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Abstract—In a clinical setting, pain is reported through either
self-report or via an observer. Such measures are: 1) subjective,
and 2) give no specific timing information. However, coding pain
as a series of facial action units (AUs) can avoid these issues as
it can be used to gain an objective measure of pain on a frame-
by-frame basis. Using video data from patients with shoulder
injuries, in this paper we describe an Active Appearance Model
(AAM) based system that can automatically detect the frames in
video in which a patient is in pain. This pain dataset highlights the
many challenges associated with spontaneous emotion detection,
especially that of expression and head movement due to the
patient’s reaction to pain. In this paper, we show that the
AAM can deal with these movements and can achieve significant
improvements in both AU and pain detection performance
compared to the current-state-of-the-art approaches which utilize
similarity-normalized appearance features only.

Index Terms—Emotion, Facial Action Units (AUs), Facial Ac-
tion Coding System (FACS), Active Appearance Models (AAMs),
Support Vector Machines (SVMs), Pain.

I. INTRODUCTION

Reliably assessing and managing pain in a clinical setting is
difficult. Patient self-report has become the most widely used
technique to measure pain because it is convenient, does not
require advanced technology or special skills. It is typically
evaluated either through clinical interview or by using a visual
analog scale (VAS). With the VAS, the intensity of pain is
indicated by marking a line on a horizontal scale, anchored at
each end with words such as “no pain” and “the worst pain
imaginable”.

While useful, self-report measures have significant limi-
tations [1], [2]. These include inconsistent metric properties
across scale dimensions, reactivity to suggestion, efforts at
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Fig. 1. In this paper, we develop a system which can detect the frames in
a video sequence in which the patient is in either a state of (a) “pain” or (b)
“no-pain”. When a patient is in pain, it often coincides with facial expression
change as well as head motion which can be seen above.

impression management or deception, and differences between
clinician’s and sufferers’ conceptualization of pain [3]. More-
over, self-report cannot be used in important populations,
such as young children, patients who have limited abilities to
communicate, the mentally impaired, and patients who require
assisted breathing. In these situations, an observer rating is
required where the observer chooses a face on the “faces of
pain” scale which best resembles the facial expression of the
patient [4]. This is highly impractical and inefficient if the
observer is required for long periods of time which could be
the case for a patient in an intensive care unit (ICU).

In addition to self-report and observer measures being
highly subjective, these measures do not give a continuous
output over time, as the only output measured coincides
when the patient is at their emotional apex (e.g. highest pain
intensity). They do not provide information on the patient’s
emotional state other than these peak periods. In an effort to
address these shortcomings, many researchers have pursued
the goal of obtaining a continuous objective measure of pain
through analyzes of tissue pathology, neurological “signa-
tures”, imaging procedures, testing of muscle strength and so
on [5]. These approaches have been fraught with difficulty
because they are often inconsistent with other evidence of pain
[5], in addition to being highly invasive and constraining to
the patient.

Another potential solution is to code pain using facial
actions, which is analogous to the “faces of pain” approach.
Over the past two decades, significant efforts have been made
in identifying such facial actions [6], [7], [8]. Recently,
Prkachin and Solomon [8] developed a Facial Action Coding
System (FACS) [9] based measure of pain which can be gained
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at each time step (i.e. each video frame), which is the only such
available measure. A caveat on this approach is that it must be
performed offline, where manual observations are both timely
and costly, which makes clinical use prohibitive. However,
such information can be used to train a real-time automatic
system which could potentially provide significant advantage
in patient care and cost reduction.

In this paper, we describe an Active Appearance Model
(AAM) based computer vision system which can automatically
detect pain based on facial expressions coded using FACS.
We demonstrate its use on the UNBC-McMaster Shoulder
Pain Archive which contains patients with rotator-cuff injuries,
eliciting spontaneous facial expressions associated with pain
which are not posed or feigned. These facial actions vary
in duration and intensity and often coincides with abrupt
changes in head position as shown in Figure 1. Using an AAM
approach, we show that both shape (i.e. contour) and appear-
ance (i.e. texture) are both vital for gaining accurate detection
performance. We also highlight the difficulties associated with
detecting spontaneous data such as pain, where there is a lot of
head motion. This is a particular problem for systems which
use similarity-normalized appearance features (i.e. normalized
for translation, rotation and scale), as some parts of the face
may not be visible, inhibiting accurate detection.

The key contributions of this paper are:

1) We describe a system which can automatically detect
pain from a patient’s face using an AAM approach on
a frame-by-frame basis (Section V).

