Describing Appliance User Interfaces Abstractly with XML

Jeffrey Nichols’, Brad A. Myers, Kevin Litwack’, Michael Higgins',
Joseph Hughes', Thomas K. Harris’

*School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
{jeffreyn, bam, klitwack, tkharris}@cs.cmu.edu
http://www.pebbles.hcii.cmu.edu/puc/

ABSTRACT

This paper describes an XML-based language for describ-
ing the functions of appliances, such as televisions, VCRSs,
copiers, microwave ovens, and even manufacturing equip-
ment. Our description language is designed to be concise,
easy to use, and contain no presentation information. It has
been used to describe more than twenty diverse appliances.
The functional descriptions written in our language are
used to automatically generate remote control interfaces for
appliances. We have used these descriptions to generate
both graphical and speech interfaces on handheld com-
puters, mobile phones, and desktop computers.

Keywords

User interface description language (UIDL), automatic
interface generation, remote control, appliances, personal
digital assistants (PDAs), handheld computers, Pebbles,
personal universal controller (PUC)

INTRODUCTION

It has long been a goal of researchers to develop a user
interface description language (UIDL) that can describe a
user interface without resorting to low-level code. A UIDL
can reduce the amount of time and effort needed to make
user interfaces by providing useful abstractions and sup-
porting automation of the design process. For example, this
might allow the same interface description to be rendered
on multiple platforms. In this case, a UIDL is particularly
beneficial because most of the code and implementation
time is spent on the user interfaces in today’s desktop ap-
plications. Without a multi-platform UIDL solution, even
more will be required as applications become more distrib-
uted and user interfaces to those applications are needed on
multiple platforms.

We are developing a UIDL for describing appliance user
interfaces as part of our work on the personal universal
controller (PUC) project [7]. The goal of the project is to
provide users with user interface devices that can remotely

Submitted for Publication

'MAY A Design, Inc.
Suite 702
2100 Wharton Street
Pittsburgh, PA 15203
{higgins, hughes}@maya.com

control all of the appliances in the users’ environments. We
imagine that these user interface devices would use a vari-
ety of platforms, including handheld devices with graphical
interfaces and hidden PCs with speech recognition soft-
ware. To remotely control an appliance, the user interface
device engages in two-way communication with the appli-
ance, first downloading a description of the appliance’s
functions written in our UIDL, and then automatically cre-
ating a high-quality interface. The device sends control
signals to the appliance as the user interacts with the inter-
face, and also receives feedback on the changing state of
the appliance.

The UIDL that we have designed, which we often refer to
as our appliance specification language or just specification
language, is a very important part of the PUC system. Not
only must it describe the appliance in sufficient detail for
the interface generators to create a high-quality interface,
but it must be concise and short enough to be efficiently
transmitted across wireless networks and parsed by embed-
ded computing devices. Our specification language must
also be descriptive enough to cover the complete function-
ality of any appliance, so that a PUC device can generate a
complete user interface. Finally, the language needs to be
abstract enough so that interfaces can be generated on mul-
tiple platforms from the same appliance specification.

This paper starts by discussing related work, both to our
UIDL and the PUC system as a whole. Then we elaborate
on the design principles for our UIDL, followed by a de-
scription of a study we conducted to inform our design.
Then the language is described in detail, followed by some
brief analysis of the strengths and weaknesses we have
found in the current design.*

RELATED WORK

A number of research groups are working on controlling
appliances from handheld devices. Hodes, et. al. propose a
similar idea to our PUC, which they call a “universal inter-
actor” that can adapt itself to control many devices [4].
However, their research focuses on the system and infra-

* Portions of this paper are adapted from previously published
material in [7] and [9].

structure issues rather than how to create the user inter-
faces. An IBM project [3] describes a “Universal
Information Appliance” (UIA) that might be implemented
on a PDA. The UIA uses an XML-based language called
MoDAL from which it creates a user interface panel for
accessing information. However, the MoDAL processor
apparently only handles simple layouts and its only type of
input control is text strings. The Stanford ICrafter [12] is a
framework for distributing appliance interfaces to many
different controlling devices. While their framework sup-
ports the automatic generation of interfaces, their paper
focuses on hand-generated interfaces and shows only one
simple automatically generated interface. They also men-
tion the difficulty of generating speech interfaces.

