
16-785: Integrated Intelligence in
Robotics: Vision, Language, and Planning

Spring 2019

Deep Learning Basics

Overview
• Deep learning basics

– Preliminaries
– Feed forward networks

• Reference
– Deep Learning (2017), Ch. 2 – 10

Ian Goodfellow, Yoshua Bengio, and Aaron Courville, The MIT Press
http://www.deeplearningbook.org/

– Pattern Classification, The 2nd Edition (2000), Ch. 6
Richard Duda, Peter E. Hart, David G. Stork
http://cns-classes.bu.edu/cn550/Readings/duda-etal-00.pdf

2/11/19 CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 2

http://www.deeplearningbook.org/
http://cns-classes.bu.edu/cn550/Readings/duda-etal-00.pdf

Gradient-based optimization
• Minimizing f(x) by changing x
• Objective function f(x)
= Criterion
= Cost function
= Loss function
= Error function

Gradient
• f(x) = f(x1,x2,…,xn): multiple input variables
• Partial derivative : How f(x) changes w.r.t. only xi

• Gradient
Vector of partial derivatives for all xi

Critical points: where all elements of gradient = 0

∇x f (x) =
∂
∂x1

f (x), ∂
∂x2

f (x),..., ∂
∂xi

f (x),..., ∂
∂xn

f (x))
#

$
%

&

'
(

∂
∂xi

f (x)

Jacobian matrix
• f(x) = f(x1,x2,…,xm): multiple input variables
• Partial derivative : How f(x) changes w.r.t. only xi

• Gradient : Vector of partial derivatives for all xi

• Multiple inputs, multiple outputs
– f: Rm à Rn

– Jacobian matrix Jf

∂
∂xi

f (x)

∇x f (x)
∇x f (x) =

∂
∂x1

f (x), ∂
∂x2

f (x),..., ∂
∂xi

f (x),..., ∂
∂xm

f (x))
⎡

⎣
⎢

⎤

⎦
⎥

J f =

...

...Ji , j =
∂
∂x j

f (x)i ...

...

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Gradient descent
[Cauchy 1847]

x

f(x)

f’(x) > 0
Move x to the left

f’(x) < 0
Move x to the right

Find x that minimizes f(x)

!f (x) ≅ lim
h→0

f (x + h)− f (x)
h

f’(x) = 0
Global minimum; gradient descent stops here.

• f(x) is descended when moving x in the
negative direction of the gradient

Gradient descent
[Cauchy 1847]

x ' = x −ε∇x f (x)

Maximum Likelihood Estimation
• m i.i.d. examples: X = { x(1), …, x(m) }
• pdata(x): true probability distribution
• pmodel(x;θ): parameterized probability model

estimating true pdata(x)

θML = argmax
θ

p
model
(Χ;θ) = argmax

θ
p

model
(x(i);θ)

i=1

m

∏

Maximum Likelihood Estimation

θML = argmax
θ

p
model
(x(i);θ)

i=1

m

∏ Numerical underflow

Maximum Likelihood Estimation

θML = argmax
θ

p
model
(x(i);θ)

i=1

m

∏

= argmax
θ

log p
model
(x(i);θ)

i=1

m

∑

= argmax
θ

Ex~ p̂data
log p

model
(x;θ)

Numerical underflow

Logarithm: product à sum

Maximum Likelihood Estimation

θML = argmax
θ

p
model
(x(i);θ)

i=1

m

∏

= argmax
θ

log p
model
(x(i);θ)

i=1

m

∑

= argmax
θ

Ex~ p̂data
log p

model
(x;θ)

Numerical underflow

Logarithm: product à sum

Expectation

Gradient-based learning
• Optimization – Minimizing loss
• Loss function: commonly, maximum likelihood
– Negative log-likelihood
– Cross-entropy between training data & model

distribution

J(θ) = −Ex,y~ p̂data
log pmodel (y | x;θ)

Deep Feedforward Networks
• A.k.a. Multilayer perceptron (MLP)
• Function approximation machines
– Defines a mapping y = f(x; θ)
– Learns the values of θ that best approximate the

function
• Feedforward (as opposed to recurrent):

information flows from input to output
(without feedback loop)