2) We show that using the common similarity-normalized
appearance features on spontaneous data is problematic
due to the major facial expressions and head motion and
using an AAM approach can yield significant improve-
ment (Section IV & V).

3) We show that fusing all AAM representations together
(i.e. similarity normalized shape, appearance and canon-
ical normalized appearance (synthesized)) using linear
logistical regression (LLR), improves both AU and pain
detection performance (Section IV & V).

A. Related Work

There have been many recent attempts to detect emotions
directly from the face, mostly using FACS [9]. Comprehensive
reviews can be found in [10], [11], [12]. These attempts relate
mostly to posed data as spontaneous (i.e. real) emotions are
subtle and do not occur frequently, which makes this pursuit
timely and costly. Pain however, is one spontaneous emotion
that can be captured on cue as it can be elicited. This can
be achieved ethically through physical movement of a limb
or joint which is painful, or through a device such as a cold
pressor.

Collecting data via a cold pressor, Littlewort et al. [13] used
their AU detector which consisted of Gabor Filters, Adaboost
and SVMs, to differentiate between genuine and fake pain. In
this work no actual pain/no-pain detection was performed as
differentiation between genuine, fake and baseline sequences
was done via analyzing the various detected AUs. The clas-
sification for this work was done at the sequence level and

AU 4: Brow lowering AU 7: Tightening of eyelids

AU 43: Closing eyes
AU 9: Wrinkling of nose
AU 6: Cheek raising

AU 12: Pulling at AU 10: Raising of upper lip
corner lip

AU 25: Parting lips

Fig. 2. An example of facial actions associated when a person in is pain. In
this example, AU’s 4, 6, 7, 9, 10, 12, 25 and 43.

a cold pressor was used to elicit real pain on the subjects.
All images were then similarity-normalized by first coarsely
locating the face using a Viola-Jones type of approach, then
locating the eyes which were used to scale, rotate and crop
the image according to a predefined inter-ocular distance.

In terms of pain/no-pain detection, Ashraf et al. [14] used
the UNBC-McMaster Shoulder Pain Archive which contains
data with patient’s moving both their injured and uninjured
shoulders, to classify video sequences as pain/no-pain. Ashraf
et al. [15] then extended this work to the frame-level to see
how much benefit would be gained at labeling at the frame-
level over the sequence-level. Even though they found that
it was advantageous to have the pain data labeled at the
frame-level, they proposed that this benefit would be largely
diminished when encountering large amounts of training data.
In these works, all images were registered using an AAM.

Other than pain, there have been a few other relevant works
published on detecting spontaneous facial expressions and
emotions. The first one is based on the RUFACS dataset
[16], which consists of 34 subjects participating in a interview
(= 2mins) where they are being asked to take a position
on a particular issue (either truthfully or not). This dataset
contains a lot of head motion and subtle facial actions, which is
indicative of natural human behavior. Due to these challenges,
Bartlett et al. [16] found that the performance of their AU
detection system greatly diminished compared to the posed
scenario!. All images in this work were similarity-normalized
as per the Littlewort et al. [13] system described above.

More recently, Whitehill et al. [18] published their work
on robust smile detection across all environments, motivated
for the use in digital cameras. For this work, they collected
the GENKI dataset, which contains over 63,000 static images
from the internet, which were all frontal. Again, all images
were similarity normalized as previously described, however,
this work had a greatly improved eye detector which improved
the registration of the images. Even with this improved image
registration and little head motion, the authors blamed the loss
in alignment accuracy decreased smile detection performance
up to 5%.

Even though these above works all acknowledge the impor-
tance of registration of input images for spontaneous facial
expression and emotion detection, none have quantified to the
extent in which this effects overall performance. In this paper,
we do such an analysis for both AU and pain detection, which

In terms of area under the ROC curve (A’), the mean AU detection rate
for RUFACS dataset was 71.0 compared to 92.6 for the posed data of the
Cohn-Kanade database [17]
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Fig. 3.

will be very important if spontaneous expression detection
systems such as pain detectors are used in commercial ap-
plications in the future.

II. FACIAL EXPRESSIONS OF PAIN

A. Defining Pain via Facial Action Units

Much is known about how humans facially express pain
from studies in behavioral science [6], [7], [8]. Most of these
studies encode pain from the movement of facial muscles into
a series of AUs, based on FACS. An example of the facial
actions of a person in pain is shown in Figure 2.