The Xweb system [10] is an infrastructure that supports
automatic generation of user interfaces from abstract de-
scriptions, and supports multiple generation platforms,
including speech. The PUC extends these ideas by adding
more detail in the specification language and supporting
more features in the automatic interface generation process.

The INCITS/V2 [20] standardization effort is developing
the Alternative Interface Access Protocol (AIAP) to help
disabled people use everyday appliances with an approach
similar to the PUC. AIAP contains a description language
for appliances that different interface generators use to cre-
ate interfaces for both common devices, like the PocketPC,
and specialized devices, such as an interactive braille pad.
We are collaborating with the V2 group and they have in-
corporated many of our language ideas into their standard.

A number of research systems have looked at automatic
design of user interfaces for conventional applications.
These sometimes went under the name of “model-based”
techniques [16]. Here, the programmer provides a specifi-
cation (“model™) of the properties of the application, along
with specifications of the user and the display. Of particu-
lar note are the layout algorithms in the DON [5] and
TRIDENT [18] systems that achieved pleasing, compact,
and logical placements of controls. We extend these results
to create panels of controls on significantly different hand-
helds, without requiring designer intervention after the
interfaces are generated.

UIML [1] is an XML language that is designed to provide a
highly-device independent method for user interface de-
sign. UIML differs from the PUC in its tight coupling with
the interface. Designers using UIML can define the types
of components to use in an interface and the code to exe-
cute when events occur. The PUC specification language
leaves these decisions up to each platform’s interface gen-
erator.

Recently a new general purpose language has been intro-
duced for storing and manipulating interaction data. The
eXtensible Interface Markup Language (XIML) [13] is an
XML-based language that is capable of storing most kinds
of interaction data, including the types of data stored in the
application, task, and presentation models of other model-

based systems. XIML was developed by RedWhale Soft-
ware and is being used to support that company’s user
interface consulting work. They have shown that the lan-
guage is useful for porting applications across different
platforms and storing information from all aspects of a user
interface design project.

It is common to find task information included in abstract
UIDLs, though the PUC language does not yet include
such information. Paterno’s ConcurTaskTrees [11] is one
such language, which has a graphical notation and allows
the specification of concurrent tasks (not possible in earlier
languages). ConcurTaskTrees also allows the specification
of who/what is performing the task, whether it be the user,
the system, or an interaction between the two.

DESIGN PRINCIPLES

Before and during the design of the specification language,
we developed a set of requirements and principles on
which to base our design [8]. Some of the principles are:

Descriptive enough for any appliance, but not necessarily
able to describe a full application. We found that we were
able to specify the functions of an appliance without in-
cluding some types of modeling information that earlier
systems included, such as task models and presentation
models. This is possible because appliance interfaces al-
most always have fewer functions than a typical
application, and rarely need direct manipulation techniques
in their interfaces.

Sufficient detail to generate a high-quality interface. We
conducted a user study to determine how much detail
would be needed in our specification language. Note that
this principle is different than the first. It would have been
possible to completely describe the appliance without read-
able labels or adequate grouping information that is needed
for generating a good user interface. For example, the Uni-
versal Plug and Play (UPnP) standard [17] includes an
appliance description language that does not include suffi-
cient detail for generating a good user interface.

No specific layout information should be included in the
specification language. We wanted to ensure that our lan-
guage would be general enough to work for interface
generators running on a wide-variety of platforms. Another
solution for addressing the multi-platform problem is to
include multiple concrete interface descriptions in the ap-
pliance specification (the INCITS/V2 standard [20] and
ICrafter [12] support this approach). We chose not to take
this approach, because it does not support future platforms
that cannot be anticipated at design time. This approach
also makes it difficult to support many of the expected
benefits of automatically generating interfaces, such as
adaptation and personalization.

Short and concise are very important principles for the
design of our language. Appliance specifications must be
sent over wireless networks and processed by computing
devices that lack the power of today’s desktop machines.

To ensure performance is adequate, the specification lan-
guage must be concise. Why then choose a verbose format
like XML as the basis for our language? We chose XML
because it was easy to parse and there were several avail-
able parsers. XML is also a very compressible format,
which can reduce the cost of sending specifications over
the network, though our system does not use any compres-
sion.

Only one way to specify any feature of the appliance is
allowed in our specification language. This principle makes
our language easy to author and easy to process by the in-
terface generator. It also makes it impossible for an author
to influence the look and feel of user interfaces by writing
their specification in a particular way. Some examples of
design choices influenced by this principle are shown later.

