16-785: Integrated Intelligence in
Robotics: Vision, Language, and Planning

Spring 2019

Deep Learning Basics

Overview

* Deep learning basics
— Preliminaries
— Feed forward networks

* Reference
— Deep Learning (2017), Ch. 2-10
lan Goodfellow, Yoshua Bengio, and Aaron Courville, The MIT Press
http://www.deeplearningbook.org/
— Pattern Classification, The 2nd Edition (2000), Ch. 6
Richard Duda, Peter E. Hart, David G. Stork
http://cns-classes.bu.edu/cn550/Readings/duda-etal-00.pdf

2/11/19 CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

http://www.deeplearningbook.org/
http://cns-classes.bu.edu/cn550/Readings/duda-etal-00.pdf

Gradient-based optimization

* Minimizing f(x) by changing x
* Objective function f(x)

= Criterion

= Cost function

= Loss function

= Error function

Gradient

o f(x) = f(xq,%2,...., %) multiple input variables
 Partial derivative —f(x) : How f(x) changes w.r.t. only x;

» Gradient 0%,
Vector of partial derivatives for all x;

Vf(X)-[—f(X) —f(x),.. o f(X), 2 f(x))

0x,

l i’l

Critical points: where all elements of gradient = 0

Jacobian matrix

f(x) = 1(xq,%5,...,X): multiple input variables

Partial derivative if(x): How f(x) changes w.r.t. only x.
. X;

Gradient V. f(x) - Vector of partial derivatives for all x;

V. f(x)=

Multiple inputs, multiple outputs |
— f:R™ > Rn

9
, , Jo=| d =2).
— Jacobian matrix J; 4 S o,

f(x)

f'(x) <0
Move x to the rig

ht

Gradient descent

[Cauchy 1847]

Find x that minimizes f(x)

)2 lim L G =)
h

h—0

f'(x) >0
Move x to the left

X

f'(x) =0
Global minimum; gradient descent stops here.

Gradient descent

[Cauchy 1847]

* f(x) is descended when moving x in the
negative direction of the gradient

x'=x—-€V_f(x)

Maximum Likelihood Estimation

* mi.i.d. examples: X ={x{), ..., xm}
* DgatalX): true probability distribution

* Pmodel(X;0): parameterized probability model
estimating true py,(X)

0,, =argmaxp (X;0)= argmaxn p (x;0)
P model P - model

Maximum Likelihood Estimation

m
HML = argmaxl_[pmodd (x(’);H) Numerical underflow
0 :
i=1

Maximum Likelihood Estimation
QML = argrglaxl:l[pmodd (x(i);H) Numerical underflow

m
= argmax E logp dl(x(i);H) Logarithm: product = sum
0 : moae
i=1

Maximum Likelihood Estimation
QML = argrglaxl:l[pmodd (x(i);H) Numerical underflow

m
= argmax E logp dl(x(i);H) Logarithm: product = sum
0 : moae
i=1

= argrenax ExNﬁdam log pmodel (X;H) Expectation

Gradient-based learning

* Optimization — Minimizing loss
* Loss function: commonly, maximum likelihood

— Negative log-likelihood

— Cross-entropy between training data & model
distribution

JO)=-E,, , 102p,..(y1x5:60)

Deep Feedforward Networks

* Ak.a. Multilayer perceptron (MLP)

» Function approximation machines
— Detines a mapping y = f(x; 6)

— Learns the values of 8 that best approximate the
function

» Feedforward (as opposed to recurrent):
information tlows from input to output
(without feedback loop)

Deep Feedforward Networks

Example

e f(x) = fOFA(H(x))) is represented as a network of 3
functions fV f2 {3 connected in a chain

f(x) = fFE(ENE)))

Input

st
1 layer } Hidden layers because

d
2" layer values are not observed
Output layer from training data

Exclusive OR (XOR)

* X ={[OIO]TI [011]TI ['I IO]TI [111]-'_} [XW’XZ]T
e Y={ O, 1, 1, 0 1}

X2
1o o

XOR as regression

[laValals I’Y\f\f“lc
CTrroeuUur rrrouaus

f(60)=flaw,b)=x"w+b W=0.0b=05

* Mean Squared Error (MSE) loss function

J(6)=%E(f*(x)—f(x;0))2 Minimize loss J(O)

xeX

2-layer neural network

* 1 hidden layer with 2 hidden units

Width: number of hidden units, |h|
Depth: number of layers in the network

Explicit representation

2-layer neural network

* 1 hidden layer with 2 hidden units

Explicit representation

2-layer neural network

* 1 hidden layer with 2 hidden units

Explicit representation

2-layer neural network

* 1 hidden layer with 2 hidden units

fO; W, ¢, w, b) = fO(fN(x))
Last|output (279) layer

() y = s w; b)