In 1992, Prkachin [7] conducted a study on facial expres-
sions and found that four actions - brow lowering (AU4),
orbital tightening (AU6 and AU7), levator contraction (AU9
and AU10) and eye closure (AU43) - carried the bulk of
information about pain. In a recent follow up to this work,
Prkachin and Solomon [8] confirmed these four “core” actions
contained the majority of pain information. They defined pain
as the sum of intensities of brow lowering, orbital tightening,
levator contraction and eye closure. The Prkachin and Solomon
pain scale is defined as:

Pain = AU4 + (AU6||AU7) + (AU9||AU10) + AU43 (1)

That is, the sum of AU4, AU6 or AU7 (whichever is higher),
AU9 or AU10 (whichever is higher) and AU43 to yield a 16-
point scale?. Frames that have an intensity of 1 and higher
are defined as pain. For the example in Figure 2, which has
been coded as AU4B + AU6E + AUTE + AU9E + AU10D +
AU12D+ AU2SE + AU43A, the resulting pain intensity would
be 2454541 = 13. This is because AU4 has an intensity of
2, AU6 and AU7 are both of intensity 5 so just the maximum
is taken, AU9 is of intensity 5 and AU10 is of intensity 4
so again the maximum is taken which is 5, and AU43 is of
intensity 1 (eyes are shut).

The Prkachin and Solomon [8] FACS pain scale is currently
the only metric which can define pain on a frame-by-frame
basis. All frames that were used in this study were coded via
this metric.

Examples from the UNBC-McMaster database, showing the instances of pain and also of head pose variation during the sequence.

TABLE I
Mean and variance of the pitch, yaw and roll parameters of the pain data
relative to the pain metric. N is the number of frames analyzed.

N Pitch Yaw Roll
n | o’ p | o? n | o?
Pain = 0 | 40461 -0.25 | 22.69 | -0.29 | 37.03 | -0.01 | 29.16
Pain >0 | 7937 -0.93 | 2672 | 0.12 | 55.61 | -1.12 | 48.52

B. UNBC-McMaster Shoulder Pain Expression Archive
Database

The UNBC-McMaster Shoulder Pain Expression Archive
database was used for this work. It contains video of the
faces of adult subjects (129 subjects - 63 male, 66 female)
with rotator cuff and other shoulder injuries. Subjects were
recorded during movement of their affected and unaffected
shoulder during active and passive conditions. In the active
condition, subjects initiated shoulder rotation on their own. In
the passive condition, a physiotherapist was responsible for the
movement. In the experiments conducted in this paper, only
the active condition was used. Within the active condition,
tests were performed on both the affected and the unaffected
shoulder to provide within subject control. The camera angle
for these tests were approximately frontal. However, moderate
head motion was common. Video of each trial was rated offline
by a FACS certified coder. To assess inter-observer agreement,
1738 frames selected from one affected-side trial and one
unaffected-side trial of 20 participants were randomly sampled
and independently coded. Intercoder percent agreement as
calculated by the Ekman-Friesen formula [9] was 95%, which
compares favorably with other research in the FACS literature.
For more information on the database, please refer to [8].

From the database, we used 203 sequences from 25 different
subjects. Overall, there were 48,398 frames of data analyzed
and all of these frames were used in our experiments. Out of
this data, according to the pain metric given in the previous
subsection, 83.6% of the frames had a pain score of 0, and
16.4% had frames in which had a person in pain (pain score
> 1). Examples of this data are given in Figure 3. Clearly,
considerable head movement occurs during the sequence. To

2 Action units are scored on a 6-point intensity scale that ranges from 0
(absent) to 5 (maximum intensity). Eye closing (AU43) binary (0 = absent, 1
= present). In FACS terminology, ordinal intensity is denoted by letters rather
than numeric weights, ie., 1 =A,2=B,...5=E.
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Fig. 4. Histograms of the pitch, yaw and roll taken from the 3D AAM parameters across the UNBC-McMaster Shoulder Pain Expression Archive database.

TABLE II
Proportion of frames in which the patient was less than 5, 10, 15 and 20
degrees, as well as greater than 20 degrees from frontal in terms of pitch,
yaw and roll (absolute degrees). N = 40461 for pain score =0 and
N = 7937 for pain score > 1).

