

Studying The Use of Handhelds To
Control Everyday Appliances

Jeffrey Nichols and Brad A. Myers
Human Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{jeffreyn, bam}@cs.cmu.edu

ABSTRACT
Everyday appliances, including telephones, ovens, and
home stereos, increasingly contain embedded computers to
provide greater functionality. Unfortunately, as these ap-
pliances become more complex, their interfaces are
becoming harder to use. At the same time, more people
than ever are carrying computerized devices that can com-
municate, such as cellular telephones, personal digital
assistants, and even some watches. Our vision is that these
devices will be able to communicate with our everyday ap-
pliances using a short-range wireless network, enabling
people to control their appliances from a single handheld
device. We present two studies that suggest that handheld
devices could be used effectively as remote controls for
everyday appliances.

Keywords: Handheld computers, remote control, appli-
ances, Personal Digital Assistants (PDAs), Palm, PocketPC,
Pebbles

INTRODUCTION
Increasingly, home and office appliances, including televi-
sions, VCRs, stereo equipment, ovens, thermostats, light
switches, telephones, and factory equipment, have embed-
ded computers, and often come with remote controls.
However, the trend has been that as appliances get more
computerized with more features, their user interfaces get
harder to use [3].

Meanwhile, another trend is that people are increasingly
carrying computerized devices that can communicate. Peo-
ple have cellular phones, pagers, personal digital assistants
(PDAs) such as the Palm Pilot or PocketPC, and even
watches [16] that can communicate using various wireless
methods. The advent of the BlueTooth short-distance radio
network [8] is expected to enable many devices to commu-
nicate with other devices that are within close range.

We are investigating how handheld devices can be used to
improve the interfaces for home and office appliances, us-
ing an approach that we call the “Personal Universal
Controller” (PUC). The concept of a PUC is similar to the
universal remote controls that are available today for con-
trolling many different consumer electronic products, such
as the Philips Pronto [21]. Unlike the Pronto, which must
be hand-programmed by a user, a PUC will be self-
programming. This means that the PUC will engage in a
two-way exchange with the appliance, first downloading a
description of the appliance’s functions, then creating a
control panel automatically, and finally sending appropriate
control signals to the appliance as the user operates the con-
trol panel.

The most interesting and challenging part of building a
PUC is the automatic creation of control panels. In order to
automatically create high-quality interfaces, we are taking a
multi-step approach. First, we hand-design control panels
for a variety of appliances and handhelds, and then evaluate
these designs with users. Next, we will extract from these
panels the important properties that that our system will
need to use to generate similar interfaces. This will drive
the generation of a specification language that will be able
to represent the functional capabilities of an appliance. Fi-
nally, we will create automatic generation engines that
accept this specification language. The first two phases of
this project are described in this paper.

We have created hand-designs of remote control interfaces
for a common stereo and a telephone/answering machine,
and conducted two studies comparing them to the interfaces
of the actual stereo and phone. The first study, described
previously [17], compared paper prototypes [25] to the ac-
tual interfaces. The second study was similar to the first,
except that actual implementations of our hand-designed
interfaces were used instead of paper prototypes. Both
studies showed that subjects were able to complete complex
tasks using our hand-designed interfaces in about one-half
the time and with half as many errors compared to using the
actual interfaces.

This paper first describes our concept of a Personal Univer-
sal Controller in greater detail. We discuss our approach to
building a PUC, including the first step of creating of hand-
designed interfaces. We then describe the two studies of

Submitted for Publication

Studying The Use of Handhelds To Control Everyday Appliances - 2 - ** SUBMITTED FOR PUBLICATION**

these interfaces, their results, and the application of their
results to our long-term goals. We conclude by discussing
our future work and the previous work that this project is
based upon.

COMPLEXITY OF APPLIANCES
An important motivation for our investigation of the PUC is
the increasing complexity of consumer and business appli-
ances. Most appliances have many unused features,
because many consumers find it difficult to master the basic
functions of some of these appliances, never mind the so-
phisticated features. Even simple appliances are not
immune to this problem; when traveling, I am frequently
stumped by the user interface for the setting the alarm on
the clocks in hotel rooms.

One reason that appliance interfaces may be difficult to use
is that engineers must economize on buttons and displays,
and thus reuse buttons for multiple functions. Often, press-
ing and holding a button will perform a different operation
than a quick tap, but usually there is no indication of this on
the button’s label. Most appliances also economize the
feedback given to the user. For example, an action might
be confirmed with two beeps instead of a pre-recorded au-
dio message. Visual indicators can also be ambiguous, like
on a stereo that combines a CD and tape player. It may be
difficult to decide whether a circling arrow means that the
CD will repeat, the tape will repeat, or both.

In addition, there is little standardization of the labeling,
placement, or behavior of the controls on consumer appli-
ances. The increasing computerization of equipment can
only make this problem worse, as it becomes cheaper to
embed sophisticated computing in even the smallest appli-
ances. Today enormous processing power can be very
cheaply embedded in devices as simple as a light switch,
but providing a good user interface for that processor is still
a significant expense [3]. Because of this, most appliances
probably do not get the extensive usability testing [18] that
might help identify usability problems early in the design
phase.