Wio Wao| Vector |h| W 15t hidden layer
h, @ h=fWOx; W, c)

Wi>Wjs i
Wor Wo Matrix |x|X|h| W Input Iayer
XJ X) x4, xz]T

Explicit representation Compact representation

Hidden layer function

Affine transformation of input x

h= Wlx +c
linear bias

Hidden layer function

Affine transformation + nonlinear activation function g

h=g(W'x +c)

nonlinear

Cost function

e Gradient of the cost function must be
large and predictable

» Saturating functions (becoming flat) is
prOblemat|C beCause gl’adleﬂt becomes very small

— E.g., Sigmoid function f

Cross-entropy cost function

e Most commonly used

 Training using maximum likelihood
= Cost function is negative log-likelihood

= Cross-entropy between training data & model
distribution

JO)=-E,, , 102p,..(y1x5:60)

Output units

e Linear units for Gaussian distributions
« Sigmoid units for binary-class distributions
e Softmax units for multi-class distributions

exp(x;)

. exp(x;)

soft max(x), =

Hidden units

_ogistic sigmoid activation function
Hyperbolic tangent activation function

RelLU

Hidden layer function

e.g., ReLU g(z) = max{0, z}

Affine transformation + nonlinear activation function g

h=g(W'x +c)

Rectitied Linear Unit (ReLU)

[Jarette et al., 2009]

g(z) = max{0, z}

g(z) = max{0, z}

h=g(W'x +c)

I
0

Affine transformation +
nonlinear activation function g

[Deeplearning Fig. 6.3]

Architecture design

» Decide on the number of units, the depth
of network, and how units should be

connected to each other

» Experimentation and tuning with
validation set

Network design

Cost function
Output units
Hidden units
Architecture

Two modes of network

» Feedforward: Predicting the values of
output variables

* Learning: Training the values of network
parameters
— E.g., using backpropagation

Forward path: e.g., XOR

S W,oc, w, b) =P (g(f (V(x)))

=wlmax{0, Wix+c}+b

Forward path: e.g., XOR

0 W)=/) - W O IR

w=[1 1] x=[oor17 pro[! 1[00]1}:[0112}
0101 I 1L01 01 0112

Start

Back-propagation

with untrained network

Given example X 2 Y
Pass example input X through the network

Com
Com
Com
Com

oute the predicted output Z at the output layer
oare the prediction Z with true output Y
oute error (loss) between Zand Y

oute gradients for network parameters

Adjust network parameters to reduce the error using
gradient descent

Back-propagation

* Loss function J(w)

* At each iteration m, update network weights w
dJ

w(m+1)=w(m)+Vw(m) where Vy = a
w

Learning rate

Computation graph

* Node represents variable of type scalar,
vector, matrix, tensor, etc.

» Operator takes input nodes (variables)
and returns output variable

Examples of computational graphs

z ='xy Logistric regression
y =0(wx + b)

[DL Fig 6.8]

Chain rule of calculus

z = f(y) z = f(g(x))
y = 9(x) a_Z)

0x

X,y InR
f:R=>R
g:R=2>R

xinR™ yinR"
fiR" >R
g: Rm—> Rn

Chain rule of calculus

z = 1(y) z = f(g(x)) x,yinR

y = 9x) FR>R
82=828y 2 RS> R
ox dy ox
a_Z=EaZ %Y, xin RM, yin Rr
ébcl. = Byj axi £fR">R

g: Rm - Rn

Chain rule of calculus

z = 1(y) z = f(g(x)) x,yinR
y = g(x) fR=2>R
82=828y 2R >R
ox dy ox
a_Z=EaZ %Y, xin RM, yin Rr
ox, ay. 0x. fRP>R
g: Rm - Rn
d
Vz= (ay) VyZ —— Gradient vector of f
X

— n x m Jacobian matrix of g

Chain rule applied to tensors

Tensor X, Y
z = f(Y)
Y = g(X)