Deep Feedforward Networks
Example
• f(x) = f(3)(f(2)(f(1)(x))) is represented as a network of 3

functions f(1),f(2),f(3) connected in a chain

f(x) = f(3)(f(2)(f(1)(x)))
Input

1st layer
2nd layer

Output layer

Hidden layers because
values are not observed
from training data

Exclusive OR (XOR)
• X = { [0,0]T, [0,1]T, [1,0]T, [1,1]T }
• Y = { 0, 1, 1, 0 }

0 1

1

[x1, x2]T

x1

x2

XOR as regression
• Linear model

• Mean Squared Error (MSE) loss function

J(θ) = 1
4

(f *(x)− f (x;θ))2
x∈X
∑

f (x;θ) = f (x;w,b) = xTw+ b

Minimize loss J(θ)

w=0, b=0.5

2-layer neural network
• 1 hidden layer with 2 hidden units

x1 x2

h1 h2

y

Explicit representation

wx1,h1 wx2,h1

Width: number of hidden units, |h|
Depth: number of layers in the network

2-layer neural network
• 1 hidden layer with 2 hidden units

x1 x2

h1 h2

y

Explicit representation

wx1,h2 wx2,h2

2-layer neural network
• 1 hidden layer with 2 hidden units

x1 x2

h1 h2

y

Explicit representation

wh1,o wh2,o

2-layer neural network
• 1 hidden layer with 2 hidden units

x1 x2

h1 h2

y

x

h

y

Explicit representation Compact representation

WMatrix |x|x|h|

wVector |h|

[x1, x2]T

h = f (1)(x; W, c)

y = f (2)(h; w, b)

f (x; W, c, w, b) = f (2)(f (1)(x))

1st hidden layer

Last|output (2nd) layer

w1o w2o

w11
w22w21

w12

Input layer

Hidden layer function

x

h

y

Affine transformation of input x

h = WTx + c

biaslinear

Hidden layer function

x

h

y

Affine transformation + nonlinear activation function g

h =g(WTx + c)

nonlinear

Cost function
• Gradient of the cost function must be

large and predictable
• Saturating functions (becoming flat) is

problematic because gradient becomes very small

– E.g., Sigmoid function

Cross-entropy cost function
• Most commonly used
• Training using maximum likelihood

= Cost function is negative log-likelihood
= Cross-entropy between training data & model
distribution

J(θ) = −Ex,y~ p̂data
log pmodel (y | x;θ)

Output units
• Linear units for Gaussian distributions
• Sigmoid units for binary-class distributions
• Softmax units for multi-class distributions

softmax(x)i =
exp(xi)
exp(x j)j=1

n
∑

Hidden units
• Logistic sigmoid activation function
• Hyperbolic tangent activation function
• ReLU

Hidden layer function

x

h

y

Affine transformation + nonlinear activation function g

h =g(WTx + c)

e.g., ReLU g(z) = max{0, z}

Rectified Linear Unit (ReLU)

x

h

y

Affine transformation +
nonlinear activation function g

h =g(WTx + c)

[Jarette et al., 2009]

g(z) = max{0, z}

[DeepLearning Fig. 6.3]

Architecture design
• Decide on the number of units, the depth

of network, and how units should be
connected to each other

• Experimentation and tuning with
validation set

Network design
• Cost function
• Output units
• Hidden units
• Architecture

Two modes of network
• Feedforward: Predicting the values of

output variables
• Learning: Training the values of network

parameters
– E.g., using backpropagation

Forward path: e.g., XOR

x

h

y f (x; W, c, w, b) = f (2)(g(f (1)(x)))

= wT max{0, W Tx + c} + b

Forward path: e.g., XOR
f (x; W, c, w, b) = f (2)(f (1)(x)) = wT max{0, W Tx + c} + b

W = 1 1
1 1

c = 0
-1

w = 1
-2

x = 0 0 1 1
0 1 0 1

WTx = 1 1
1 1

0 1 1 2
0 1 1 2

=0 0 1 1
0 1 0 1

xW+c= 0 1 1 2
-1 0 0 1 g(xW+c)= 0 1 1 2

0 0 0 1

wTg(xW+c)= 0 1 1 2
0 0 0 1

1 -2 = 0 1 1 0
b = 0

Back-propagation
• Start with untrained network
• Given example X à Y
• Pass example input X through the network
• Compute the predicted output Z at the output layer
• Compare the prediction Z with true output Y
• Compute error (loss) between Z and Y
• Compute gradients for network parameters
• Adjust network parameters to reduce the error using

gradient descent

Back-propagation
• Loss function J(w)

• At each iteration m, update network weights w

∇w = −η ∂J
∂w

w(m+1) = w(m)+∇w(m) where

Learning rate

Computation graph
• Node represents variable of type scalar,

vector, matrix, tensor, etc.
• Operator takes input nodes (variables)

and returns output variable

Examples of computational graphs

b

[DL Fig 6.8]

z = xy Logistric regression
y^=σ(wx + b)