PRELIMINARY USER STUDIES

These principles guide the design our language, but do not
suggest what information should be included or what level
of detail is needed to automatically generate a high-quality
interface. In order to determine what content should be
included in a specification, we hand-designed several re-
mote control interfaces for existing appliances. Then user
studies were conducted to compare the hand-designed in-
terfaces to the manufacturers’ interfaces (described in more
detail in [6]). This approach allowed us to concentrate on
the functional information that should be included as con-
tent in the specification language. It also showed that a
PUC device could be easier to use than interfaces on actual
appliances.

We chose to focus on two common appliances for our
hand-designed interfaces: the Aiwa CX-NMT70 shelf ste-
reo with its remote control, and the AT&T 1825
telephone/digital answering machine. We chose these two
appliances because both are common, readily available,
and combine several functions into a single unit. The first
author owns the Aiwa shelf stereo that we used, and the
AT&T telephone is the standard unit installed in many of-

E.] AT&T 1825 Telephone

Speaker

Volume:; | Maiboxes:

— M wWed 03:20 FM

Dialing Setup
1 |2 |3 |[Speed
wol a4 [5 |5 IMermo | |5
GHI[JEL| b

1 M

Thu 03:36 FM

7

]
£

| Delete Al | | Flay New ‘ ‘Preview ‘

Dialing | Messages | Setup
Help Network E|A
(@) (b)

fices at Carnegie Mellon. Aiwa-brand stereos seem to be
particularly common (at least among our subject popula-
tion) because ten of our twenty-five subjects owned Aiwa
systems.

We created our hand-designed interfaces in two phases,
initially on paper for the Palm platform and later as Visual
Basic implementations on a Microsoft PocketPC (see
Figure 1). Each interface supported the complete set of
appliance functions. At each phase, we iteratively im-
proved the interfaces with heuristic analyses and performed
a user study. The user study in each phase was dual-
purpose: to compare our hand-designed interfaces with the
interfaces on the actual appliances and to find problems in
the hand-designed interfaces.

The comparison study in both phases showed that our
hand-designed interfaces were much better than the manu-
facturer’s interfaces on the actual appliances [6]. In both
studies users were asked to perform a variety of simple and
complex tasks. Some simple tasks were dialing the phone
or changing the volume on the stereo, whereas some com-
plex tasks were programming a list of tracks into the
stereo’s CD player or copying a message between two of
the four mailboxes on the telephone’s built-in answering
machine. We found that for both hand-designed interfaces,
Palm paper prototypes and PocketPC implementations,
users completed tasks in one-half the time and with one-
half the errors as compared to the actual appliances [6].

The large differences in this study can be attributed to
problems with the appliance interfaces. Most of the prob-
lems users had with the built-in appliance interfaces could
be traced to poor button labels and inadequate interface
feedback. Both appliances had buttons with two functions,
one when the button was pressed and released and one
when the button was pressed and held. Our subjects rarely
discovered the press and hold function. The stereo also had
buttons that changed function with the appliance’s mode.

2] AIwA Shelf Stereo

Tane C

Yol [Made: w Single Dise

| O Repeat 01 Random
dise 3% tack | 2%

ek
Walurne:
Mode: [Single Side -

‘ Rewind ‘

Fast-Forward

Dolby Moise Reduction

-Tape Radio | Video | CD | MD

Dptions Recording Help E|‘

(© (d)

Figure 1. Hand-designed interfaces for the phone (a-b) and stereo (c-d) on the Palm and PocketPC. The Palm interfaces are paper prototypes,
whereas the PocketPC interfaces were actually implemented in Microsoft’s embedded Visual Basic.

Interface Analysis

Once we were confident that our interfaces were usable, we
analyzed them to understand what functional information
about the appliance was needed for designing the inter-
faces. This included questions such as “why are these
elements grouped together?” or “why are these widgets
never shown at the same time?” These are questions that
might suggest what information should be contained in the
specification language.

As we intuitively expected, grouping information was very
important for our hand-designed interfaces. We noted that
grouping information could generally be specified as a tree,
and that the same tree could be used for interfaces of many
different physical sizes. User interfaces designed for small
screens would need every branch in the tree, whereas large
screen interfaces might ignore some deeper branches.