UNIVERSAL CONTROLLERS
The Personal Universal Controller aims to alleviate the
problems with the user interface of today’s appliances.
There are a number of reasons why we expect the PUC to
have a better user interface.

A universal device separates the user interface from the
functionality. By off-loading the interface onto a user’s
handheld, more money and effort can be spent on the hand-
held controller than would be practical for the appliances
being controlled. These extra resources could be spent to
improve the quality of the software and provide more ex-
tensive hardware on the handheld controller. For example,
we may have a touch-sensitive graphical LCD screen such
as those found on PDAs and high-end cellular phones, even
though these are too expensive for use on conventional ap-
pliances.

There are at least three ways to build a universal controller
that would have the properties described above:

• Manually Programmed, where either the factory,
the user, or both must manually program the codes
necessary to control a new appliance. The universal
controllers on the market today, such as the Philips
Pronto [21], are of this type.

• Downloaded Interface, where each appliance is
shipped with a set of different user interfaces. The
controller would download the interface built for its
form factor from the appliance. This is similar to the
philosophy of Sun Microsystems’ JINI technology
[27].

• Self-Programmed, where each appliance is shipped
with a specification language that defines its func-
tions. The controller would download this
specification from the appliance and build an inter-
face that takes into account the form-factor of the
controller and preferences of the user.

Manually programmed controllers are available today, but
are very inconvenient for their users because they must be
updated every time a new appliance is purchased. The
downloaded interface controllers solve this problem, as
long as one of the interfaces stored in the appliance will
work on the controller that the user has. Unfortunately, this
is not a very scaleable approach, and is not suited for our
purposes because we wish to support a wide-range of hand-
held mobile devices, such as cellular phones with 8-line
displays, monochrome and color Palm OS devices with
160x160 pixel screens, color PocketPC devices with
240x320 pixels, etc. Another problem is that each type of
handheld may have its own conventions for how interac-
tions should be performed, and the downloaded interface
would not be able to take these into account. Furthermore,
the appliances we want to control are expected to last for
many years, whereas the features of handhelds change rap-
idly. For example, we would want the same light switch or
dishwasher that can be controlled by a PDA to work with a
future controller built into a watch, which might have a new
round display and four buttons.

A self-programmed controller can also be more flexible.
For example, such a controller could construct interfaces
with the user’s preferences in mind. If the user preferred to
use their fingers to press buttons on the controller’s screen,
the user might ask that the buttons be made larger. If auto-
matic machine translation was available, the user might be
able to request a French or Japanese interface, with all the
textual labels translated by the controller. The controller
could also use the design of interfaces that are already in
use as models for building interfaces to other unfamiliar
appliances. When traveling, this might allow me to set the
alarm on the unfamiliar clock in my hotel room. Instead of
fumbling with the buttons and dials, I could simply pull out
my PUC, download the specification from the alarm clock,
and set the alarm using an interface similar to one I use for
my alarm clock at home.

Studying The Use of Handhelds To Control Everyday Appliances - 3 - ** SUBMITTED FOR PUBLICATION**

A separate self-programmed controller also allows appli-
ances to be more expandable, even after being deployed.
For example, if the phone system starts offering a new ser-
vice, this might automatically appear as a new labeled
button on the PUC, rather than requiring the user to re-
member to enter an arbitrary code like *69.

Another possible advantage is that the controller can serve
as an “authentication token” and dynamically provide dif-
ferent interfaces to different classes of users. For example,
some appliances might only provide certain controls to cer-
tain classes of users. Televisions in hotels might only
provide the controls to add new channels to authorized ser-
vice people, whereas anyone’s controller would be able to
change channels or volume. Thermostats in offices might
allow anyone to change the temperature within certain
ranges, but only certain people might be authorized to
switch from heating to cooling.

APPROACH
Work has been done previously on the automatic generation
of user interfaces, but most of these systems created only
outlines of a interfaces and required significant work by the
designer to make them usable [5][26]. This will not be suit-
able for our purposes, because our system is targeted at
consumers instead of interface designers, and users cannot
be expected to spend time to improve the generated inter-
faces. We feel that our system may be more successful than
others for two reasons. Most importantly, the PUC only
generates remote control interfaces, which are simpler than
the interfaces used in generic PC applications. Second, we
are basing the development of our generation technology on
information collected about the features of high-quality
hand-designed interfaces.

The remote control interfaces we are considering for this
project are not as complicated as most PC applications be-
cause they require only a few types of widgets and do not
use interaction techniques such as direct manipulation,
which are more difficult to describe to an interface genera-
tor. Buttons, checkboxes, selection boxes, simple text-entry
widgets, and static bitmaps are the only elements that have
been needed to build our hand-designed interfaces, dis-
cussed in detail in later sections.