H=max{0, WX+b} y^=wx
λΣw2

σ

Chain rule of calculus

∂z
∂x

=
∂z
∂y
∂y
∂x

∂z
∂xi

=
∂z
∂y j

∂y j
∂xij

∑

∇x z =
∂y
∂x

⎛

⎝
⎜

⎞

⎠
⎟

T

∇ y z

n x m Jacobian matrix of g: Rm à Rn

Gradient vector of f

z = f(g(x))z = f(y)
y = g(x)

x in Rm, y in Rn

f: Rn à R
g: Rm à Rn

x,y in R
f: R à R
g: R à R

Chain rule of calculus

∂z
∂x

=
∂z
∂y
∂y
∂x

∂z
∂xi

=
∂z
∂y j

∂y j
∂xij=1

n

∑

∇x z =
∂y
∂x

⎛

⎝
⎜

⎞

⎠
⎟

T

∇ y z

n x m Jacobian matrix of g: Rm à Rn

Gradient vector of f

z = f(g(x))z = f(y)
y = g(x)

x in Rm, y in Rn

f: Rn à R
g: Rm à Rn

x,y in R
f: R à R
g: R à R

∂z
∂x

=
∂z
∂y
∂y
∂x

∂z
∂xi

=
∂z
∂y j

∂y j
∂xij

∑

∇x z =
∂y
∂x

⎛

⎝
⎜

⎞

⎠
⎟

T

∇ y z

Chain rule of calculus

n x m Jacobian matrix of g

Gradient vector of f

x in Rm, y in Rn

f: Rn à R
g: Rm à Rn

x,y in R
f: R à R
g: R à R

z = f(g(x))z = f(y)
y = g(x)

Chain rule applied to tensors

∇X z = (∇XYj)
j
∑ ∂z

∂Yj

Gradient of a value z w.r.t. a tensor X

(∇X z)i Abstracting tensor indices into single variable i

Tensor X, Y
z = f(Y)
Y = g(X)

Simple forward propagation
Assume that nodes have been sorted in the order of computation

u(1) u(2)

u(3)

x

x1 x2

parents

Pa(u(3)) = { u(1), u(2) }
Input of length ni

Single scalar u(n)

[DL Algorithm 6.1]

Simple backpropagation

[DL Algorithm 6.2]

i: children of j

Forward propagation

Input layer

Loss + regularizer
Output layer

Affine transformation
Activation function Hidden layers

[DL Algorithm 6.3]

Back-propagation

[DL Algorithm 6.4]

a(k) = b(k) + W(k)h(k-1)

Symbolic representations
• Symbol-to-number differentiation

– Computational graph + a set of numerical values
– Torch
– Caffe

• Symbol-to-symbol derivatives
– Computational graph + symbolic representation of

derivatives (enables computation of higher derivatives)
– Theano
– TensorFlow

Computation graph for 1-layer MLP

[DL Ch. 6.5.7]

Weight decay regularizer
prefers: smaller weights

General back-propagation
• get_operation(V): returns the operation

that computes V, e.g., function pointer
• get_consumers(V, G): returns children of

node V in computational graph G
• get_inputs(V, G): returns parents of V in G
• op.bprop(inputs) ∇X z = (∇XYj)

j
∑ ∂z

∂Yj
op.f(inputs)j

General back-propagation outer loop

General back-propagation inner loop

children

parents

Avoid redundant computation

∇X z = (∇XYj)
j
∑ ∂z

∂Yj
op.f(inputs)j

Computational cost of backprop

• Forward propagation stage:
–O(number of weights) matrix multiplications

• Backward propagation state:
–O(number of weights) matrix multiplications
–Memory cost O(mnh) where m is the number

of examples in minibatch; nh, number of
hidden units

Hyperparameters & validation sets
• Tuning parameters that we can use to control

learning algorithms
• Setting that is inappropriate to learn from

training set
• Validation sets: part of training data, e.g., 80%

training set for learning model parameters, 20%
validation set for tuning hyperparameters

Imagine processing this input
image composed of 12,192,768
pixels in fully connected neural
networks

Convolutional Neural Networks

Convolutional networks [LeCun 1989]
are neural networks for processing data
shaped in grid-like topology that use
convolution in place of matrix multiplication
in some layers.