Gradient of a value z w.r.t. a tensor X

0z
V. z= E(VXYJ.)G—Y
J J

(VXZ)Z. Abstracting tensor indices into single variable i

Simple forward propagation

Assume that nodes have been sorted in the order of computation

for:=1,...,n do
ul®) — gz
end for

Pa(u(3)) = { ulh u@ }

Input of length n;
Single scalar u @

u®) f('i) (A(i))
end for

fori=n;+1,...,ndo
AD (u0) | j € Pa(u®)} G) ()

parents

return u\™
[DL Algorithm 6.1]

Simple backpropagation

Run forward propagation (algorithm 6.1 for this example) to obtain the activa-
tions of the network.
Initialize grad_table, a data structure that will store the derivatives that have

been computed. The entry grad_table[u(i)] will store the computed value of
Au(™)

aul®
grad table[u™] < 1
for) =n —1down to 1 do i: children of |

: (n u(™) 5y (D)
The next line computes %J— D _ijePa(u®) gu(z) g 5y using stored values:

grad_table[u(j)] — Zi:jePa(u(*)) grad table[u(z)]%
end for

return {grad table[u®]|i=1,...,n;} [DL Algorithm 6.2]

Forward propagation

Require: Network depth, [

Require: W@ i ¢ {1,...,1}, the weight matrices of the model
Require: b(%),i € {1,...,1}, the bias parameters of the model
Require: x, the input to process

Require: vy, the target output

h0) =z Input layer
fork=1,...,ldo N ; : "
_ k-1 ine transformation .
a® =p®) + WkRED }Hldden layers

h®) = f(a®) Activation function
end for
g — O Output layer
J = L(§,y) + A\2(6) Loss + regularizer

[DL Algorithm 6.3]

Back-propagation

After the forward computation, compute the gradient on the output layer:

g VyJ = VyL(@,y)

fork=10,l—-1,...,1do
Convert the gradient on the layer’s output into a gradient into the pre-
nonlinearity activation (element-wise multiplication if f is element-wise):
g+ V, /=90 f'(a®) al) = bk + \Wkhk-1)
Compute gradients on weights and biases (including the regularization term,
where needed):
Vb(k)'] =g+ AV Hk) Q(g)
VigwJ =g hE=DT LAV 0, Q(6)
Propagate the gradients w.r.t. the next lower-level hidden layer’s activations:
g+ Vpr1nJ = wkT g

end for [DL Algorithm 6.4]

Symbolic representations

« Symbol-to-number differentiation
— Computational graph + a set of numerical values
— Torch
— Caffe

* Symbol-to-symbol derivatives

— Computational % raph + symbolic refpresentatlon of
derivatives (enables computation of higher derivatives)

— Theano
— TensorFlow

Computation graph for 1-layer MLP

i,J

J = JMLE + A (Z (W) Ly (WS)Y) (6.56)
i

Weight decay regularizer
st prefers: smaller weights

Figure 6.11: The computational graph used to compute the cost to train our example of a
single-layer MLP using the cross-entropy loss and weight decay. [D I_ Ch 6 5 7]

General back-propagation

get_operation(V): returns the operation
that computes V, e.g., function pointer

get_consumers(V, G): returns children of
node V in computational graph G

get_inputs(V, G): returns parents of V in G

op.bprop (1nputs)

V, z= E(V Y)—

op. f(lnputs)

General back-propagation outer loop

Algorithm 6.5 The outermost skeleton of the back-propagation algorithm. This

portion does simple setup and cleanup work. Most of the important work happens
in the build_grad subroutine of algorithm 6.6

Require: T, the target set of variables whose gradients must be computed.
Require: G, the computational graph
Require: z, the variable to be differentiated
Let G’ be G pruned to contain only nodes that are ancestors of z and descendents
of nodes in T.
Initialize grad_table, a data structure associating tensors to their gradients
grad table[z] + 1
for Vin T do
build grad(V,G,G’,grad table)
end for
Return grad_table restricted to T

General back-propagation inner loop

Algorithm 6.6 The inner loop subroutine build grad(V,G,G,grad table) of
the back-propagation algorithm, called by the back-propagation algorithm defined
in algorithm 6.5.