Our definition of a remote control interface may limit some
of the appliances that a PUC could theoretically control.
For example, one could imagine a picture-frame appliance
with a digital display that was capable of showing an arbi-
trary picture. A PUC could allow a user to change the
picture shown in the frame from a list of options, because
this type of interaction is possible with buttons and selec-
tion boxes. The user could not draw an arbitrary picture on
their controller and have it displayed in the frame however.
We are confident that these restrictions will not prevent the
PUC from being useful, because almost all appliances
available today use buttons, dials, and simple displays as
their only interface elements.

As a first step toward automatically generating remote con-
trol interfaces, we have hand-designed control panels for
two appliances, evaluated them for quality, and attempted
to extract the features of these control panels that contribute
most to their usability.

We chose two common appliances as the focus of our hand-
designed interfaces: the Aiwa CX-NMT70 shelf stereo with
its remote control (see Figure 1) and the AT&T 1825 tele-
phone/digital answering machine (see Figure 2). We chose
these two appliances because both are common, readily
available, and combine several functions into a single unit.
The first author owns the Aiwa shelf stereo that we used,
and the AT&T telephone is the standard unit installed in
many offices at Carnegie Mellon. Aiwa-brand stereos seem
to be particularly common, at least among our subject popu-
lation, because ten of our twenty-five subjects owned Aiwa
systems.

(a)

(b)

Figure 1. a) The Aiwa CX-NMT70 shelf stereo used in our
research. b) The remote control for the Aiwa stereo.

Figure 2. The AT&T 1825 office telephone/digital
answering machine that we used in our research.

Studying The Use of Handhelds To Control Everyday Appliances - 4 - ** SUBMITTED FOR PUBLICATION**

We created our hand-designed interfaces in two phases, ini-
tially on paper and later as full Visual Basic
implementations on a Microsoft PocketPC. At each phase,
we iteratively improved the interfaces with heuristic analy-
ses [18] and performed a user study. The user study in each
phase was dual-purpose: to compare our hand-designed in-
terfaces with the interfaces on the actual appliances and to
see what problems users had with the hand-designed inter-
faces. The next section describes these studies and their
results.

USER STUDIES
Both studies that we conducted were between-subjects
comparisons of the hand-designed interfaces that we created
and the interfaces on the actual appliances. We measured
the performance of the subjects using several metrics, in-
cluding the time to complete a task, the number of errors
made while attempting to complete a task, and how often
external help was required to complete a task. The purpose
of these studies was to discover how users performed using
our hand-designed interfaces versus the interfaces of the
actual appliances and discover what aspects of the hand-
designed interfaces were difficult to use.

Procedure
Both studies were conducted between-subjects. When each
subject arrived, they were asked to fill out a consent form
and a two-page questionnaire about their computer back-
ground and remote control use. Then each subject worked
through two task lists, with one of four possible combina-
tions of the interfaces: actual stereo followed by handheld
phone, actual phone followed by handheld stereo, handheld
stereo followed by actual phone, and handheld phone fol-
lowed by actual stereo. Thus, each subject saw one actual
interface and one handheld interface, and one stereo inter-
face and one phone interface, neither necessarily in that
order. When finished, a final questionnaire was given that
asked whether the actual appliance or handheld interface
was preferred and for any general comments about the
study and the interfaces.

Evaluation
In order to compare the interfaces for both appliances, task
lists were created for the stereo and phone. Each list was
designed to take about twenty minutes to complete on the
actual appliance, and the same tasks were used for both the
handheld and actual interfaces. About two-thirds of the
tasks on both lists were chosen to be easy, usually requiring
one or two button presses on the actual appliance. Some
examples of easy tasks are playing a tape on the stereo, or
listening to a particular message on the phone. The remain-
ing tasks required five or more button presses, but were
chosen to be tasks that a user was likely to perform in real
life. These included programming a list of tracks for the
CD player on the stereo, or setting the clock on the phone.

We anticipated that some subjects would not be able to
complete some of the more difficult tasks. If a subject gave
up while working with the actual phone or stereo, they were
given the user manual and asked to complete the task. Sub-
jects working on the prototype interfaces were allowed to
press the “Help” button, available in some form on every
screen. This presented a scrollable screen of text, indexed
by topic, that told the subject about the features of that par-
ticular interface.

The performance of each subject on both lists of tasks was
recorded using three metrics: time to complete the tasks,
number of missteps made while completing the tasks, and
the number of times external help was needed to complete a
task. The time to complete the tasks was measured from the
press of the first button to the press of the button that com-
pleted the last task. External help is any use of the manual
for an actual appliance or the help screen on the handheld.

For the purposes of this study, a misstep is defined as the
pressing of a button that does not advance progress on the
current task. Repeated pressings of the same button were
not counted as additional missteps. Sometimes a subject
would try something that did not work, try something else,
and then repeat the first thing again. If the interface had
given no feedback, either visibly or audibly, the repeated
incorrect steps are not counted as additional missteps. No

(a)

(b)

(c)

(d)

Figure 3. Paper prototypes of the phone (a-b) and stereo (c-d) interfaces for the Palm.

Studying The Use of Handhelds To Control Everyday Appliances - 5 - ** SUBMITTED FOR PUBLICATION**

missteps are counted for a task after the user has requested
external help.