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 55

Convolution
Convolution is an operator between two functions f and g of a real-
valued argument t, defining an integral of piece-wise multiplication of
f and g as one of the functions, g, is shifted over the other function f

e.g., f is noisy sensor reading; g is a weighting function, s(t) = f*g(t) is
weighted average of sensor reading—higher weights for recent
readings

56CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

s(t) = (f *g)(t) = f (i)g(t − i)
i∫ di

age shift over values of t

t

f

g

Continuous functions

Convolution
Convolution is an operator between two functions f and g of a real-
valued argument t, defining an integral of piece-wise multiplication of
f and g as one of the functions, g, is shifted over the other function f

e.g., f is noisy sensor reading; g is a weighting function, s(t) = f*g(t) is
weighted average of sensor reading—higher weights for recent
readings

57CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

s(t) = (f *g)(t) = f (i)g(t − i)
i∫ di

age shift over values of t

t

f

g

Continuous functions

Convolution
Convolution is an operator between two functions f and g of a real-
valued argument t, defining a sum of piece-wise multiplication of f
and g as one of the functions, g, is shifted over the other function f

e.g., f is noisy sensor reading; g is a weighting function, s(t) = f*g(t) is
weighted average of sensor reading—higher weights for recent
readings

58CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

s(t) = (f *g)(t) = f (i)g(t − i)
i=−∞

∞

∑
age shift over values of t

t

f

g

Discrete functions

Convolution in CNNs
Convolution is an operator between input (data) tensor I and kernel
(parameters) tensor K of multiple real-valued arguments, defining a
sum of piece-wise multiplication of I and K as the kernel K is shifted
over input data I

e.g., 2-D image input data

59CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

S(i, j) = (I *K)(i, j) = I(m,n)K(i−m, j − n)
n
∑

m
∑

input

kernel
shift over values of i and j

Convolution is commutative
Convolution is an operator between input (data) tensor I and kernel
(parameters) tensor K of multiple real-valued arguments, defining a
sum of piece-wise multiplication of I and K as the kernel K is shifted
over input data I

e.g., 2-D image input data

60CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu)

S(i, j) = (I *K)(i, j) = I(m,n)K(i−m, j − n)
n
∑

m
∑

input

kernel
shift over values of i and j

S(i, j) = (K * I)(i, j) = I(i−m, j − n)K(m,n)
n
∑

m
∑

input

kernel

Kernel is flipped

Cross-correlation of convolution

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 61

S(i, j) = (I *K)(i, j) = I(i+m, j + n)K(m,n)
n
∑

m
∑

input

kernel Kernel is not flipped

Commonly also referred to as “convolution”

Example of 2-D
convolution
[Fig 9.2]

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 62

Piece-wise multiplication

Feature map

Properties of convolution in neural networks

• Sparse interactions
• Parameter sharing
• Equivariant representations

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 63

Sparse interactions

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 64

m inputs

n outputs

Matrix multiplication
O(m x n)

Convolution
O(k x n)

Output nodes affected by input
node x3

[Fig. 9.2]

Sparse interactions

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 65

m inputs

n outputs

Matrix multiplication
O(m x n)

Input notes affecting
output node s3

[Fig. 9.3]

Receptive field of s3

Sparse interactions

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 66

m

n

Matrix multiplication
O(m x n)

Convolution
O(k x n)

k= ~ 100s

m = 12,192,768

Parameter sharing

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 67

“Tied” weights
= Used once

Parameter sharing

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 68

“Tied” weights
= Used once

Learn weights once
= Used for every location

[Fig 9.5]

Reduce memory
requirement for storing
parameters

Equivariant to translation

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 69

f (g(x)) = g(f (x))

Function f(x) is equivariant to function g if:

Convolution is equivariant to translation,
i.e., if the input changes, the output
changes the same way.

Equivariant to translation

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 70

f (g(x)) = g(f (x))

Convolution f is equivariant to translation function g if:

0 7 0

1 8 1

6 5 8

0 70 0

10 80 10

60 50 80
0 0 70

0 10 80

0 60 50

g(x,y)=input(x-1,y)10convolution

Equivariant to translation

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 71

f (g(x)) = g(f (x))

Convolution f is equivariant to translation function g if:

0 7 0

1 8 1

6 5 8

0 70 0

10 80 10

60 50 80
0 0 70

0 10 80

0 60 50

10 g(x,y)=input(x-1,y)

0 0 7

0 1 8

0 6 5

convolution

10convolutiong(x,y)=input(x-1,y)

Convolutional layer

Components of convolutional layer

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 72

Convolution stage:
Affine transformation

Detection stage:
Nonlinearity
e.g., ReLU

Pooling stage

Input

Output

Pooling function: to
refine the output

Pooling

• Max pooling [Zhou & Chellappa, 1988]: report the
maximum output among a rectangular neighborhood

• Average pooling
• L2 norm pooling
• Weighted average pooling

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 73

Pooling over spatial regions

74

[Fig 9.8]