Require: V, the variable whose gradient should be added to G and grad_table
Require: G, the graph to modify
Require: G, the restriction of G to nodes that participate in the gradient
Require: grad_table, a data structure mapping nodes to their gradients
if V is in grad_table then
Return grad table[V] Avoid redundant com P utation
end if
11 .
for C in get consumers(V,G) do children
op ¢ get_operation(C)
D < build grad(C,G,G’,grad table)

G® « op.bprop(get _inputs(C,g),V,D) PreNts V = V. Y _aZ
i i+1 x4 = (X)
J
end for J ayv]
G+, GO op.f (inputs)

grad table[V]| =G
Insert G and the operations creating it into G
Return G

Computational cost ot backprop

» Forward propagation stage:
— O(number of weights) matrix multiplications

» Backward propagation state:
— O(number of weights) matrix multiplications

— Memory cost O(mn}) where m is the number
of examples in minibatch; n;,, number of
hidden units

yperparameters & validation sets

* Tuning parameters that we can use to control
learning algorithms

» Setting that is inappropriate to learn from
training set

* Validation sets: part of training data, e.g., 80%
training set for learning model parameters, 20%
validation set for tuning hyperparameters

Imagimnput
iImage comyg 92,768
oixels in full neural

1etwork

Convolutional

Convolutional networks [LeCun 1989]

are neural networks for processing data
shaped in grid-like topology that use
convolution in place of matrix multiplication
in some layers.

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 55

Convolution

Convolution is an operator between two functions f and g of a real-
valued argument t, defining an integral of piece-wise multiplication of
f and g as one of the functions, g, is shifted over the other function f

e.g., fis noisy sensor reading; g is a weighting function, s(t) = f*g(t) is
weighted average of sensor reading—higher weights for recent

readings
9

Continuous functions

t

s()=(f*8)t)= | f()g(t—i)di

age shift over values of t
CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 56

Convolution

Convolution is an operator between two functions f and g of a real-
valued argument t, defining an integral of piece-wise multiplication of
f and g as one of the functions, g, is shifted over the other function f

e.g., fis noisy sensor reading; g is a weighting function, s(t) = f*g(t) is
weighted average of sensor reading—higher weights for recent
readings

g /’
/

Continuous functions

t

s()=(f*8)t)= | f()g(t—i)di

age shift over values of t
CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 57

Convolution

Convolution is an operator between two functions f and g of a real-
valued argument t, defining a sum of piece-wise multiplication of
and g as one of the functions, g, is shifted over the other function f

e.g., fis noisy sensor reading; g is a weighting function, s(t) = f*g(t) is
weighted average of sensor reading—higher weights for recent

readings
ga

° Discrete functions
P A
[] []

(J
/D W

L . el i

t

s()=(f*e)t)="Y f(Dglt-i)

-® age shift over values of t
CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

58

Convolution in CNNs

Convolution is an operator between input (data) tensor | and kernel
(parameters) tensor K of multiple real-valued arguments, defining a
sum of piece-wise multiplication of | and K as the kernel K'is shifted
over input data |

e.g., 2-D image input data
input

SG,)= I* K)G,)= %%I(m,n)K(i—m,j—n)

kernel _ _ .
shift over values of i and j

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 59

Convolution is commutative

Convolution is an operator between input (data) tensor | and kernel
(parameters) tensor K of multiple real-valued arguments, defining a
sum of piece-wise multiplication of | and K as the kernel K'is shifted
over input data |

e.g., 2-D image input data

input
SG,)= I* K)G,)= %éam K (@i—-m, j-n)
cermne| shift over values of i and j
kernel \L
S(i, j) = (K *I)(i,) = 221(1 m, j = n)K (m,n)
input Kernel is flipped

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

60

Cross-correlation of convolution

Commonly also referred to as “convolution”

INput T T
S, j)= (IEK)(z j)= EEI(Hm j+n)K(m,n)

kernel Kernel is not flipped

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 61

Kernel
c d
w x
g h
Yy z
k l

Example of 2-D
convolution

Output Feature map

[Fig 9.2]

-

Piece-wise multiplication

aw br + bw + ecx + cw + dzx
ey fz fy + gz gy + hz
ew fr + fw + gr + gw + hz
1y jz Jjy + kz ky + Iz

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

Properties of convolution in neural networks

* Sparse interactions
» Parameter sharing
* Equivariant representations

Sparse interactions

Convolution

O(k x n)

n outputs

Matrix multiplication
O(m x n)

Output nodes affected by input

m inputs node x;
[Fig. 9.2]

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 64

Sparse interactions

Matrix multiplication
O(m x n)

Input notes affecting

output node s;3

[Fig. 9.3]
CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 65

Sparse interactions

Convolution

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

66

Parameter sharing

o¥o¥o
OO

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

“Tied” weights
= Used once

040
ORO

67

Parameter sharing

Learn weights once
= Used for every location

Reduce memory
° requirement for storing
parameters
“Tied” weights
OO0 OO
[Fig 9.5]

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

68

Equivariant to translation

Function f(x) is equivariant to function g if:

f(g(x)=g(f(x)

Convolution is equivariant to translation,
i.e., if the input changes, the output
changes the same way.