Pitch Yaw Roll
Pain No-Pain Pain No-Pain Pain [ No-Pain
<5 deg 81.0% 81.3% 82.2% 75.4% 78.7% 62.6%
<10 deg 95.7% 95.8% 93.6% 93.8% 95.2% 88.5%
<15 deg | 100.0% 99.4% 99.1% 98.5% 99.1% 96.9%
<20 deg | 100.0% 99.9% 99.7% 99.8% 99.8% 99.2%
>20 deg 0.0% 0.1% 0.3% 0.2% 0.2% 0.8%

quantify how much head movement occurred, we used the
3D parameters from the AAM (see Section III-C for details)
to estimate the pitch, yaw and roll. The histograms of these
parameters are shown in Figure 4. As you can see from this
figure, there is quite a bit of variance in terms of the pitch,
yaw and roll. Upon inspection of the data, it appeared that a
lot of head movement occurred when a patient was in pain.
To gauge this relative to the pain score, we have generated
Table I to display the variation in head position as a function
of pain. From this it appears when a patient was in pain (pain
score > 1), the variance of head position for pitch, yaw and
roll was much greater than when a person was not in pain.
In terms of how much variation there was, we have produced
Table II which shows the proportion of frames that differed
from the fully frontal view. As can be seen from this table,
close to 90% were within 10 degrees of being fully frontal
and over 99% were within 20 degrees from the fully frontal
view.

III. AUTOMATIC DETECTION SYSTEM

In our system, we employ an Active Appearance Model
(AAM) based system which uses AAMs to track the face and
extract visual features. We then use support vector machines
(SVMs) to classify individual AUs and pain. An overview of
our system is given in Figure 5. We describe each of these
modules in the following subsections.

A. Active Appearance Models (AAMs)

Active Appearance Models (AAMs) have been shown to
be a good method of aligning a pre-defined linear shape
model that also has linear appearance variation, to a previously
unseen source image containing the object of interest. In
general, AAMs fit their shape and appearance components
through a gradient-descent search, although other optimization
methods have been employed with similar results [19].

The shape s of an AAM [19] is described by a 2D triangu-
lated mesh. In particular, the coordinates of the mesh vertices
define the shape s = [z1,y1,%2,Y2, ..., Tn, Yn|, Where n is
the number of vertices. These vertex locations correspond to a
source appearance image, from which the shape was aligned.
Since AAMs allow linear shape variation, the shape s can be
expressed as a base shape sy plus a linear combination of m
shape vectors s;:

m
s=sp + Zpisi (2
i=1

where the coefficients p = (p1,...,pm)" are the shape
parameters. These shape parameters can typically be divided
into rigid similarity parameters pg and non-rigid object defor-
mation parameters p,, such that p” = [p?, p?]. Similarity
parameters are associated with a geometric similarity trans-
form (i.e. translation, rotation and scale). The object-specific
parameters, are the residual parameters representing non-rigid
geometric variations associated with the determing object
shape (e.g., mouth opening, eyes shutting, etc.). Procrustes
alignment [19] is employed to estimate the base shape sy.

Keyframes within each video sequence were manually la-
belled, while the remaining frames were automatically aligned
using a gradient descent AAM fitting algorithm described in
[20]. Figure 6 shows the AAM in action, with the 68 point
mesh being fitted to the patient’s face in every frame.

T

B. Feature Extraction

Once we have tracked the patient’s face by estimating the
shape and appearance AAM parameters, we can use this
information to derive features from the face. From the initial
work conducted in [14], [21], we extracted the following
features:
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Block diagram of our automatic system. The face is tracked using an AAM and from this we get both shape and appearance features. Both these

features are used for classifying individual AUs using a linear SVM. The SVMs output for the AUs can be fused together using linear logistical regression
(LLR). LLR calibrates the score into a log-likeihood score so that the scores are normalized into the same domain so that they can be combined easily. This

calibration is a supervised process.

o SPTS: The similarity normalized shape, s,,, refers to the
68 vertex points in s,, for both the x- and y- coordinates,
resulting in a raw 136 dimensional feature vector. These
points are the vertex locations after all the rigid geometric
variation (translation, rotation and scale), relative to the
base shape, has been removed. The similarity normalized
shape s,, can be obtained by synthesizing a shape in-
stance of s, using Equation 2, that ignores the similarity
parameters p. An example of the similarity normalized
shape features, SPTS, is given in Figure 6(3rd row).

e SAPP: The similarity normalized shape, a,, refers to
the where all the rigid geometric variation (translation,
rotation and scale) has been removed. It achieves this by
using s,, calculated above and warps the pixels in the
source image with respect to the required translation, ro-
tation and scale. An example of the similarity normalized
shape features, SAPP, is given in Figure 6(4th row). This
is the type of approach is employed by most researchers
[16], [18], as only coarse registration is required (i.e. just
face and eye locations). From viewing the examples, it
can be seen that when head movement is experienced
some of the face is partially occluded which can affect
performance, also some non-facial information (such as
the background) is included due to occlusion.