Invariance to translation (small shift)

CMU 16-785: Integrated Intelligence in Robotics
(jeanoh@cmu.edu)

Pooling over features

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 75

[fig 9.9]

Invariance to features, e.g., rotation

Max pooling

Pooling also provides
• Invariance to translation or other transformations
• Efficiency via downsampling—i.e., fewer pooling units than

detection units
• Support for variable-size input by varying the size of offset

between pooling regions to meet fixed size output

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 76

[Fig 9.10]

Convolution with a stride

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 77

[Fig 9.12]

Computationally
wasteful

Convolution with a stride

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 78

Convolution with a stride

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 79

Stride of size 2

Zero padding

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 80

…

No zero padding,
valid convolution

Full zero padding,
same convolution

Convolution shrinks the network size

Example: Image classification
• ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC): 1.2M training, 50K validation, and 150K
testing images

• Fixed-size input
• 5 Convolutional layers + 3 fully connected layers
• 2 GPUs
• 1000 classes image classification
• Reducing overfitting by:

– Data augmentation (image translation, horizontal
reflection, intensity alteration using PCA)

– Dropout (zero out output with some probability, e.g.,
0.5)

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 81

AlexNet [Krizhevsky et al., 2012]

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 82

AlexNet
Input: 224x224x3 (RGB)

96 (48+48) 11x11x3 kernels
Softmax over
1000 classes

[Krizhevsky et al., 2012]

[Fig 3]

Regularization

Any modification we make to a learning
algorithm to reduce “generalization error” as
opposed to “training error”

Parameter norm penalties
• L2 norm regularization (aka Tikhonov

regularization or ridge regression)

• L1 norm regularization

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 84

Ω(θ) = 1
2
w

2

2

Ω(θ) = w
2
= wi

i
∑

Data augmentation
• Train on more data
• Invariant to various transformations
• Effective in image classification, object recognition
• But not for all problem domains
• Examples

– Rotation
– Horizontal, vertical flip
– Translation

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 85

Early stopping

During training, keep track of the parameters
that give the lowest validation error, return
them at the end

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 86

[Fig 7.3]

While training error is
decreased, validation
error may go up due
to overfitting

Batch normalization

• Internal covariance shift: the distribution of input
to each layer changes as the parameters of
previous layer changes

• Normalize layer inputs for each mini-batch
• Advantages:
– higher learning rate, faster training
– No dropout needed
– Accepted as part of common architecture

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 87

[Ioffe & Szegedy, 2015]

Other methods for regularization
• Noise injection, label smoothing
• Parameter sharing
– CNN

• Bootstrapping aggregating (aka bagging) –
ensemble or model averaging

• Dropout [Srivastava et al., 2014]
– Ignore random output with some probability,

meaning not used for learning at all
– Popular earlier but not so much currently

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 88

Recurrent Neural Networks

Whereas CNNs process a grid of values,
Recurrent neural networks (RNNs)
(Rumelhart et al., 1986) model and process
sequential data.

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 90

Processing sequential data

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 91

In 1-D CNN, an output is a function of neighboring inputs

input

output

Processing sequential data

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 92

In 1-D CNN, an output is a function of neighboring inputs

In RNN, an output is a function of current input & previous output

input

output

input

output

RNN for processing sequence

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 93

x

h

f ht = f (ht-1, xt; θ)

In RNN, an output is a function of current input & previous output

Recurrent connection: indicates
interaction between current & 1 time
step before

RNN for processing sequence

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 94

x

h

f

h… ht-1 ht ht+1

xt-1 xt xt+1 input

outputh…

f f f f

ht = f (ht-1, xt; θ)

In RNN, an output is a function of current input & previous output

Unfolding

Recurrent connection: indicates
interaction between current & 1 time
step before

RNN Patten I

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 95

Recurrent connections between hidden units; output once at the end

[Fig. 10.5]

RNN Pattern II

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 96

[Fig. 10.4]

Recurrent connections between the current output and the next hidden
unit; output every time step

RNN Pattern III

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 97
[Fig 10.3]

Recurrent connections between hidden units; output every time step

Forward propagation in RNN

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 98

[Fig 10.3]

Recurrent connections between hidden units; output every time step

a(t) = b+Wh(t−1) +Ux(t) ,
ht = tanh(a(t)),

o(t) = c+Vh(t) ,
ŷ (t) = softmax(o(t))Activation (previous hidden

unit + current input)

Forward propagation in RNN

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 99

[Fig 10.3]