Equivariant to translation

Convolution f is equivariant to translation function g if:

f(g(x)=g(f(x)

ol70] 0
60 | 50 | 80 i

ol 7o o] o]70

1 18] 1 0 |10 80

61 5| 8 0 | 0 | 50

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

Equivariant to translation

Convolution f is equivariant to translation function g if:

f(g(x)=g(f(x)

O[70]| O
com 10180 | 10 g(x,y)=input(x-1,y)
60 | 50 | 80 —
Ol 71O O O |70
1 8 1 O [10| 80
6| 5| 8 olo| 7 O [60 | 50
—~— Sl o1 s —
glx,y)=input(x-1,y) 5 T2 : convolution 10

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 71

Components of convolutional layer

Output

4

Convolutional layer

Pooling stage Popling function: to
A refine the output

Detection stage:
Nonlinearity
e.g., RelLU

A

Convolution stage:
Affine transformation

A

Input
CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

72

Pooling

POOLING STAGE

No¥oroVcl
TS

DETECTOR STAGE

Max pooling [Zhou & Chellappa, 1988]: report the
maximum output among a rectangular neighborhood

Average pooling
L2 norm pooling
Weighted average pooling

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

73

Pooling over spatial regions

Invariance to translation (small shift)

POOLING STAGE

y’ AT 5%"
~- OO

DETECTOR STAGE

POOLING STAGE

ojoyoYoll
[ORC)}

DETECTOR STAGE
CMU 16-785: Integrated Intelligence in Robotics

(jeanoh@cmu.edu)

.

e
:

[Fig 9.8]

74

Pooling over features

Invariance to features, e.g., rotation

Large response
in pooling unit
Large

response

Large response
in pooling unit

in detector

Large
response

Max pooling

in detector
unit 3

T

b | 5|s| b5«
}
b

Nt/ Nt/

<

[fig 9.9]

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

75

Pooling also provides

Invariance to translation or other transformations

Efficiency via downsampling—i.e., fewer pooling units than
detection units

Support for variable-size input by varying the size of offset
between pooling regions to meet fixed size output

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 76

Convolution with a stride

@\ /®\ O

/ Computationally

Convolution
o \()/ \‘ ’/ wasteful

[Fig 9.12]

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 77

Convolution with a stride

Q Q O

Strided
convolution

OBOHE

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

78

Convolution with a stride

Q Q O

Strided
convolution

o) cXoXolfo

Stride of size 2

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

79

Zero paddmg

Convolution shrinks the network size

000 HOOOOOOOOOOOOOOLLe®

%&OOOOOOOOO%&.

% %ooooooooooo%

X -%o Yolololclelclololele o&o
044&\ oo// c%bocooooooooo// o%o

%M&DO C% %OOOOOOOOOOO% &

A

C&%OOOO%&O C%O&OOOOOOOOOO%O&

No zero padding, Full zero padding,

valid convolution same convolution
CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

80

Example: Image classification

AlexNet [Krizhevsky et al., 2012]

* ImageNet Large-Scale Visual Recognition Challenge
(ILSVRCQ): 1.2I\§?training, 50K validation, and 150K
testing images

« Fixed-size input

« 5 Convolutional layers + 3 fully connected layers

« 2 GPUs

« 1000 classes image classification

* Reducing overfitting by:

— Data augmentation (image translation, horizontal
reflection, intensity alteration using PCA)

- g)rS(;pout (zero out output with some probability, e.g.,

AlexNet

[Krizhevsky et al., 2012]

- ‘"::‘f‘?\t, AN~
| I — 1L {1 A
QH 3| U= ' 13 dense’| |dense€]

192 192 128 Max

Input: 224x224x3 (RGB)

204 >04g \dense

=
©
N
-
N
@
N
S
N
o
B

1000

.) o7 Zas
224\l Stride Max 128 Max pooling
pooling pooling

Softmax over
1000 classes

[Fig 3]
CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

82

Reqgularization

Any modification we make to a learning
algorithm to reduce “generalization error” as
opposed to “training error”

Parameter norm penalties

* L2 norm regularization (aka Tikhonov
regularization or ridge regression)