e CAPP: The canonical normalized appearance a, refers
to where all the non-rigid shape variation has been
normalized with respect to the base shape sg. This is
accomplished by applying a piece-wise affine warp on
each triangle patch appearance in the source image so
that it aligns with the base face shape. For this study, the
resulting 87 x 93 synthesized grayscale image was used.
An example of these features, CAPP, is given in Figure
6(Bottom row).

C. Gaining 3D Information from an AAM

From the 2D shape model we can derive the 3D parameters
using non-rigid structure from motion. If we have a 2D AAM,
a sequence of images I(u) fort = 0, ..., N, and have tracked
through the sequence with the AAM, then denote the AAM
shape parameters at time ¢ by p' = (pi,...,pt,). Using
Equation 2 we can compute the 2D AAM shape vectors s°
for each time t¢:

St:(uzl ub ... ug) 3)

t t
v Uy ... U,

A variety of non-rigid structure-from-motion algorithms
have been proposed to convert the tracked feature points in
Equation 3 into 3D linear shape models. In this work we
stack the 2D AAM shape vectors in all N images into a
measurement matrix:

ud  ud u?
v] vy Up
w=| @)
Wl
S

If this data can be explained by a set of 3D linear shape
modes, then W can be represented as

PO p(l)P0 p%PO So
Pl piPt ... pLP! S1

W = ) ) ) i ) ©)
PN p{VPN p%PN S

which = MB, where M is a 2(N + 1) x 3(m + 1) scaled
projection matrix and B is a 3(m+1) xn shape matrix (setting
the number of 3D vertices n to equal the number of AAM
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Fig. 6. Example of the output of the AAM tracking and the associated shape and appearance features: (Top row) the original sequence, (Second row) the AAM
tracked sequence, (Third row) the similarity normalized shape features (SPTS), (Fourth row) the similarity normalized appearance features (SAPP),(Bottom

row) the canonical normalized appearance features (CAPP).

vertices m). Since m is the number of 3D shape vectors, it is
usually small and the rank of W is at most 3(m + 1).

We perform a Singular Value Decomposition (SVD) on W
and factorize it into the product of a 2(N+1) x 3(m+1) matrix
M and a 3(/m + 1) x n matrix B. This decomposition is not
unique, and is only determined up to a linear transformation.
Any non-singular 3(m+1) x 3(/m+1) matrix G and its inverse
couild be inserted between M and B and their product would
still equal W. The scaled projection matrix M and the shape
vector matrix B are then given by:

MG, and
= GB

(6)

w &
\

where G is the corrective matrix. Once G has been deter-
mined, M and B can be recovered. So to summarize, given
that we have the 2D tracking results, the 3D shape modes
can be computed from the 2D AAM shape modes and the 2D
AAM tracking results. See [22] for full details.

D. Support Vector Machine Classification

Support vector machines (SVMs) have been proven useful
in a number of pattern recognition tasks including face and
facial action recognition. SVMs attempt to find the hyperplane
that maximizes the margin between positive and negative
observations for a specified class. A linear SVM classification
decision is made for an unlabeled test observation x* by,

T *

wix >true b

@)
<false

where w is the vector normal to the separating hyperplane
and b is the bias. Both w and b are estimated so that they
minimize the structural risk of a train-set, thus avoiding the
possibility of overfitting to the training data. Typically, w is
not defined explicitly, but through a linear sum of support
vectors. A linear kernel was used in our experiments due to
its ability to generalize well to unseen data in many pattern
recognition tasks [23]. LIBSVM was used for the training and
testing of SVMs [24].

E. Fusion of Scores Using Linear Logistical Regression (LLR)

In classification, a decision is based on a score from a
classifier such as a SVM. In the case of the SVM the score
relates to the distance from the decision hyperplane, which
works well for a single decision. However, these scores have
no real meaning when comparing them from different SVMs.
As such, comparing or combining these scores does not make
sense and can lead to erroneous results. Calibrating the scores
into a common domain is required so that comparisons and
fusion can take place. Logistical linear regression is one
method of doing this [25].