Recurrent connections between hidden units; output every time step

a(t) = b+Wh(t−1) +Ux(t) ,
ht = tanh(a(t)),

o(t) = c+Vh(t) ,
ŷ (t) = softmax(o(t))From hidden unit to output unit;

e.g., unnormalized log
probabilities of all values of a
discrete variable such as words or
characters

Forward propagation in RNN

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 100

[Fig 10.3]

Recurrent connections between hidden units; output every time step

a(t) = b+Wh(t−1) +Ux(t) ,
ht = tanh(a(t)),

o(t) = c+Vh(t) ,
ŷ (t) = softmax(o(t))

Softmax to get normalized
probabilities

Back-propagation through time (BPTT)

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 101

An example RNN where input and out sequences have the same length

L x(1) ,...,x(τ){ }, y (1) ,..., y (τ){ }()
= L(t)

t
∑

= − log pmodel y
(t) x(1) ,...,x(t){ }()

t
∑

…

BPTT

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 102

∇L(t)L =
∂L
∂L(t)

=1

∇o(t)L()i =
∂L
∂oi

(t)
=
∂L
∂L(t)

∂L(t)

∂oi
(t)
= ŷi

(t) −1
i ,y(t)

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t) = b+Wh(t−1) +Ux(t) ,
ht = tanh(a(t)),
o(t) = c+Vh(t) ,
ŷ (t) = softmax(o(t))

L(t) = −log pmodel y
(t) x(1) ,...,x(t){ }()

BPTT

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 103

∇L(t)L =
∂L
∂L(t)

=1

∇o(t)L()i =
∂L
∂oi

(t)
=
∂L
∂L(t)

∂L(t)

∂oi
(t)
= ŷi

(t) −1
i ,y(t)

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t) = b+Wh(t−1) +Ux(t) ,
ht = tanh(a(t)),
o(t) = c+Vh(t) ,
ŷ (t) = softmax(o(t))

L(t) = −log pmodel y
(t) x(1) ,...,x(t){ }()

Input to softmax

True answer (1 at
index i, 0 elsewhere)

Loss between true answer and
predicted output

BPTT

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 104

∇h(τ)L =V
T∇

o(τ)
L

∇h(t)L =
∂h(t+1)

∂h(t)
⎛

⎝
⎜

⎞

⎠
⎟

T

(∇
h(t+1)
L)+ ∂o(t)

∂h(t)
⎛

⎝
⎜

⎞

⎠
⎟

T

(∇
o(t)
L)

=WT (∇
h(t+1)
L)diag 1− (h(t+1))2()+V T (∇

o(t)
L)

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t) = b+Wh(t−1) +Ux(t) ,
ht = tanh(a(t)),
o(t) = c+Vh(t) ,
ŷ (t) = softmax(o(t))

L(t) = −log pmodel y
(t) x(1) ,...,x(t){ }()

h(t+1) & o(t)

-- At the final time step (no h(τ+1))

BPTT

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 105

∇h(τ)L =V
T∇

o(τ)
L

∇h(t)L =
∂h(t+1)

∂h(t)
⎛

⎝
⎜

⎞

⎠
⎟

T

(∇
h(t+1)
L)+ ∂o(t)

∂h(t)
⎛

⎝
⎜

⎞

⎠
⎟

T

(∇
o(t)
L)

=WT (∇
h(t+1)
L)diag 1− (h(t+1))2()+V T (∇

o(t)
L)

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t) = b+Wh(t−1) +Ux(t) ,
ht = tanh(a(t)),
o(t) = c+Vh(t) ,
ŷ (t) = softmax(o(t))

L(t) = −log pmodel y
(t) x(1) ,...,x(t){ }()

h(t+1) & o(t)

-- At the final time step (no h(τ+1))

h(t+1) = tanh (b + Wh(t) + Ux(t+1))
f(x) = tanh(x)
f’(x)=1-{f(x)}2

BPTT

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 106

∇h(τ)L =V
T∇

o(τ)
L

∇h(t)L =
∂h(t+1)

∂h(t)
⎛

⎝
⎜

⎞

⎠
⎟

T

(∇
h(t+1)
L)+ ∂o(t)

∂h(t)
⎛

⎝
⎜

⎞

⎠
⎟

T

(∇
o(t)
L)

=WT (∇
h(t+1)
L)diag 1− (h(t+1))2()+V T (∇

o(t)
L)

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t) = b+Wh(t−1) +Ux(t) ,
ht = tanh(a(t)),
o(t) = c+Vh(t) ,
ŷ (t) = softmax(o(t))

L(t) = −log pmodel y
(t) x(1) ,...,x(t){ }()

h(t+1) & o(t)

