoft, General
Motors, DARPA, and the Pittsburgh Digital Greenhouse,
and equipment grants from Mitsubishi Electric Research
Laboratories, VividLogic, Lutron, Lantronix, IBM Canada,
Symbol Technologies, Hewlett-Packard, and Lucent. The
National Science Foundation funded this work through a
Graduate Research Fellowship for the first author and un-
der Grant No. IIS-0117658. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those
of the National Science Foundation.

REFERENCES
1. Brouwer-Janse, M.D., Bennett, R.W., Endo, T.,

van Nes, F.L., Strubbe, H.J., and Gentner, D.R. “In-
terfaces for consumer products: "how to camouflage
the computer?"” in CHI: Human factors in comput-
ing systems. 1992. Monterey, CA: pp. 287-290.

2. Hodes, T.D., Katz, R.H., Servan-Schreiber, E., and
Rowe, L. “Composable ad-hoc mobile services for
universal interaction,” in Proceedings of the Third
annual ACM/IEEE international Conference on Mo-
bile computing and networking (ACM Mobicom'97).
1997. Budapest Hungary: pp. 1 - 12.

3. Kim, W.C. and Foley, J.D. “Providing High-level
Control and Expert Assistance in the User Interface
Presentation Design,” in Proceedings INTERCHI'93:
Human Factors in Computing Systems. 1993. Am-
sterdam, The Netherlands: pp. 430-437.

4. Myers, B.A., “Using Hand-Held Devices and PCs
Together.” Communications of the ACM, 2001.
44(11): pp. 34-41.

5. Nichols, J., Myers, B.A., “Personal Universal Con-
troller Project Home Page,” 2003.
http://www.cs.cmu.edu/~pebbles/puc/.

6. Nichols, J., Myers, B.A. “Studying The Use Of
Handhelds to Control Smart Appliances,” in 23rd In-
ternational Conference on Distributed Computing
Systems Workshops. 2003. Providence: pp. 274-279.

7. Nichols, J., Myers, B.A., Higgins, M., Hughes, J.,
Harris, T.K., Rosenfeld, R., Pignol, M. “Generating
Remote Control Interfaces for Complex Appliances,”
in UIST 2002. Paris, France: pp. 161-170.

8. Nichols, J., Myers, B.A., Higgins, M., Hughes, J.,
Harris, T.K., Rosenfeld, R., Shriver, S. “Require-
ments for Automatically Generating Multi-Modal
Interfaces for Complex Appliances,” in ICMI. 2002.
Pittsburgh

9. Nylander, S. “Different Approaches to Achieving
Device Independence,” in Technical Report TR2003-
XX. 2003. Swedish Institute of Computer Science:

10. Olsen Jr., D.R., Jefferies, S., Nielsen, T., Moyes, W.,
and Fredrickson, P. “Cross-modal Interaction using
Xweb,” in Proceedings UIST'00: ACM SIGGRAPH
Symposium on User Interface Software and Technol-
ogy. 2000. San Diego, CA: pp. 191-200.

11. Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P., and
T.Winograd. “ICrafter: A service framework for
ubiquitous computing environments,” in UBICOMP
2001. 2001. Atlanta, Georgia: pp. 56-75.

12. Rosenfeld, R., Olsen, D., Rudnicky, A., “Universal
Speech Interfaces.” interactions: New Visions of Hu-
man-Computer Interaction, 2001. VIII(6): pp. 34-44.

13. Szekely, P., Luo, P., and Neches, R. “Beyond Inter-
face Builders: Model-Based Interface Tools,” in
Proceedings of INTERCHI'93: Human Factors in
Computing Systems. The Netherlands: pp. 383-390.

14. Vanderdonckt, J. “Knowledge-Based Systems for
Automated User Interface Generation: the TRIDENT
Experience,” in Technical Report RP-95-010. 1995.
Namur: Facultes Universitaires Notre-Dame de Paix

15. Weld, D., Anderson, C., Domingos, P., Etzioni, O.,
Gajos, K., Lau, T., Wolfman, S. “Automatically Per-
sonalizing User Interfaces,” in Eighteenth
International Joint Conference On Artificial Intelli-
gence. 2003. Acapulco, Mexico:

16. Wiecha, C., Bennett, W., Boies, S., Gould, J., and
Greene, S., “ITS: A Tool for Rapidly Developing In-
teractive Applications.” ACM Transactions on
Information Systems, 1990. 8(3): pp. 204-236.

http://www.cs.cmu.edu/~pebbles/puc/

	ABSTRACT
	Keywords

	INTRODUCTION
	RELATED WORK
	PUC SPECIFICATION LANGUAGE
	SMART TEMPLATES
	Definition
	Rendering
	Implementation

	FUTURE WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