Given we have NN AU detectors with output scores
(s1,82,...,8n), LLR calibrates all the individual scores
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through learning the weights (ag, a1, -..,an) via logistic re-
gression so that Fiy = ag+a1S81+az2s2+...+ansn, where the
constant ag improves the calibration through regularization.

To train the weights, a set of supervised training scores and
an objective function needs to be set. In [25], they used a
logistic regression objective that is normalized with respect
to the proportion of positive examples to negative examples
(K : L), which are weighted to the synthetic prior P = 0.5
3. The objective is stated in terms of a cost, which must be
minimized:

P& ,
Cwlr = ? Z ]Og(l + e—fj—logltP) (8)
j=1
1-prP& .
e D log (14 e e

Jj=1

where the fused target and non-target scores are respectively:

N N
fj:a0+zai5ij7gj:a0+zairij €))
i=1 i=1

and where P
logit P = log TP

and s;; is an N by K matrix of scores that each of the N
component systems calculated for each of the K target trails,
and r;; is an N by L matrix of scores that each of the N
component systems calculated for each of the L non-target
trials.

The fused score f is then used for detection. The FoCal
package was used for calibrating and fusing the various AU
SVM scores together using LLR [25].

(10)

F. Performance Measurement

In all experiments conducted, a leave-one-subject-out strat-
egy was used and each AU and pain detector was trained
using positive examples which consisted of the frames that the
FACS coder labelled containing that particular AU (regardless
of intensity, i.e. A-E) or pain intensity of 1 or more. The
negative examples consisted of all the other frames that were
not labelled with that particular AU or had a pain intensity of
0.

In order to predict whether or not a video frame contained
an AU or pain, the output score from the SVM was used. As
there are many more frames with no behavior of interest than
frames of interest, the overall agreement between correctly
classified frames can skew the results somewhat. As such we
used the receiver-operator characteristic (ROC) curve, which
is a more reliable performance measure. This curve is obtained
by plotting the hit-rate (true positives) against the false alarm
rate (false positives) as the decision threshold varies. From the
ROC curves, we used the area under the ROC curve (A’), to
assess the performance. The A’ metric ranges from 50 (pure

3The value of P has a small effect and 0.5 is a reasonable choice for the
task of AU and pain detection.

TABLE III
Results showing the area underneath the ROC curve for the
similarity-normalized shape (SPTS) and appearance (SAPP) as well as the
canonical appearance (CAPP) features. Note the average is a weighted one,
depending on the number of positive examples.

AU | N | sp1s SAPP CAPP

4 1074 [ 678+14 459+15 477415
6 5612 | 78.9+0.6 794+05 838+05
7 3366 | 66.3+08 66.1+£0.8 68.0£038
9 423 | 534+24 765+21 87.3+16
10 525 | 804+1.7 857+15 73.0+19
12 [ 6956 | 785405 79.1+0.5 82.8+05
20 706 | 69.3+1.7 564+19 58.0+19
25 | 2433 [ 747+09 632+10 656+1.0
26 [ 2199 [ 52.7+11 558+11 554+1.1
43 [ 2454 | 89.94+06 788+0.8 88.3+07
AVG | [ 744408 720+08 753+038

chance) to 100 (ideal classification)*. An upper-bound on the

uncertainty of the A’ statistic was obtained using the formula
A’(100—A’)
min {np,nn,}

and negative examples [26], [18].

5 = where n,,n,, are the number of positive

IV. SPONTANEOUS ACTION UNIT DETECTION
A. AU Detection Results

We conducted detection for ten AUs (4, 6, 7, 9, 10, 12, 20,
25, 26 and 43)5. The results for the AU detection with respect
to the similarity-normalized shape (SPTS) and appearance
(SAPP) and the canonical appearance (CAPP) features are
shown in Table III. In terms of the overall average accuracy of
the AU detection (bottom line of the table), the SAPP (72.0)
features performed worse than the SPTS (74.4) and the CAPP
(75.3) features. The differences may not be large, but they
are significantly significant (p < 0.05). This result is quite
interesting because in the majority of works conducted in the
field (see Section 1.B) have used these features for AU and
emotion detection. However, it is not surprising as the pain
data used in these experiments contains quite a bit of head
motion which corresponds to poor image registration as can be
seen in Figure 6 (fourth row). Conversely, it is not surprising
that the CAPP features achieved the best performance as they
couple together both the shape and appearance representations.
This synthesized view captures both the geometric and shape
features of the face so that no non-face information is incor-
porated in the representation. It must be noted though that for
the majority of the time the patient’s were relatively frontal
(£20°), so that is why the results for the SAPP were as close
as they were.