We also found that grouping is influenced by modes. For
example, the Aiwa shelf stereo has a mode that determines
which of its components is playing audio. Only one com-
ponent can play at a time. In the stereo interfaces shown in
Figure 1c-d you will note that a tabbed interface is used to
overlap the controls for the CD player, tape player, etc.
Other controls that are independent of mode, such as vol-
ume, are available in the sidebar. Unlike regular grouping
information, information about modes gives explicit ideas
about how the user interface should be structured. If two
sets of controls cannot be available at the same time be-
cause of a mode, they should probably be placed on
overlapping panels. We designed dependency equations to
describe appliance mode information in our language.

We also noticed that most of the functions of an appliance
were manipulating some data in a definable way, but some
were not. For example, the tuning function of a radio is
manipulating the current value of the radio station by a pre-
defined increment. The seek function also manipulates the
radio station value, by changing it to the value of the next
radio station with clear reception. This manipulation is not
something that can be defined based on the value of a vari-
able, and thus it would need to be represented differently in
our language.

Each of our interfaces used different labels for some func-
tions. For example, the Palm stereo interface (see Figure
1c) used the label “Vol” to refer to volume, whereas the
PocketPC stereo interface (see Figure 1d) used “Volume.”
We expected that this problem would be even worse for
much smaller devices, such as mobile phones or wrist-
watches. Thus we felt it would be important for our
specification language to include multiple labels that an
interface generator could choose between when designing
its layoults.

Finally, we found that all of our interfaces used some “con-
ventional” designs that would be difficult to specify in any
language. At least one example of a conventional design
can be found in each of the panes in Figure 1: (a) shows a
telephone keypad layout, (b) uses standard icons for previ-

ous track and next track, (c) shows the standard layouts and
icons for play buttons on a CD player, and (d) uses the
standard red circle icon for record. We recently developed
a solution for addressing this problem called Smart Tem-
plates [9], which will be discussed in the next section.

SPECIFICATION LANGUAGE

The PUC specification language is XML-based and in-
cludes all of the information that we found in our analysis
of the hand-designed interfaces. This section describes the
features of our language and shows examples of how each
feature is used. A language reference can be downloaded
from our project web site:
http://www.cs.cmu.edu/~pebbles/puc/specification.html

State Variables, Commands, and Explanations

Our specification language supports three primitive ele-
ments for describing the functions of an appliance. We
discovered from our PocketPC implementations that most
appliance functions could be represented as state variables.
Each state variable has a given type that tells the interface
generator how it can be manipulated. For example, the ra-
dio station state variable has a numeric type, and the
interface generator can infer the tuning function because it
knows how to manipulate a numeric type. Other state vari-
ables include the current track of the CD player and the
status of the tape player (stop, play, fast-fwd, etc.).

As mentioned above, we discovered that state variables are
not sufficient for describing all of the functions of an appli-
ance, such as the seek button on a radio. The seek function
must be represented as a command, a function whose result
cannot be described easily in the specification. Figure 2
shows examples of both state variables and commands.

Commands are also useful when an appliance is unable to
provide state information to the controller, either by manu-
facturer choice or a hardware limitation of the appliance.
For example, up and down commands might be used for
volume if the appliance cannot support an integer-typed
state variable. In fact, the remote control technology of
today can be simulated on the PUC by writing a specifica-
tion that includes only commands. Any state information
must then be shown on the appliance’s front panel.

Our specification language also has a feature called an ex-
planation. Explanations are static labels that are important
enough to be explicitly mentioned in the user interface, but
are not related to any existing state variable or command.
For example, an explanation is used in one specification of
a shelf stereo to explain the Auxiliary audio mode to the
user. The mode has no user controls, and the explanation is
used to explain this. Explanations are used very rarely in
the specifications that we have written.

Type Information

Each state variable must be specified with a type so that the
interface generator can understand how it may be manipu-
lated. For example, the Controls.Mode state in Figure 2 has

an enumerated type. We define seven primitive types that
may be associated with a state variable:

e binary o floating point
e boolean e integer

e enumerated e string

e fixed point

Many of these types have parameters that can be used to
restrict the values of the state variable further. For example,
the integer type can be specified with minimum, maximum,
and increment parameters.

It is important to note that complex types often seen in pro-
gramming languages, such as records, lists, and unions, are
not allowed to be specified as the type of a state variable.
Complex type structures are created using the group tree, as
discussed below.

