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Deep Learning Basics



Overview
• Deep learning basics

– Preliminaries
– Feed forward networks

• Reference
– Deep Learning (2017), Ch. 2 – 10 

Ian Goodfellow, Yoshua Bengio, and Aaron Courville, The MIT Press 
http://www.deeplearningbook.org/

– Pattern Classification, The 2nd Edition (2000), Ch. 6
Richard Duda, Peter E. Hart, David G. Stork
http://cns-classes.bu.edu/cn550/Readings/duda-etal-00.pdf
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Gradient-based optimization 
• Minimizing f(x) by changing x
• Objective function f(x)
= Criterion
= Cost function
= Loss function
= Error function



Gradient 
• f(x) = f(x1,x2,…,xn): multiple input variables
• Partial derivative              : How f(x) changes w.r.t. only xi

• Gradient
Vector of partial derivatives for all xi

Critical points: where all elements of gradient = 0
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Jacobian matrix 
• f(x) = f(x1,x2,…,xm): multiple input variables
• Partial derivative              : How f(x) changes w.r.t. only xi

• Gradient              : Vector of partial derivatives for all xi

• Multiple inputs, multiple outputs
– f: Rm à Rn

– Jacobian matrix Jf
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Gradient descent
[Cauchy 1847]

x

f(x)

f’(x) > 0
Move x to the left

f’(x) < 0
Move x to the right

Find x that minimizes f(x)

!f (x) ≅ lim
h→0

f (x + h)− f (x)
h

f’(x) = 0
Global minimum; gradient descent stops here.



• f(x) is descended when moving x in the 
negative direction of the gradient 

Gradient descent
[Cauchy 1847]

x ' = x −ε∇x f (x)



Maximum Likelihood Estimation 
• m i.i.d. examples: X = { x(1), …, x(m) }
• pdata(x): true probability distribution
• pmodel(x;θ): parameterized probability model 

estimating true pdata(x)
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation
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Logarithm: product à sum



Maximum Likelihood Estimation

θML = argmax
θ
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Numerical underflow

Logarithm: product à sum

Expectation 



Gradient-based learning
• Optimization – Minimizing loss
• Loss function: commonly, maximum likelihood
– Negative log-likelihood 
– Cross-entropy between training data & model 

distribution

J(θ ) = −Ex,y~ p̂data
log pmodel (y | x;θ )



Deep Feedforward Networks
• A.k.a. Multilayer perceptron (MLP)
• Function approximation machines
– Defines a mapping y = f(x; θ)  
– Learns the values of θ that best approximate the 

function
• Feedforward (as opposed to recurrent): 

information flows from input to output 
(without feedback loop)



Deep Feedforward Networks
Example
• f(x) = f(3)(f(2)(f(1)(x))) is represented as a network of 3 

functions f(1),f(2),f(3) connected in a chain

f(x) = f(3)(f(2)(f(1)(x)))
Input 

1st layer 
2nd layer 

Output layer 

Hidden layers because
values are not observed 
from training data



Exclusive OR (XOR)
• X = { [0,0]T, [0,1]T, [1,0]T, [1,1]T }
• Y = {    0,        1,       1,       0    }

0 1

1

[x1, x2]T

x1

x2



XOR as regression
• Linear model

• Mean Squared Error (MSE) loss function

J(θ ) = 1
4

( f *(x)− f (x;θ ))2
x∈X
∑

f (x;θ ) = f (x;w,b) = xTw+ b

Minimize loss J(θ)

w=0, b=0.5



2-layer neural network
• 1 hidden layer with 2 hidden units

x1 x2

h1 h2

y

Explicit representation

wx1,h1 wx2,h1

Width: number of hidden units, |h|
Depth: number of layers in the network



2-layer neural network
• 1 hidden layer with 2 hidden units

x1 x2

h1 h2

y

Explicit representation

wx1,h2 wx2,h2



2-layer neural network
• 1 hidden layer with 2 hidden units

x1 x2

h1 h2

y

Explicit representation

wh1,o wh2,o



2-layer neural network
• 1 hidden layer with 2 hidden units

x1 x2

h1 h2

y

x

h

y

Explicit representation Compact representation

WMatrix |x|x|h|

wVector |h|

[x1, x2]T

h = f (1)(x; W, c)

y = f (2)(h; w, b)

f (x; W, c, w, b) = f (2)(f (1)(x))

1st hidden layer

Last|output (2nd) layer

w1o w2o

w11
w22w21

w12

Input layer



Hidden layer function

x

h

y

Affine transformation of input x

h =    WTx + c 

biaslinear



Hidden layer function

x

h

y

Affine transformation + nonlinear activation function g

h =g( WTx + c )

nonlinear



Cost function
• Gradient of the cost function must be 

large and predictable
• Saturating functions (becoming flat) is 

problematic because gradient becomes very small

– E.g., Sigmoid function



Cross-entropy cost function
• Most commonly used
• Training using maximum likelihood