In terms of individual AU detection, it can be seen depend-
ing on the AU, the best performing feature set varies. When
comparing SPTS and SAPP, the SPTS features yielded the
higher detection rates for AUs 4, 20, 25 and 43. Conversely, for

4In literature, the A’ metric varies from 0.5 to 1, but for this work we have
multiplied the metric by 100 for improved readability of results

SThese AUs had more than 20 frames coded, all other AUs with less than
this were omitted due to lack of sufficient training data).
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The performance of the various features for the task of pain detection (blue = single features, red = fused 2 features, green = fuse all 3 features).

The upper-bound error for all feature sets varied from approximately +0.67 to 0.80.

TABLE IV
Results showing the area underneath the ROC curve for the combination of
the similarity-normalized shape (SPTS) and appearance (SAPP) and
canonical appearance (CAPP) features using LLR fusion. Note the average
is a weighted one, depending on the number of positive examples.

AU SPTS+SAPP  SAPP+CAPP  SPTS+CAPP ALL

4 50.7+1.5 479+1.5 48.5+ 1.5 53.7+1.5
6 85.5+0.5 82.9+0.5 85.9+0.5 86.2+0.5
7 67.8+0.8 69.1 £0.8 68.5 +0.8 70.0£0.8
9 80.0 £ 2.0 70.1+2.2 71.3+22 79.8+2.0
10 63.3+2.1 75.5+ 1.9 781+1.8 75.4+19
12 83.6 £ 0.5 82.4+0.5 83.8+0.4 85.6 £0.4
20 54.6+1.9 67.1+1.8 67.8+1.8 66.8+1.8
25 56.0£1.0 73.2+£0.9 64.0£1.0 73.3+0.9
26 53.5+1.1 52.7+1.1 522+1.1 52.3+1.1
43 85.5+0.7 88.0 £ 0.7 91.9+0.6 90.9 £+ 0.6
AVG 74.3 £0.8 75.7+0.8 76.2+0.7 78.0+0.7

AUs 9 and 10 where the SAPP features obtained significantly
better performance. The other AUs, 6, 7 and 12 achieved
comparable rates. Other than the poor registration of the SAPP
features, another explanation of these results can stem from the
AAM 2-D mesh. For AU4 (brow lowering), 20 (lip stretcher),
25 (lips part) and 43 (eye closing), the areas of the face in
which movement pertaining to these AUs occurs lie on the 2-
D mesh. So it is intuitive that the most discriminating features
for these actions would relate to the shape features. For AUs
9 (nose wrinkler) and 10 (lip raiser), these correspond with
a lot of textural change in terms of wrinkles and not so
much in terms of contour movement, which would suggest
why the SAPP features performed better than the SPTS for
these even with the poor registration. Though again we see the
benefit of the canonical view where the textural features are
synthesized back to the base mesh where most AU obtained
an improvement in performance (although there seems some
degradation with AU10, which suggests that the AAM misses
important information around the upper lip when transforming
the appearance back to the base mesh, also with AU4 where
the mask used sometimes cuts off the top of the eyebrows).
These results are backed up by the experience of human
FACS coders, where the relative importance of shape and
appearance varies with type of AU. Specific examples are
that of brow lowering (AU 4), where FACS coders look for

strong changes in shape and variable changes in appearance.
The mixed contribution of appearance features results from
individual differences in facial furrows and wrinkles. Some
people have a smooth brow at rest, while others have per-
manent facial furrows of different intensity and shape. Such
individual differences can complicate the use of appearance
features for AU detection. Cheek raising (AU 6), on the other
hand, produces changes in shape that are easily confusable
with closely related actions (AU 7 especially). Thus, the
information value of shape or appearance for human FACS
coders varies by action unit.

From these results, it would seem that there exists compli-
mentary information in all the AAM representations. To test
this hypothesis, we fused all these features together using LLR
fusion [25]. The results are given in Table IV. As can be seen
from the results this seems to be the case as the fusion of all
the AAM representations yields the best performance. Again
the difference is not great but is significant at p < 0.05 when
comparing them across all combinations.

The improvement is rather more pronounced when you
compare the fusion of all representations (ALL) result to just
the SPTS in Table III, where the difference is 6.0 (72.0 vs
78.0), which suggests that applying an AAM approach for
spontaneous AU detection would yield better performance than
current methods used today, which is intuitive and backs up
literature suggesting as much [18].