2(6)= 3|

* L' norm regularization
o)== 3,

Data augmentation

Train on more data

Invariant to various transformations

Effective in image classification, object recognition
But not for all problem domains

Examples
— Rotation

— Horizontal, vertical flip
— Translation

e—e Training set loss

0.15H —— Validation set loss |

-
;
0.05 E
0.00 i L
0 50 100 150 200 250

Time (epochs) [F|g 7/ 3]

1

Loss (negative log-likelihood)
o
[
o
)

-

Early stopping

While training error is
decreased, validation
error may go up due

to overfitting

During training, keep track of the parameters
that give the lowest validation error, return

them at the end

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 86

Batch normalization

[loffe & Szegedy, 2015]

* Internal covariance shift: the distribution of input
to each layer changes as the parameters of
previous layer changes

» Normalize layer inputs for each mini-batch

« Advantages:
— higher learning rate, faster training
— No dropout needed
— Accepted as part of common architecture

Other methods tor regularization

Noise injection, label smoothing
Parameter sharing
— CNN

Bootstrapping aggregating (aka bagging) —
ensemble or model averaging
Dropout [Srivastava et al., 2014]

— Ignore random output with some probability,
meaning not used for learning at all

— Popular earlier but not so much currently

Recurrent Neural Networks

Whereas CNNs process a grid of values,
Recurrent neural networks (RNNs)
(Rumelhart et al., 1986) model and process
sequential data.

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

90

Processing sequential data

QOO0 =
O OO0 m

In 1-D CNN, an output is a function of neighboring inputs

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 91

Processing sequential data

QOO0 =
O OO0 m

In 1-D CNN, an output is a function of neighboring inputs

O
OO O

In RNN, an output is a function of current input & previous output

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

92

RNN for processing sequence

Recurrent connection: indicates
interaction between current & 1 time
step before

f ht :f(t-], xt}- H)

In RNN, an output is a function of current input & previous output

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

93

RNN for processing sequence

Recurrent connection: indicates
interaction between current & 1 time
step before

f 7 ht =1 (ht! x'; 0)
Unfolding
(h) 0 ° @ h- output
OIOI® nput

In RNN, an output is a function of current input & previous output

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

94

RNN Patten |

Recurrent connections between hidden units; output once at the end

[Fig. 10.5]

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

95

RNN Pattern i

Recurrent connections between the current output and the next hidden
unit; output every time step

Unfold

ojerelone
ey
pn
s

[Fig. 10.4]

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 96

RNN Pattern |l

Recurrent connections between hidden units; output every time step

[Fig 10.3]
CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

97

Forward propagation in RNN

Recurrent connections between hidden units; output every time step

a" = b+ Wh'™ + Ux",

h' =tanh(a"),

Activation (previous hidden
unit + current input)

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

98

Forward propagation in RNN

Recurrent connections between hidden units; output every time step

a =b+Wh' " +Ux",
h' =tanh(a"),
o) =c+Vh",

From hidden unit to output unit;
e.g., unnormalized log
probabilities of all values of a
discrete variable such as words or
characters

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

99

Forward propagation in RNN

Recurrent connections between hidden units; output every time step

a =b+Wh' " +Ux",
h' =tanh(a"),
o) =c+Vh",

2 90 = softmax (o)

Softmax to get normalized
probabilities

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 100

Back-propagation through time (BPTT)

An example RNN where input and out sequences have the same length

L({x(”,...,xm},{y(l),...,y(”})
_ (1)
2"

- _Elogpmodel (y(t)

{x(l),...,x(”})

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 101

a” = b+ Wh'™ + Ux"
i = b, BPTT

0 _ (1)
o7 =c+Vh7, Model parameters: U, V, W, b, and ¢
7 = softmax(o") Nodes: x®, h®, o, and L®

(1) {x(”,...,x(’)})

L(t) = _log pmodel (y

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 102

0 = b+ Wh'D + U,
h' = tanh(a"),

£ c+ VR, Input to softmax

(1)

Y

5(0)
y

L(t) = _log pmodel (y

= softmax(o")
0

\%

o(t)

L(t)L - Y0 -

BPTT

Model parameters: U, V, W, b, and ¢
Nodes: x®, h®, o), and L®

True answer (1 at
index i, O elsewhere)

(%0t -

oL oLY .,
90" aL" 90"

Loss between true answer and
predicted output

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

103

N\

a" = b+ Wh'™ + Ux"
. BPTT

0 _ (1)
o7 =c+Vh7, Model parameters: U, V, W, b, and ¢
7 = softmax(o") Nodes: x®, h®, o, and L®