STUDY #1
The first study compared the actual appliance interfaces to
paper prototypes [25] of our hand-designed interfaces.
Several examples of these interfaces are shown in Figure 3.
The interfaces were also built to be functionally equivalent
with the appliance they were meant to control, and are
equally complex.

For the handheld portion of our experimental procedure,
subjects were given a piece of paper that showed a picture
of a Palm V handheld device with the remote control inter-
face shown on the screen. Subjects were instructed to
imagine that the picture was an actual handheld, and to in-
teract with it accordingly. Whenever the subject tapped on
an interface element on the screen, a new picture was
placed over the old one to show the result of the action. If
auditory feedback was required, such as when the subject
pressed play on the CD panel of the stereo (Figure 3-c), the
test administrator would verbally tell the subject what hap-
pened.

Participants
Thirteen Carnegie Mellon graduate students, five female
and eight male, volunteered to participate as subjects. All
subjects were enrolled in the School of Computer Science.
All had significant computer experience and seven owned
Palm devices at the time of the study. Only one subject had
no Palm experience and the remaining five had exposure to
Palm devices in class or through friends. Everyone in the
group had some experience with stereo systems. Only two
did not have a stereo. Four subjects happened to own a ste-
reo of the same brand used in this study.

Figure 4. Box-plots showing the range of missteps and
help requests (uses of external help) for each appliance and
interface type.

Results
The results of the study indicate (all p < 0.001) that subjects
made fewer missteps and asked for help less using the pro-
totype handheld interfaces than using the actual appliances
(see Figure 4). This indicates that the prototype handheld
interfaces were more intuitive to use than the actual inter-
faces.

Time was not recorded for this study because we believed
that delays created by the paper prototypes would dominate
the time required to complete all the tasks. Even so, infor-
mal measurements suggested that subjects needed about
one-half the time to complete all of the tasks using the pro-
totypes as compared to the actual appliances.

Discussion
We found that users had great difficulty using the actual
appliances, but were able to understand and operate the pa-
per prototype interfaces with reasonable ease. One
exception to this was found in the prototype stereo inter-
face, which made use of the Palm’s built-in menu system.
None of our subjects navigated to screens that were only
accessible through the menus without help, because they
did not think to press the button that makes the menus visi-
ble. This was in spite of the fact that more than half used
Palm devices regularly and were aware of the menu system.

Although the study was successful, we were concerned that
the prototype interfaces benefited from the close interaction
of the subject and the experimenter. In the paper prototype
portion of the study, the experimenter provided all feedback
to the user, including verbal hints when the user requested
them. Because of these issues, we decided to conduct a
new study with full implementations of the interfaces such
that the experimenter would be a passive observer instead
of an active participant.

STUDY #2
The second study improved upon on the first study by re-
placing the paper prototypes with working prototypes. We
created interfaces for the stereo and phone that run on a
Microsoft PocketPC using Visual Basic. These interfaces
were based on the prototype interfaces for the Palm, but
were modified to conform to the interface conventions of
the PocketPC (see Figure 5). We chose the PocketPC in-
stead of the Palm because of the availability of Microsoft’s
eMbedded Visual Basic tool, which made the implementa-
tion relatively painless.

Unfortunately, it was not possible to use the PocketPC to
actually control either of our appliances, but we still wanted
the subjects to receive feedback to their actions in a manner
that was consistent with the appliances, without involving
the experimenter. We chose to simulate control using wire-
less communication from our handheld to a laptop. The
laptop was connected to external speakers, and it generated
auditory feedback that was consistent with what would be
expected if the PocketPC were actually controlling either of
the appliances.

Studying The Use of Handhelds To Control Everyday Appliances - 6 - ** SUBMITTED FOR PUBLICATION**

Because of the complexity of both appliances, the Pock-
etPC interfaces required more than fifty hours of design and
implementation effort to create. The PocketPC implemen-
tations were improved over several iterations using a
combination of heuristic analysis and think-aloud studies
with pilot users. The results of these analyses are included
in the discussion of this study, below.

One very important issue with the PocketPC interfaces was
their use of several conventions that are specific to the
PocketPC operating system. In particular, there is a stan-
dard OK button for exiting dialog boxes that is displayed in
the top right corner of the screen. Users in pilot tests did
not discover this feature, and thus were unable to exit from
certain screens in the interface. Because one goal of the
personal universal controller is to use the conventions of the
controlling device to guide interface generation, we chose
not to change the interfaces. Instead, we created a tutorial
program that we presented to subjects before they begin us-
ing the PocketPC interface. The tutorial covers the OK
button, text-entry, and the location of the menu bar, which
is at the bottom of the screen instead of the top.

Participants
Twelve students from Carnegie Mellon volunteered to par-
ticipate in the study, in response to an advertisement posted
on a high-traffic campus newsgroup. The advertisement
specifically requested people with little or no knowledge of
handheld computers. Subjects were paid US$7 for their
participation in the study, which took between thirty and
forty-five minutes to complete. Eight men and four women
participated, with a median age of 22 and an average of five
years experience using computers. Subjects self-rated their
skill at using computers for everyday tasks and their knowl-
edge of handheld computers on a seven-point Likart scale.
On average, subjects rated their knowledge of handhelds
three points less than their skill with everyday computers
(an average of 5.5 for everyday skill and 2.5 for handheld
knowledge). Half the group owned Aiwa-brand stereos and
two had AT&T digital answering machines.