V. AUTOMATIC PAIN DETECTION

The results for automatically detecting pain are given in
Figure 7, which shows a clearer view of the trend we observed
in the AU detection results in Section IV.A. For the individ-
ual feature sets (in blue) we see the SAPP (75.1) features
achieving the lowest performance rate, followed by the SPTS
(76.9) and then the CAPP (80.9) features again yielding the
best results.

When we combine the different feature sets (in red), we
again see the benefit of fusing the various representations
together showing that there exists complimentary information
(although the SAPP+CAPP features is slightly lower than
the CAPP features). This is highlighted by when all three
representations are fused together (in green). This result is
very significant when we compare the similarity-normalized
features (SAPP) which most researchers use and compare them
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(Top) the frames which coincide with actions of interest, namely: (a) frame 1, (b) frame 101, (c) frame 125, (d) frame 160, (e) frame 210, (f) frame

260 and (g) frame 277. (Middle) The frame-level FACS coded pain intensity defined by Prkachin and Solomon (as described in Section II.A.). (Bottom) The
output scores from the SVM for the combined AAM feature where the horizontal red line denotes the threshold which the scores have to be above for the

patient to be deemed to be in pain.

to the combined AAM representations as an improvement
of nearly 10% in the area underneath the ROC curve is
achieved (75.1 vs 84.7). This highlights the importance of
good registration when dealing with spontaneous expressions.

In terms of the relevance to the task of pain detection, these
results raise some very interesting issues. The most important
one is of context. If this system is going to be used for a patient
who is mobile and expresses a broad gamut of emotions, the
current system will be of little use as the painful facial actions
are easily confused with other emotions (such as sadness, fear
and surprise). For this to occur, a very large dataset which is
captured in conditions that are indicative of the behavior to
be expected in addition to being accurately coded needs to
be collected. However, if the context is very limited (such as
pain/no-pain), then this proposed system would be of use. An
example would be in a hospital setting (such as an ICU ward)
where the patient is severely impaired, with limited ability to
express emotions other than pain/no-pain. This system would
then be able to automatically monitor when a patient is in
distress and alert care-givers to these periods.

This scenario raises the issue of accuracy, and how much
pain does a person have to be in for this to trigger an alert.
An example of this is shown in Figure 8, where we see that

our system can easily detect the period (frames 90-140) when
the person is in major pain (i.e. pain intensity > 10) but for
the more subtle pain intensities the decision is still rather
ambiguous. However, this may not be important though as
intensities of 10 and greater may only be required. So in this
context, the application of this system would be of much use,
but it is very hard to estimate what would be required in a
clinical setting without trailing it.

Another issue is the requirement of the detection in terms
of timing accuracy. In our system presented here, we detect
pain at every frame. However, at what level does this need to
be accurate at - milliseconds, seconds or minutes? Again this
is depends on the context in which this system will be used.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have looked at automatically detecting
pain at a frame-by-frame level based on facial action units.
For this work we used the UNBC-McMaster database which
contains patients with shoulder injuries portraying real or
spontaneous pain. A major challenge associated with this was
the problem of major facial deformation and head motion
caused by the pain, which makes registering the face and facial
features a challenging one. This is quite problematic using the
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common approach of registering the face via the similarity-
transform (normalize for scale, rotation and translation), as the
subsequent features miss some important facial information.
We have shown this for both AU and pain detection and we
show that this can be somewhat overcome by using an AAM
approach we can yield significant improvements in terms of
area underneath the ROC curve (72.0 vs 78.0 for average AU
detection and 75.1 vs 84.7 for pain detection).

The importance of having a system which can automatically
detect pain is very important as it could greatly improve the
efficiency and overheads associated with monitoring patient
progress in a hospital setting. To this end, we have also raised
the issue of context and where it would be practical to use
such a system and what it would detect (only pain of intensity
> 10) and how it would report it (i.e. second, minutes etc.).

As we have noted on several occasions throughout the paper,
head motion is a common occurrence though out the dataset.
Howeyver, it is also indicative of someone in distress. In future
work we plan to look at using this as a key future in detecting
pain. In addition to this, we hope to look at other modes of
information that can be quantified such as eye gaze and body
movement (guarding and restlessness). Measuring the overall
expressiveness as a combination of these modes maybe the
next step in gaining a more robust and accurate objective
of pain. The utilization of the system where a patient is in
bed needs to be examined as well. This introduces added
complexities as the face will be also partially occluded due to
the angle of the patient’s face to the camera. Using techniques
like those described in this paper suggest a potential solution.
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