(1) {x(”,...,x(’)})

L(t) = _log pmodel (y

Vh(z’)lj - VTVO(T)L -- At the final time step (I’]O h(T+1))

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

104

N\

0 = b+ Wh'D + Ux",
y= tanh(a"), h(t+) &
o =c+Vh",

7 = softmax (o)

()

L(t) = _log pmodel (y

(10,2

BPTT

Model parameters: U, V, W, b, and ¢
Nodes: x®, h®, o), and L®

\% . L= VTVO(,)L -- At the final time step (no h(™+)

ao(f) d

e) (V’”M)L)+(ah<f>

(Vo(t)L)

h® D) = tanh (b + Wh® + Ux(tD)

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 105

N\

0 = b+ Wh'D + Ux",
y= tanh(a"), h(t+) &
o =c+Vh",

7 = softmax (o)

()

L(t) = _log pmodel (y

(10,2

BPTT

Model parameters: U, V, W, b, and ¢
Nodes: x®, h®, o), and L®

VvV, L= VTVO(,)L -- At the final time step (no h(™")
T

do'"
(V L)

e) (V’”M)Lh(ah(”

=W (V,.,L)diag(1=(h“"))+ V" (V , L)

h® D) = tanh (b + Wh® + Ux(tD)

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 106

a” =b+Wh' "V +Ux",
h' = tanh(a"),

o =c+Vh",

50 oof)

vy =softmax(o'")
0)

L(t) = _1Og pmodel (y

{x(l),...,x(t) })

do'"
dc

on"
ab(f)

BPTT

Model parameters: U, V, W, b, and c
Nodes: x®, h®, o), and L®

T
VL= EVOML
t

T

V.,L= Ediag(l - (h“))z)Vh(,)L

CMU 16-/505: integratea intenigence in ROpotcCs (jeanon@wcmu.eau)

107

! t-1 t
O =b+Wh'" " +UX",
h' = tanh(a"),
0" =c+Vh",

7 = softmax(o"”)

(t) 1Og pmodel (y(t) {x(l)a---sx(t)})
T
()
V[- 0o
¢~ ac
T
()
VL= oh
b

V L= 22(80(0
oL
Vil = 22 oh®
oL
=33

BPTT

Model parameters: U, V, W, b, and c
Nodes: x®, h®, o), and L®

VL=V L

V.,L= Edlag(l (H"Y)V,,

(r) _ E(V (t)L)h(Z)T

t

V 4 = Ediag(l (WP)V, L

CMU 16-785: Integrated Intelhgence in Robot|cs (jeanoh@cmu.edu)

VW()h(’) Edlag(l (h'")?)(o)(r D’

108

! t-1 t
O = b+ Wh'"™" +UX",
h' = tanh(a"),
o =c+Vh",

7 = softmax(o"”)

(t) 1Og pmodel (y(t) {x(l)a---sx(t)})
T
()
V[- 0o
¢~ ac
T
()
VL= oh
b

V L= 22(80(0
oL
Vil = 22 oh®
oL
=33

BPTT

Model parameters: U, V, W, b, and c
Nodes: x®, h®, o), and L®

VL=V L

V.,L= Edlag(l (H"Y)V,,

(r) _ E(V (t)L)h(l)T

t

V 4 = Ediag(l (WP)V, L

CMU 16-785: Integrated Intelhgence in Robot|cs (jeanoh@cmu.edu)

VW()h(’) Edlag(l (h'")?)(o)(r g

109

! t-1 t
O =b+Wh'" " +UX",
h' = tanh(a"),
o =c+Vh",

7 = softmax(o"”)

(t) 1Og pmodel (y(t) {x(l)a---sx(t)})
T
()
V[- 0o
¢~ ac
T
()
VL= oh
b

V L= 22(80(0
oL
Vil = 22 oh®
oL
=33

BPTT

Model parameters: U, V, W, b, and c
Nodes: x®, h®, o), and L®

VL=V L

V.,L= Edlag(l (H"Y)V,,

(r) _ E(V (t)L)h(l)T

t

vV A = Ediag(l - (h(f)f)(vhm Ly

CMU 16-785: Integrated Intelhgence in Robot|cs (jeanoh@cmu.edu)

VW()h(’) Edlag(l (h'")?)(o)(r D’

110

Back-propagation through time (BPTT)

An example RNN where input and out sequences have the same length

Computing this loss w.r.t. to model parameters
is expensive; runtime O(T), memory O(T).