Results
The results of the study indicate that subjects performed
significantly better (p < 0.05 for all) using the handheld in-
terfaces in all three metrics. Table 1 shows the data
collected for each of the three metrics on the stereo and
phone interfaces. Figure 6 and Figure 7 show box-plots
comparing the handheld and actual interfaces for each met-
ric on the stereo and phone respectively.

For both appliances, users of the actual interfaces took
about twice as long, needed external help five times more
often, and made at least twice as many mistakes as users of
the handheld interfaces.

Discussion
The results of the second study are very similar to those of
the first. Most of our subjects did not need to use external
help to complete tasks using the handheld, and those that
did use help only used it once. This compares to each sub-
ject’s average of 3.6 uses of help for the actual stereo and
4.3 uses for the actual phone. Poor labeling, insufficient
feedback, and the overloading of some buttons with multi-
ple functions can account for this large difference on the
actual appliances.

The worst examples of poorly labeled buttons and over-
loaded functions were found on the AT&T phone. This
phone has several buttons that can be tapped quickly to ac-
tivate one function and be pressed and held to activate
another function. There is no text on the telephone to indi-
cate this.

A similar problem is also encountered on the stereo. Set-
ting the timer requires the user to press a combination of
buttons, each button press within four seconds of the last.
The stereo does not display an indicator to warn of this re-
striction, and often users were confused when a prompt
would disappear when they had not acted quickly enough.

(a)

(b)

(c)

(d)

Figure 5. Screenshots of the implemented phone (a-b) and stereo (c-d) interfaces for the PocketPC.

Studying The Use of Handhelds To Control Everyday Appliances - 7 - ** SUBMITTED FOR PUBLICATION**

The phone also suffered from an underlying technical sepa-
ration between the telephone and the answering machine
functions. None of the buttons on the phone can be used
with the answering machine. Even the numeric codes must
be set using arrow buttons rather than the phone keypad.
All but one subject tried to use the keypad buttons to set the
code. The exception had used a similar AT&T phone in the
past.

All of these problems could be avoided in the handheld in-
terfaces, because there was room for labels that were more
descriptive and certain multi-step functions could be put on
a separate screen or in a wizard. Using different screens to
separate infrequently used or complex functions can also be
problematic, however. Other buttons or menu items must

be provided so that the user can navigate between screens,
and the labels for these navigation elements must describe
the general contents of the screen that they lead to. This
was particularly a problem for the handheld stereo inter-
face, which has more than ten screens and is more complex
than the handheld phone interface. Many of the screens are
accessible through the menu bar at the bottom of the screen.
Subjects in the study and think-aloud participants before the
study were very tentative about navigating the menus to
find a particular function. In tasks that required the subject
to navigate to a screen from the menu bar, the subject
commonly opened the correct menu, closed the menu, did
something wrong on the current screen, and then opened the
menu again before finally picking the correct item.

Figure 6. Box-plot comparisons of the stereo inter-
faces.

Figure 7. Box-plot comparisons of the phone inter-
faces.

Table 1. The raw data collected in the second study. Subject numbers were assigned randomly and do not reflect the
order in which a subject participated in the study.

 Stereo Telephone
 Actual Handheld Actual Handheld
Subj. Time Missteps Help Time Missteps Help Time Missteps Help Time Missteps Help
142 34:43 26 5 - - - - - - 07:50 1 1
246 15:36 7 3 - - - - - - 07:01 0 0
269 22:50 10 5 - - - - - - 06:52 5 1
323 16:11 23 4 - - - - - - 06:49 3 0
391 15:22 5 3 - - - - - - 07:03 3 0
591 15:53 16 2 - - - - - - 06:14 1 0
57 - - - 09:09 4 0 18:54 12 6 - - -

106 - - - 09:27 8 1 11:04 7 2 - - -
296 - - - 10:24 8 0 14:42 15 3 - - -
412 - - - 10:37 5 1 19:03 9 5 - - -
438 - - - 09:47 7 0 17:25 20 4 - - -
682 - - - 11:31 5 0 29:11 11 6 - - -

Studying The Use of Handhelds To Control Everyday Appliances - 8 - ** SUBMITTED FOR PUBLICATION**

The handheld stereo interface had other problems as well.
In particular, we found that the record function was difficult
to represent in the interface because it was associated with
tapes but needed to be available in all of the stereo’s five
playback modes: tape, radio, CD, etc. Although a record
button was available on every screen (see Figure 5-c), many
subjects would get confused and incorrectly switch to the
tape mode instead of pressing the record button. The red
circle next to the text label on the “Rec” button was added
to make the button more visible, because we thought that
people tried the tape mode because they did not see the re-
cord button. This change seemed to have little effect.