Label Information

The interface generator must also have information about
how to label the interface components that represent state
variables and commands. Providing this information is
difficult because different form factors and interface mo-
dalities require different kinds of label information. An
interface for a mobile web-enabled phone will probably
require smaller labels than an interface for a PocketPC with
a larger screen. A speech interface may also need phonetic
mappings and audio recordings of each label for text-to-
speech output. We have chosen to provide this information
with a generic structure that we call the label dictionary.

Each dictionary contains a set of labels, most of which are
plain text. The dictionary may also contain phonetic repre-
sentations using the ARPAbet (the phoneme set used by
CMUDICT [2]) and text-to-speech labels that may contain
text using SABLE mark-up tags [15] and a URL to an au-
dio recording of the text. The assumption underlying the
label dictionary is that every label contained within,
whether it is phonetic information or plain text, will have
approximately the same meaning. Thus the interface gen-
erator can use any label within a label dictionary
interchangeably. For example, this allows a graphical inter-
face generator to use a longer, more precise label if there is
lots of available screen space, but still have a reasonable
label to use if space is tight. Figure 2 shows the label dic-
tionary, represented by the <labels> element, for a number
of states. The dictionary for the Controls group has two text
labels and a text-to-speech label.

Group Tree

Interfaces are always more intuitive when similar elements
are grouped close together and different elements are kept
far apart. Without grouping information, the play button for
the CD player might be placed next to the stop button for
the Tape player, creating an unusable interface. We avoid
this by explicitly specifying grouping information using a
group tree.

We specify the group tree as an n-ary tree that has a state
variable or command at every leaf node (see Figure 3).

<?xml version="1.0" encoding="utf-87?>
<spec name="MediaPlayer” version="PUC/2.0">
<labels>
<label>Media Player</label>
</labels>

<groupings>
<group name="Controls” is-a="media-controls”>
<labels>
<label>Play Controls</label>
<label>Play Mode</label>
<text-to-speech text="Play Mode”
recording="playmode.au”/>
</labels>

<state name="Mode”’>
<type>
<enumerated>
<item-count>3</item-count>
</enumerated>
<valuelLabels>
<map index="1">
<label>Stop</label>
</map>
<map index="2">
<label>Play</label>
</map>
<map index="3">
<label>Pause</label>
</map>
</valuelLabels>
</type>

<labels><label>Mode</label></labels>
</state>

<group name="TrackControls”>
<command name="PrevTrack”>
<labels><label>Prev</label></labels>

<active-if>
<greater-than state="PList.Selection”>
0
</greater-than>
</active-if>
</command>

<command name="NextTrack”>
<labels><label>Next</label></labels>

<active-if>
<less-than state="PList.Selection”>
<ref-value state="PList.Length”/>
</less-than>
</active-if>
</command>
</group>
</group>

<list-group name="PList”>
<state name="Title”>
<type><string/></type>
<labels><label>Title</label></labels>
</state>

<state name="Duration” is-a=""time-duration”>
<type><integer/></type>
<labels><label>Duration</label></labels>
</state>
</list-group>
</groupings>
</spec>

Figure 2. A sample specification for a media player with a few
basic functions and a play list.

State variables and commands may be present at any level
in the tree. Each branching node is a “group,” and each
group may contain any number of state variables, com-
mands, and other groups. We encourage designers to make
the group tree as deep as possible, in order to help space-
constrained interface generators. These generators can use
the extra detail in the group tree to decide how to split a
small number of controls across two screens. Interface gen-
erators for larger screens can ignore the deeper branches in
the group tree and put all of the controls on one panel.

Complex Types

Our specification language uses the group tree to specify
complex type structures often seen in programming lan-
guages, such as records, lists, and unions. We chose this
approach because we felt it simplified our language, and
followed the principle of “one way to specify anything.” If
we had chosen to specify complex types within state vari-
ables, then authors could have specified related data either
as a single variable with a record data type or as multiple
variables within a group.

To support complex types, we have added several special
group tags. Figure 2 shows an example of the list-group
tag that we added for specifying lists. List groups have two
implicit variables to track the length of the list and the cur-
rent selection(s). State variables that are specified within
the list group will have multiple values associated with
them, one for each item in the list. Multi-dimensional lists
can be created by nesting list groups. We have also devel-
oped a special dependency operator for lists that can be
true if all items, any items, or no items in the list match a
dependency equation. The union-group is similar to the
list-group, but acts like a union from the C program-
ming language.