Can we parallelize this?

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 111

Recall: RNN Pattern |l

Con: Less powerful
Pro: Each time step can be trained independently in parallel

[Fig. 10.4]

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 112

Teacher forcing

Train time

During training, use the ground truth from
previous time step as input to compute the
hidden unit of the current time step

[Fig. 10.6]

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

113

Teacher forcing

During training, use the ground truth from
previous time step as input to compute the
hidden unit of the current time step

During test time, use the
predicted output from the
previous time step to
compute the current
hidden unit

Train time Test time [FI g 1 O 6]
CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 114

Teacher forcing

During training, use the ground truth from
previous time step as input to compute the
hidden unit of the current time step

To become robust to open-loop mode, train
with both teacher’s inputs and self-
generated inputs

During test time, use the
predicted output from the
previous time step to
compute the current
hidden unit

Train time Test time [FI g ' 1 06]

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 115

Determining when to end

Special end of sequence symbol [Schmidhuber 2012]

Bernoulli output at each time step to determine whether to
continue or stop

Add extra input to predict the length of output [Goodfellow et al.,
2014]

Single vector input

blue ...
’/ \\

|yl)
oo

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 117

Bidirectional RNNs

(Schuster & Paliwal, 1997)

x(o oxED @ i) x(T

* Prediction may depend on the entire input

* Very successful in many applications:

— Handwriting recognition (Graves et al., 2008,
2009)

— Speech recognition (Graves & Schmidhuber
2805 2013)

— Bioinformatics (Baldi et al., 1999)

Bidirectional RNNs

Backward in time

Forward in time

[Fig. 10.11]
CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 119

Encoder-Decoder

Sequence-to-Sequence Architecture

* Map variable-length input sequence to variable-length output
sequence

 Machine translation [Cho et al., 2014][Sutskever et al., 2014]

Encoder-Decoder

Sequence-to-Sequence Architecture

Encoder)

-
. Encoder (reader or input) RNN

processes input sequence x=(x{1),

Q e ..., xX(mYand emits context C
_ J

(" Decoder Y)

AN
|
/
’
| @

/
5
7’
7/
y(l) y(2) Q
_ . _J
1
1

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 121

Encoder-Decoder
Sequence-to-Sequence Architecture

Encoder)

-
OO0 -
. Encoder (reader or input) RNN

processes input sequence x=(x1),
., XN and emits context C

Decoder (writer or output)
RNN is conditioned on the

2 context C to generate output
y® y®@ 0 @ sequence y=(y(”, o y(ny))
_J

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

122

Long Short-Term Memory (LS

(Hochreiter & Schmidhuber 1997)

To handle long-term dependence better
Gated RNNs

Self-loop gates controlled by another hidden units
Extremely successful

Speech recognition
Handwriting
Machine translation
Social navigation
Image captioning
Parsing

Standard
RNN

Standard
RNN

Hidden unit

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 125

LSTM cell

Forget gate ft = G(tht—l + fot + bf)

output

C—

self-loop

.

state

input

AWAVAYA

CIVIU 1b-/85: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 126

input gate orget gate output gate

O—(—

LSTM cell

Forget gate ft = G(tht—l + fot + bf)

output

Input gate il = O(VV;ht—l + Uixz + bz)

input gate orget gate output gate

AYA

CIVIU 1b-/85: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

127

LSTM cell

Forget gate ft = G(tht—l + fot + bf)

output

Input gate it = O(VV;ht—l +Uixz +bi)

State (j’t = tanh(WCht_1 +U x, + bc)

= f % +7 %
Ct -](;‘ Cl‘—l lt Cl‘
input ‘ \5‘“6 orget gate output gate

\ /\N/N\/N\

CIVIU 1b-/85: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 128

self-loop

LSTM cell

Forget gate ft = G(tht—l + fot + bf)

output

C—

Input gate it - O(VV;ht—l +Uixz +bi)

self-loop

State (j’t=tanh(WCht_1+cht+bC)
C =ft*Cz-1+it*éz

.

state

Output gate

(C—

0 = G(W;ht—l +U x, +b0)

=0 *tanh
\5@& orget gate output gate ht Ot a (Ct)

AWAWA

CIVIU 1b-/85: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 129

input

(OH—

Summary

Feedforward neural networks
Backpropagation
Convolutional neural networks
Recurrent neural networks