This type of dual-associated function presents two difficul-
ties for future personal universal controllers. It is difficult
to communicate to users how they should use the function
and it complicates the specification language that the PUC
will build interfaces from. Without elements like the record
button, it would be possible to represent the functions of an
appliance with a hierarchical tree. For a stereo, the root
node would be the power state with two children that repre-
sent when the unit is on or off. The “power on” child might
have five children representing each of the different play-
back modes, and further branching would specify the states
of each mode. The record button does not fit at any of
these levels, because it affects the stereo globally but with
different local effects. For example, recording from radio is
different from recording from CD, but in both cases the
same tape is being recorded onto. Using a graph to repre-
sent the relationships between appliance functions can solve
this problem, but may make it more difficult to infer func-
tional groups.

The prototype interfaces showed that finding functional
groups is key to constructing a good interface. These
groups define how elements are placed relative to each
other, and which elements can be separated across multiple
screens. The different screens of the tab components are
the best examples of grouping in our prototype interfaces
(see Figure 4 and Figure 5). Grouping is also used to sepa-
rate the mode, random, and repeat elements from the rest of
the elements of the stereo CD player interface (see Figure
5-c). These elements are used in all of the CD player’s
modes, while the other components are only used in half the
modes. We are currently exploring ways to make these
grouping easier to infer from the specification language.

Unfortunately, the groups cannot be specified directly be-
cause their members may vary between target platforms.
For example, on a device with a small screen it might be
necessary to separate the display of the current disc and
track from the controls for playing a CD. It would not be
appropriate if the PUC separated the play and stop buttons
however. A challenge will be finding a way to embed this
knowledge in the specification language without defining
every possible group.

Our prototype interfaces also uncovered some issues that
will make the implementation of a type system within our

specification language difficult. We had assumed that each
element in the specification language would have a type,
and that the type of an element would indicate which widget
should represent it. This is problematic because sometimes
the widget suggested by the type may conflict with the wid-
get that would chosen to match the conventions of the target
platform. For example, the standard volume widget on the
Palm is a selection box with four choices: Off, Low, Me-
dium, and High. This would not be an appropriate choice
for the volume widget on the stereo, because the type of the
volume control element for the stereo is an integer between
0 and 30. Indeed, we chose not to use the Palm’s volume
widget in our prototypes (see Figure 3-c), but generalizing
that choice could prove more difficult.

Sometimes it may also make sense to have multiple ele-
ments of the specification language be instantiated as a
single widget. The prototype PocketPC interface for the
phone does this, by using the same scrollbar to set the vol-
ume of the speakerphone and the handset, depending on
which is currently in use (see Figure 5-a). The interface
generator may be able to infer this if it knew that the ele-
ments were never used together and their types were
similar. Matching types exactly will not work though. In
the phone example, the handset volume ranges from 1-4 but
the speakerphone volume ranges from 1-8.

The opposite of this situation may also arise, where a single
element in the specification language may be instantiated
several times in the interface. The volume control in the
prototype stereo interface is shown on the main screen and
also duplicated in a dialog box that we expect to be used
frequently. This gave the user easy access to the volume
when they needed it, even if they had obscured the normal
volume control with the dialog box.

FUTURE WORK
Our next goal is to design the specification language that
will be used to guide the automatic generation of the remote
control interfaces. In addition to using the knowledge we
gained from our prototype studies, we will also be collabo-
rating with visual interface designers and a project team
from Maya Design Corp., http://www.mayadesign.com.
The team from Maya is specifically interested in the archi-
tecture that underlies the automatic generation of interfaces.
In addition to the specification language, this also includes
the programming interface that will separate the automatic
generation software from the specifics of each target plat-
form.

RELATED WORK
A number of research groups are working on controlling
appliances from handheld devices. Hodes, et. al. propose a
similar idea to our PUC, which they call a “universal inter-
actor” that can adapt itself to control many devices [9].
However, their research seems to have focused on the sys-
tem and infrastructure issues rather than how to create the
user interfaces. Hodes’s later paper describes the “rvic” sys-
tem [10] that allows a Palm pilot or laptop to remotely

Studying The Use of Handhelds To Control Everyday Appliances - 9 - ** SUBMITTED FOR PUBLICATION**

control the audio/video equipment in a meeting room, but
the control panels are hand-designed and hard-coded into
the Palm program. The Stanford iRoom project [6] also
supports remote control from PDAs, and they tried two de-
signs: one with the remote control hand-coded on the Palm,
and the other using Web forms displayed by a standard
Web browser on the handheld. In both cases, the program-
mer designed the control panels in advance. The IBM
PIMA project mentions using a PDA to control devices and
services [2], but apparently has not yet addressed this issue.
Another IBM project [4] describes a “Universal Informa-
tion Appliance” (UIA) that might be implemented on a
PDA. The UIA uses an XML-based language called Mo-
DAL from which it creates a user interface panel for
accessing information. However, the MoDAL processor
apparently only handles simple layouts and its only type of
input control is text strings.