-- At the final time step (no h(τ+1))

h(t+1) = tanh (b + Wh(t) + Ux(t+1))
f(x) = tanh(x)
f’(x)=1-{f(x)}2

BPTT

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 107

∇cL =
∂o(t)

∂c

⎛

⎝
⎜

⎞

⎠
⎟

t
∑

T

∇
o(t)
L = ∇

o(t)
L

t
∑

∇bL =
∂h(t)

∂b(t)
⎛

⎝
⎜

⎞

⎠
⎟

t
∑

T

∇
h(t)
L = diag 1− (h(t))2()∇h(t)

L
t
∑

∇V L =
∂L
∂oi

(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇Voi

(t)

t
∑ = ∇

o(t)
L()

t
∑ h(t)

T

∇W L =
∂L
∂hi

(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇

W (i)hi
(t)

t
∑ = diag 1− (h(t))2() ∇h(t)

L()
t
∑ h(t−1)

T

∇U L =
∂L
∂hi

(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇

U (i)
hi
(t)

t
∑ = diag 1− (h(t))2() ∇h(t)

L()
t
∑ x(t)

T

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t) = b+Wh(t−1) +Ux(t) ,
ht = tanh(a(t)),
o(t) = c+Vh(t) ,
ŷ (t) = softmax(o(t))

L(t) = −log pmodel y
(t) x(1) ,...,x(t){ }()

= 1

BPTT

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 108

∇cL =
∂o(t)

∂c

⎛

⎝
⎜

⎞

⎠
⎟

t
∑

T

∇
o(t)
L = ∇

o(t)
L

t
∑

∇bL =
∂h(t)

∂b(t)
⎛

⎝
⎜

⎞

⎠
⎟

t
∑

T

∇
h(t)
L = diag 1− (h(t))2()∇h(t)

L
t
∑

∇V L =
∂L
∂oi

(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇Voi

(t)

t
∑ = ∇

o(t)
L()

t
∑ h(t)

T

∇W L =
∂L
∂hi

(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇

W (i)hi
(t)

t
∑ = diag 1− (h(t))2() ∇h(t)

L()
t
∑ h(t−1)

T

∇U L =
∂L
∂hi

(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇

U (i)
hi
(t)

t
∑ = diag 1− (h(t))2() ∇h(t)

L()
t
∑ x(t)

T

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t) = b+Wh(t−1) +Ux(t) ,
ht = tanh(a(t)),
o(t) = c+Vh(t) ,
ŷ (t) = softmax(o(t))

L(t) = −log pmodel y
(t) x(1) ,...,x(t){ }()

BPTT

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 109

∇cL =
∂o(t)

∂c

⎛

⎝
⎜

⎞

⎠
⎟

t
∑

T

∇
o(t)
L = ∇

o(t)
L

t
∑

∇bL =
∂h(t)

∂b(t)
⎛

⎝
⎜

⎞

⎠
⎟

t
∑

T

∇
h(t)
L = diag 1− (h(t))2()∇h(t)

L
t
∑

∇V L =
∂L
∂oi

(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇Voi

(t)

t
∑ = ∇

o(t)
L()

t
∑ h(t)

T

∇W L =
∂L
∂hi

(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇

W (i)hi
(t)

t
∑ = diag 1− (h(t))2() ∇h(t)

L()
t
∑ h(t−1)

T

∇U L =
∂L
∂hi

(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇

U (i)
hi
(t)

t
∑ = diag 1− (h(t))2() ∇h(t)

L()
t
∑ x(t)

T

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t) = b+Wh(t−1) +Ux(t) ,
ht = tanh(a(t)),
o(t) = c+Vh(t) ,
ŷ (t) = softmax(o(t))

L(t) = −log pmodel y
(t) x(1) ,...,x(t){ }()

BPTT

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 110

∇cL =
∂o(t)

∂c

⎛

⎝
⎜

⎞

⎠
⎟

t
∑

T

∇
o(t)
L = ∇

o(t)
L

t
∑

∇bL =
∂h(t)

∂b(t)
⎛

⎝
⎜

⎞

⎠
⎟

t
∑

T

∇
h(t)
L = diag 1− (h(t))2()∇h(t)

L
t
∑

∇V L =
∂L
∂oi

(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇Voi

(t)

t
∑ = ∇

o(t)
L()

t
∑ h(t)

T

∇W L =
∂L
∂hi

(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇

W (i)hi
(t)

t
∑ = diag 1− (h(t))2() ∇h(t)

L()
t
∑ h(t−1)

T

∇U L =
∂L
∂hi

(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇

U (i)
hi
(t)

t
∑ = diag 1− (h(t))2() ∇h(t)

L()
t
∑ x(t)

T

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t) = b+Wh(t−1) +Ux(t) ,
ht = tanh(a(t)),
o(t) = c+Vh(t) ,
ŷ (t) = softmax(o(t))

L(t) = −log pmodel y
(t) x(1) ,...,x(t){ }()

Back-propagation through time (BPTT)

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 111

An example RNN where input and out sequences have the same length

…

Computing this loss w.r.t. to model parameters
is expensive; runtime O(τ), memory O(τ).