Dependency Information

The two-way communication feature of the PUC allows it
to know when a particular state variable or command is
unavailable. This can make interfaces easier to use, because
the components representing those elements can be dis-
abled. The specification contains formulas (see the
<active-if> element in Figure 2) that specify when a state
or command will be disabled depending on the values of
other state variables, currently specified with several types
of dependencies: equal-to, greater-than, less-than, defined,
and others. Each state or command may have multiple de-
pendencies associated with it, combined with the logical
operations AND and OR. These formulas can be processed
by the PUC to determine whether a component should be
enabled when the appliance state changes.

We have discovered that dependency information can also
be useful for structuring graphical interfaces and for inter-
preting ambiguous or abbreviated phrases uttered to a
speech interface. For example, dependency information can
help the speech interfaces interpret phrases by eliminating
all possibilities that are not currently available. The proc-
essing of these formulas is described elsewhere [7].

FMStation

FMPresets

4| Power
Mode

4| Band |

-—hi PlayState
‘ CDTrack

Figure 3. A sample group tree for a shelf stereo with both a CD
player and radio tuner. The black boxes represents groups and the
white boxes with text represent state variables. The mode variable
indicates which source is being played through the speakers.

[AMStation

AMPresets

Smart Templates

A common problem for automatic interface generators has
been that their interface designs do not conform to domain-
specific design conventions that users are accustomed to.
For example, an automated tool is unlikely to produce a
standard telephone keypad layout. This problem is chal-
lenging for two reasons: the user interface conventions
used by designers must be described, and the interface gen-
erators must be able to recognize where to apply the
conventions through analysis of the interface specification.
Some systems [19] have dealt with this problem by defin-
ing specific rules for each application that apply the
appropriate design conventions. Other systems [5] rely on
human designers to add design conventions to the inter-
faces after they are automatically generated. Neither of
these solutions is acceptable for the PUC system. Defining
specific rules for each appliance will not scale, and a PUC
device cannot rely on user modifications because its user is
not likely to be a trained interface designer. Even if the
user was trained, he or she is unlikely to have the time or
desire to modify each interface after it is generated, espe-
cially if the interface was generated in order to perform a
specific task.

We have developed one solution to this problem called
Smart Templates [9], where the PUC specification lan-
guage’s primitive type information is augmented with high-
level semantic information. For example, the media-
controls template defines that a state variable with par-
ticular attributes controls the playback of some media.
Figure 2 shows how the media-controls Smart Tem-
plate is indicated using the is-a attribute in our
specification language. PUC interface generators can use
the information added by a Smart Template to apply design
conventions and make interfaces more usable. If an inter-
face generator does not recognize a template however, a

Play Control: | 2 L]

> | b |

Play Control: | r

(=[]
[«][» |

BIOIC

Figure 4. Media controls rendered for a Windows Media Player
interface on each of our three platforms. At the top is the desktop,
the middle is PocketPC, and the bottom shows Smartphone. The
Smartphone control maintains consistency for the user by copying
the layout for the Smartphone version of Windows Media Player,
the only media player application we could find on that platform.
This interface overloads pause and stop onto the play button.

user interface can still be created because Smart Templates
are constructed from the primitive elements of our specifi-
cation language. Figure 4 shows the same instance of a
Smart Template rendered on different platforms.

An important innovation is that Smart Templates are pa-
rameterized, which allows them to cover both the common
and unique functions of an appliance. For example, the
media playback template supports play and stop, but also
optional related functions such as next track for CDs, fast-
forward and reverse-play for tape players, and “play new”
for phone answering machines (see Figure 5). Smart Tem-
plates also give appliances the flexibility to choose a
functional representation that matches their internal imple-
mentation. For example, our time-duration Smart
Template allows single state variables with integer or string
types, or multiple state variables (e.g. a state for hours and
another for minutes).

We have built a preliminary implementation of Smart Tem-
plates into the existing PUC system. So far the PUC
supports a few Smart Templates: media-controls,
time-duration, image, and image-list. We plan to
implement many more, including date, mute, power, and
volume. We expect that some Smart Templates will natu-
rally combine with others to create new templates. For
example, date and time are often used together, as are vol-
ume and mute. We hope to implement Smart Templates in
such a way that templates can be flexibly combined with
less work than creating a new template from scratch.