A part of the Xweb [20] project is working to create tech-
nologies that can create customized interfaces that are
appropriate to the interests of the user. The goal is to sepa-
rate the functionality of the appliance from the device upon
which it is displayed. Xweb defines an XML language from
which user interfaces can be created. Another XML lan-
guage for user interface design is UIML [1], from which
user interfaces can be created.

Other projects have looked at the general issues around
having a PDA and stationary devices working together, in-
cluding the original Xerox ParcTab [30] system,
Rekimoto’s many systems [22][23][24], and our Pebbles
system [12][13][14][15]. In these, the user interfaces for the
PDA have been hand-designed.

With respect to automatic design of user interfaces, the
WML language for WAP phones is relevant, since it leaves
some aspects of the user interface for the phone to decide.
However in practice, most of the design must be included in
the WML specification. There were a number of research
systems that looked at automatic design of user interfaces
for conventional computers. These sometimes went under
the name of “model-based” techniques [28]. Here, the pro-
grammer provides a specification (“model”) of the
properties of the application, along with specifications of
the user and the display. This approach was moderately
successful at creating dialog boxes [11][29] and creating
complete interfaces in a limited range [19][7][28]. The ITS
system from IBM was used to create all the screens for the
information kiosks at the EXPO’92 worlds fair [31][32]. Of
particular note is the layout algorithm in the DON system
that achieved a pleasing, compact, and logical placement of
the controls [11]. Other systems focused on the initial crea-
tion assuming a user would edit the resulting user interface
[5][26]. We plan to extend these results to create panels of
controls on handhelds of significantly different properties.

ACKNOWLEDGMENTS
This work was conducted as a part of the Pebbles [15] project, led by the
second author. Marc Khadpe did a portion of the work on the prototype
phone interface as a part of a summer independent study project. We

would also like to thank Mike Schneider, Anupriya Ankolekar, and Ryan
Baker for giving their time to participate as pilot subjects for the second
study. This work was funded in part by the Pittsburgh Digital Greenhouse
and in part by a National Science Foundation Graduate Fellowship.

REFERENCES
1. Abrams, M., et al. “UIML: An Appliance-Independent XML

User Interface Language,” The Eighth International World
Wide Web Conference, Toronto, Canada, May 11-14, 1999.
http://www8.org/ and http://www.uiml.org/

2. Banavar, G., et al. “Challenges: An Application Model for
Pervasive Computing,” Sixth Annual ACM/IEEE International
Conference on Mobile Computing and Networking (Mobicom
2000), 2000. http://www.research.ibm.com/PIMA/

3. Brouwer-Janse, M.D., et al. “Interfaces for consumer prod-
ucts: "how to camouflage the computer?"” CHI'1992: Human
factors in computing systems, Monterey, CA, May 3 - 7, 1992.
pp. 287-290.

4. Eustice, K.F., et al. “A Universal Information Appliance,”
IBM Systems Journal. 1999. 38(4). pp. 575-601.
http://www.research.ibm.com/journal/sj/384/eustice.html

5. Foley, J.D., et al. “A Knowledge-Based User Interface Man-
agement System,” Human Factors in Computing Systems,
Proceedings SIGCHI'88. Washington, D.C., May, 1988, 1988.
pp. 67-72.

6. Fox, A., et al. “Integrating Information Appliances into an
Interactive Workspace,” IEEE Computer Graphics and Appli-
cations, May/June 2000,: pp. 54-65.

7. Frank, M.R. and Foley, J.D. “Model-Based User Interface De-
sign by Example and by Interview,” ACM SIGGRAPH
Symposium on User Interface Software and Technology, Pro-
ceedings UIST'93. Atlanta, GA, Nov, 1993, 1993. pp. 129-
137.

8. Haartsen, J, et al. “Bluetooth: Vision, Goals, and Architec-
ture,” ACM Mobile Computing and Communications Review.
1998. 2(4). pp. 38-45. Oct. www.bluetooth.com.

9. Hodes, T., et al. “Composable ad-hoc mobile services for uni-
versal interaction,” Proceedings of the Third annual
ACM/IEEE international Conference on Mobile computing
and networking (ACM Mobicom'97), Budapest Hungary, Sep-
tember 26 - 30, 1997. pp. 1 - 12.

10. Hodes, T., et al. “Shared Remote Control of a Video Confer-
encing Application: Motivation, Design, and
Implementation,” Proceedings of SPIE Multimedia Comput-
ing and Networking, San Jose, CA, January, 1999. pp. 17-28.
http://daedalus.cs.berkeley.edu/publications/mmcn99.ps.gz

11. Kim, W.C. and Foley, J.D. “Providing High-level Control and
Expert Assistance in the User Interface Presentation Design,”
Human Factors in Computing Systems, Proceedings
INTERCHI'93. Amsterdam, The Netherlands, Apr, 1993. pp.
430-437.

12. Myers, B.A., Stiel, H. and Gargiulo, R. “Collaboration Using
Multiple PDAs Connected to a PC,” Proceedings CSCW'98:
ACM Conference on Computer-Supported Cooperative Work,
Seattle, WA, November 14-18, 1998b. pp. 285-294.
http://www.cs.cmu.edu/~pebbles

13. Myers, B.A., Lie, K.P., and Yang, B. “Two-Handed Input Us-
ing a PDA And a Mouse,” Human Factors in Computing
Systems, Proceedings CHI'2000. The Hague, The Netherlands,
Apr 1-6, 2000b. pp. 41-48.