Can we parallelize this?

Recall: RNN Pattern II

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 112

[Fig. 10.4]

Con: Less powerful
Pro: Each time step can be trained independently in parallel

Teacher forcing

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 113
[Fig. 10.6]

During training, use the ground truth from
previous time step as input to compute the
hidden unit of the current time step

Teacher forcing

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 114
[Fig. 10.6]

During test time, use the
predicted output from the
previous time step to
compute the current
hidden unit

During training, use the ground truth from
previous time step as input to compute the
hidden unit of the current time step

Teacher forcing

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 115
[Fig. 10.6]

During test time, use the
predicted output from the
previous time step to
compute the current
hidden unit

During training, use the ground truth from
previous time step as input to compute the
hidden unit of the current time step
To become robust to open-loop mode, train
with both teacher’s inputs and self-
generated inputs

Determining when to end

• Special end of sequence symbol [Schmidhuber 2012]
• Bernoulli output at each time step to determine whether to

continue or stop
• Add extra input to predict the length of output [Goodfellow et al.,

2014]

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 116

Single vector input

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 117

A dog with blue …

Bidirectional RNNs
(Schuster & Paliwal, 1997)

• Prediction may depend on the entire input
• Very successful in many applications:
– Handwriting recognition (Graves et al., 2008,

2009)
– Speech recognition (Graves & Schmidhuber

2005, 2013)
– Bioinformatics (Baldi et al., 1999)

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 118

x(1), …, x(t-1), x(t), x(t+1), …, x(τ)

Bidirectional RNNs

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 119
[Fig. 10.11]

Forward in time

Backward in time

Encoder-Decoder
Sequence-to-Sequence Architecture

• Map variable-length input sequence to variable-length output
sequence

• Machine translation [Cho et al., 2014][Sutskever et al., 2014]

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 120

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 121

Encoder-Decoder
Sequence-to-Sequence Architecture

Encoder (reader or input) RNN
processes input sequence x=(x(1),
…, x(nx))and emits context C

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 122

Encoder-Decoder
Sequence-to-Sequence Architecture

Encoder (reader or input) RNN
processes input sequence x=(x(1),
…, x(nx))and emits context C

Decoder (writer or output)
RNN is conditioned on the
context C to generate output
sequence y=(y(1), …, y(ny))

Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber 1997)

• To handle long-term dependence better
• Gated RNNs
• Self-loop gates controlled by another hidden units
• Extremely successful

– Speech recognition
– Handwriting
– Machine translation
– Social navigation
– Image captioning
– Parsing

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 123

ht-1 ht ht+1… …Standard
RNN

xtxt-1 xt+
1

ytyt-1 yt+
1

Hidden unit

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 125

LSTM

ht-1 ht ht+1… …Standard
RNN

xt

…

xt-1 xt+1

…

ytyt-1 yt+1

xtxt-1 xt+
1

ytyt-1 yt+
1

Hidden unit

LSTM cell

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 126

LSTM cell
ft =σ Wf ht−1 +U f xt +bf()Forget gate

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 127

LSTM cell
ft =σ Wf ht−1 +U f xt +bf()Forget gate

it =σ Wiht−1 +Uixt +bi()Input gate

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 128

LSTM cell
ft =σ Wf ht−1 +U f xt +bf()Forget gate

it =σ Wiht−1 +Uixt +bi()Input gate

!Ct = tanh WCht−1 +UCxt +bC()
Ct = ft ∗Ct−1 + it ∗ !Ct

State

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 129

LSTM cell
ft =σ Wf ht−1 +U f xt +bf()Forget gate

it =σ Wiht−1 +Uixt +bi()Input gate

!Ct = tanh WCht−1 +UCxt +bC()
Ct = ft ∗Ct−1 + it ∗ !Ct

State

ot =σ Woht−1 +Uoxt +bo()
ht = ot ∗ tanh(Ct)

Output gate

Summary
• Feedforward neural networks
• Backpropagation
• Convolutional neural networks
• Recurrent neural networks