EVALUATION

We have not yet conducted any formal evaluation of our
specification language, but we have used it to specify more
than twenty appliances ranging from stereos and telephones
to elevators and car navigation systems. We have used
those specifications as the basis for generating graphical
user interfaces on PocketPCs, Microsoft Smartphones, and

Mini-Disc Plawver: 2 K il @

Answering
Machine: > P New|| ®
Media Flayver: | || E || il |

Tape Player: |“ || F || E || " |
44 g

Figure 5. Different arrangements of media playback controls
automatically generated for several different appliances from a
single Smart Template (nedia-controls).

desktop computers, and speech user interfaces using the
Universal Speech Interfaces framework [14]. This section
informally discusses some strengths and weaknesses that
we have found with the language.

The main strengths of the language come from the design
principles that we started with. Appliance descriptions are
often a reasonable size, even for our largest and most com-
plicated appliances. Our specification for an Audiophase
5CD shelf stereo system, which has more than 50 states, is
25KB. The specification for the GM Yukon Denali naviga-
tion system, which has more than 80 states, is 41KB. These
sizes are perfectly reasonable for transmission and process-
ing on the devices we are targeting.

Our language also seems to be reasonably easy to learn.
Four undergraduate students have learned the language
over the course of the project. Each student picked up the
basics of the language in a day and was proficient within
about two weeks. The most difficult aspects of writing an
appliance specification are determining the appliance’s
variables and commands, and designing the group tree
structure. We believe these aspects are difficult in general,
and do not represent weaknesses in our design.

The main weakness of the language is the lack of any task
information. For many appliances this is not a problem
because all of the tasks have only one step. For example,
“play the tape” or “increase the volume.” With complex
appliances, such as a car navigation system, this is not al-
ways the case, and the lack of task information may lead to
lower quality generated interfaces for these appliances.

FUTURE WORK

We are planning to conduct a formal evaluation of the
specification language and interface generators as part of
the first author’s thesis work. This will involve specifying
more complex appliances and further testing the descrip-
tiveness of the language.

We are planning a new feature of the PUC system that will
generate a single user interface for multiple appliances that
have been connected together. One example of a use for
this feature is a typical home theater, which includes sepa-
rate VCR, DVD player, television, and stereo appliances,
but might be more easily thought of as a single integrated
system. A PUC interface for a home theater would ideally
have features like a “Play DVD” button that would turn on
the appropriate appliances, set the TV and stereo to the
appropriate inputs, and then tell the DVD player to “Play.”

This feature will require some additions to our language to
describe how appliances are connected together. Task in-
formation will also be required to support features like the
“Play DVD” button, but the task information will be dis-
tributed among each of the different appliances. This is
different from previous task languages [11] which have
assumed that all task information is available in one loca-
tion. Designing and building this distributed task language
is a major area of future work for the PUC project.

CONCLUSION

We have discussed a language for describing appliances.
The language is the basis for a system that automatically
generates remote control user interfaces. We have used our
specification language to describe more than twenty appli-
ances from telephones to elevators to vehicle navigation
systems. We have also written software that uses our lan-
guage to automatically generate graphical user interfaces
for handheld computers, mobile phone, and desktop com-
puters, and speech interfaces using the Universal Speech
Interfaces framework. We believe that the PUC specifica-
tion language is at the appropriate level, and contains the
right features to be successfully used for virtually all appli-
ances and for many other tasks as well. We would welcome
widespread adoption of the PUC specification language
and collaboration with others.

ACKNOWLEDGMENTS

This work was conducted as a part of the Pebbles project, and the speech
interface generator was implemented as a part of the Universal Speech
Interfaces project. This work was funded in part by grants from NSF,
Microsoft, General Motors, and the Pittsburgh Digital Greenhouse, and
equipment grants from Mitsubishi Electric Research Laboratories, Vivid-
Logic, Lutron, and Lantronix. The National Science Foundation funded
this work through a Graduate Research Fellowship for the first author and
under Grant No. 11S-0117658. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect those of the National Science Foundation.