14. Myers, B., et al "Extending the Windows Desktop Interface
With Connected Handheld Computers," 4th USENIX Win-

Studying The Use of Handhelds To Control Everyday Appliances - 10 - ** SUBMITTED FOR PUBLICATION**

dows Systems Symposium. 2000. Seattle, WA: pp. 79-88.
http://www.cs.cmu.edu/~pebbles/.

15. Myers, B.A., et al. “Using Hand-Held Devices and PCs To-
gether,” ACM Communications of the ACM. 2001b. p. To
appear.

16. Narayanaswami, C. and Raghunath, M.T. “Application Design
for a Smart Watch with a High Resolution Display,” Proceed-
ings of the Fourth International Symposium on Wearable
Computers (ISWC'00), Atlanta, Georgia, 18 - 21 October,
2000. pp. 7-14.
http://www.research.ibm.com/WearableComputing/factsheet.h
tml

17. Nichols, J. “Using Handhelds as Controls for Everyday Appli-
ances: A Paper Prototype Study,” ACM CHI'2001 Student
Posters, Seattle, WA, March 31-April 5, 2001. p. To appear.

18. Nielsen, J. Usability Engineering. Boston, Academic Press.
1993.

19. Olsen Jr., D.R. “A Programming Language Basis for User In-
terface Management,” Human Factors in Computing Systems,
Proceedings SIGCHI'89. Austin, TX, Apr, 1989, 1989. pp.
171-176.

20. Olsen Jr., D.R., et al. “Cross-modal Interaction using Xweb,”
in Proceedings UIST’00: ACM SIGGRAPH Symposium on
User Interface Software and Technology. 2000. San Diego,
CA: pp 191-200.

21. Philips. Pronto Intelligent Remote Control. Philips Consumer
Electronics. 2001. http://www.pronto.philips.com/

22. Rekimoto, J. “Pick-and-Drop: A Direct Manipulation Tech-
nique for Multiple Computer Environments,” ACM
SIGGRAPH Symposium on User Interface Software and
Technology, Proceedings UIST'97. Banff, Alberta, Canada,
Oct 14-17, 1997. pp. 31-39.

23. Rekimoto, J. “A Multiple Device Approach for Supporting
Whiteboard-based Interactions,” Human Factors in Comput-
ing Systems, Proceedings SIGCHI'98. Los Angeles, CA, Apr,
1998. pp. 344-351.

24. Rekimoto, J and Saitoh, M. “Augmented Surfaces: A Spatially
Continuous Work Space for Hybrid Computing Environ-
ments,” Human Factors in Computing Systems, Proceedings
SIGCHI'99. Pittsburgh, PA, May, 1999. pp. 378-385.

25. Rettig, M., “Prototyping for Tiny Fingers,” Communications
of the ACM, April 1994,: pp. 21-27.

26. Singh, G. and Green, M. “A High-Level User Interface Man-
agement System,” Human Factors in Computing Systems,
Proceedings SIGCHI'89. Austin, TX, Apr, 1989, 1989. pp.
133-138.

27. Sun. Jini Connection Technology. Sun Microsystems.
http://www.sun.com/jini/. 2000.

28. Szekely, P., Luo, P. and Neches, R. “Beyond Interface Build-
ers: Model-Based Interface Tools,” Human Factors in
Computing Systems, Proceedings INTERCHI'93. Amsterdam,
The Netherlands, Apr, 1993. pp. 383-390

29. Vander Zanden, B. and Myers, B.A. “Automatic, Look-and-
Feel Independent Dialog Creation for Graphical User Inter-
faces,” Human Factors in Computing Systems, Proceedings
SIGCHI'90. Seattle, WA, Apr, 1990. pp. 27-34.

30. Want, R., et al. “An Overview of the ParcTab Ubiquitous
Computing Experiment,” IEEE Personal Communications.
1995. pp. 28-43. December. Also appears as Xerox PARC
Technical Report CSL-95-1, March, 1995.

31. Wiecha, C., Bennet, W., Boies, S. and Gould, J. “Generating
user interfaces to highly interactive applications,” Human
Factors in Computing Systems, Proceedings SIGCHI'89. Aus-
tin, TX, Apr, 1989, 1989. pp. 277-282.

32. Wiecha, C., et al. “ITS: A Tool for Rapidly Developing Inter-
active Applications,” ACM Transactions on Information
Systems. 1990. 8(3). pp. 204-236

	ABSTRACT
	INTRODUCTION
	COMPLEXITY OF APPLIANCES
	UNIVERSAL CONTROLLERS
	APPROACH
	USER STUDIES
	Procedure
	Evaluation

	STUDY #1
	Participants
	Results
	Discussion
	STUDY #2
	Participants
	Results
	Discussion

	FUTURE WORK
	RELATED WORK
	ACKNOWLEDGMENTS
	REFERENCES