REFERENCES

1. Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams,
S.M., and Shuster, J.E. “UIML: An Appliance-Independent
XML User Interface Language,” in The Eighth International
World Wide Web Conference. 1999. Toronto, Canada

2. CMU, “Carnegie Mellon Pronuncing Dictionary,” 1998.
http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

3. Eustice, K.F., Lehman, T.J., Morales, A., Munson, M.C., Ed-
lund, S., and Guillen, M., “A Universal Information
Appliance.” IBM Systems Journal, 1999. 38(4): pp. 575-601.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Hodes, T.D., Katz, R.H., Servan-Schreiber, E., and Rowe, L.
“Composable ad-hoc mobile services for universal interac-
tion,” in Proceedings of the Third annual ACM/IEEE
international Conference on Mobile computing and network-
ing (ACM Mobicom'97). 1997. Budapest Hungary: pp. 1-12.
Kim, W.C. and Foley, J.D. “Providing High-level Control and
Expert Assistance in the User Interface Presentation Design,”
in Proceedings INTERCHI'93: Human Factors in Computing
Systems. 1993. Amsterdam, The Netherlands: pp. 430-437.
Nichols, J., Myers, B.A. “Studying The Use Of Handhelds to
Control Smart Appliances,” in 23rd International Conference
on Distributed Computing Systems Workshops (ICDCS '03).
2003. Providence, RI: pp. 274-279.

Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris,
T.K., Rosenfeld, R., Pignol, M. “Generating Remote Control
Interfaces for Complex Appliances,” in UIST 2002. 2002.
Paris, France: pp. 161-170.

Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris,
T.K., Rosenfeld, R., Shriver, S. “Requirements for Automati-
cally Generating Multi-Modal Interfaces for Complex
Appliances,” in ICMI. 2002. Pittsburgh, PA:

Nichols, J., Myers, B.A., Litwack, K. “Improving Automatic
Interface Generation with Smart Templates,” in Intelligent
User Interfaces. 2004. Funchal, Portugal: pp. 286-288.

Olsen Jr., D.R., Jefferies, S., Nielsen, T., Moyes, W., and
Fredrickson, P. “Cross-modal Interaction using Xweb,” in
Proceedings UIST'00: Symposium on User Interface Software
and Technology. San Diego, CA: pp. 191-200.

Paterno, F., Mancini, C., Meniconi, S. “ConcurTaskTrees: A
Diagrammatic Notation for Specifying Task Models,” in IN-
TERACT. 1997. Sydney, Australia: pp. 362-269.

Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P., and
T.Winograd. “ICrafter: A service framework for ubiquitous
computing environments,” in UBICOMP 2001. 2001. At-
lanta, Georgia: pp. 56-75.

Puerta, A., Eisenstein, J. “XIML: A Common Representation
for Interaction Data,” in 7th International Conference on In-
telligent User Interfaces. 2002. San Francisco: pp. 214-215.
Rosenfeld, R., Olsen, D., Rudnicky, A., “Universal Speech
Interfaces.” interactions: New Visions of Human-Computer
Interaction, 2001. VII1(6): pp. 34-44.

Sproat, R., Hunt, A., Ostendorf, P., Taylor, P., Black, A.,
Lenzo, K., Edgington, M. “SABLE: A Standard for TTS
Markup,” in International Conference on Spoken Language
Processing. 1998. Sydney, Australia:

Szekely, P. “Retrospective and Challenges for Model-Based
Interface Development,” in 2nd International Workshop on
Computer-Aided Design of User Interfaces. 1996. Namur:
Namur University Press. pp. 1-27.

UPnP, “Universal Plug and Play Forum,” 2003.
http://www.upnp.org.

Vanderdonckt, J. “Knowledge-Based Systems for Automated
User Interface Generation: the TRIDENT Experience,” in
Technical Report RP-95-010. 1995. Namur: Facultes Univer-
sitaires Notre-Dame de la Paix, Institut d' Informatique:
Wiecha, C., Bennett, W., Boies, S., Gould, J., and Greene, S.,
“ITS: A Tool for Rapidly Developing Interactive Applica-
tions.” ACM Transactions on Information Systems, 1990. 8(3):
pp. 204-236.

Zimmermann, G., Vanderheiden, G., Gilman, A. “Prototype
Implementations for a Universal Remote Console Specifica-
tion,” in CHI'2002. 2002. Minneapolis, MN: pp. 510-511.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.upnp.org/

	ABSTRACT
	Keywords

	INTRODUCTION
	RELATED WORK
	DESIGN PRINCIPLES
	PRELIMINARY USER STUDIES
	Interface Analysis

	SPECIFICATION LANGUAGE
	State Variables, Commands, and Explanations
	Type Information
	Label Information
	Group Tree
	Complex Types

	Dependency Information
	Smart Templates

	EVALUATION
	FUTURE WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