= Cost function is negative log-likelihood
= Cross-entropy between training data & model 
distribution

J(θ ) = −Ex,y~ p̂data
log pmodel (y | x;θ )



Output units
• Linear units for Gaussian distributions
• Sigmoid units for binary-class distributions
• Softmax units for multi-class distributions

softmax(x)i =
exp(xi )
exp(x j )j=1

n
∑



Hidden units
• Logistic sigmoid activation function
• Hyperbolic tangent activation function
• ReLU



Hidden layer function

x

h

y

Affine transformation + nonlinear activation function g

h =g( WTx + c )

e.g., ReLU g(z) = max{0, z}



Rectified Linear Unit (ReLU)

x

h

y

Affine transformation + 
nonlinear activation function g

h =g( WTx + c )

[Jarette et al., 2009]

g(z) = max{0, z}

[DeepLearning Fig. 6.3]



Architecture design
• Decide on the number of units, the depth 

of network, and how units should be 
connected to each other

• Experimentation and tuning with 
validation set



Network design
• Cost function
• Output units
• Hidden units
• Architecture



Two modes of network
• Feedforward: Predicting the values of 

output variables
• Learning:  Training the values of network 

parameters
– E.g., using backpropagation



Forward path: e.g., XOR

x

h

y f (x; W, c, w, b) = f (2)(g(f (1)(x)))

= wT max{0, W Tx + c} + b



Forward path: e.g., XOR
f (x; W, c, w, b) = f (2)(f (1)(x)) = wT max{0, W Tx + c} + b

W = 1 1
1    1

c = 0
-1

w = 1
-2

x = 0  0  1  1
0  1  0  1

WTx = 1 1
1    1

0  1  1  2
0  1  1  2

=0  0  1  1
0  1  0  1

xW+c= 0  1  1  2
-1  0  0  1 g(xW+c)= 0  1  1  2

0  0  0  1

wTg(xW+c)= 0  1  1  2
0  0  0  1

1  -2 = 0  1  1  0
b = 0



Back-propagation
• Start with untrained network
• Given example X à Y
• Pass example input X through the network
• Compute the predicted output Z at the output layer
• Compare the prediction Z with true output Y
• Compute error (loss) between Z and Y
• Compute gradients for network parameters
• Adjust network parameters to reduce the error using 

gradient descent



Back-propagation
• Loss function J(w)

• At each iteration m, update network weights w

∇w = −η ∂J
∂w

w(m+1) = w(m)+∇w(m) where

Learning rate



Computation graph
• Node represents variable of type scalar, 

vector, matrix, tensor, etc.
• Operator takes input nodes (variables) 

and returns output variable



Examples of computational graphs

b

[DL Fig 6.8] 

z = xy Logistric regression
y^=σ(wx + b)

H=max{0, WX+b} y^=wx
λΣw2 

σ



Chain rule of calculus
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n x m Jacobian matrix of g: Rm à Rn

Gradient vector of f 

z = f(g(x))z = f(y)
y = g(x) 

x in Rm, y in Rn

f: Rn à R
g: Rm à Rn

x,y in R
f: R à R
g: R à R



Chain rule of calculus
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Chain rule of calculus

n x m Jacobian matrix of g

Gradient vector of f

x in Rm, y in Rn

f: Rn à R
g: Rm à Rn

x,y in R
f: R à R
g: R à R

z = f(g(x))z = f(y)
y = g(x) 



Chain rule applied to tensors

∇X z = (∇XYj )
j
∑ ∂z

∂Yj

Gradient of a value z w.r.t. a tensor X

(∇X z)i Abstracting tensor indices into single variable i

Tensor X, Y
z = f(Y)
Y = g(X)



Simple forward propagation
Assume that nodes have been sorted in the order of computation

u(1) u(2)

u(3)

x

x1 x2

parents

Pa(u(3)) = { u(1), u(2) }
Input of length ni

Single scalar u(n)

[DL Algorithm 6.1] 



Simple backpropagation

[DL Algorithm 6.2] 

i: children of j



Forward propagation

Input layer

Loss + regularizer
Output layer

Affine transformation
Activation function Hidden layers

[DL Algorithm 6.3] 



Back-propagation

[DL Algorithm 6.4] 

a(k) = b(k) + W(k)h(k-1)



Symbolic representations
• Symbol-to-number differentiation

– Computational graph + a set of numerical values
– Torch
– Caffe

• Symbol-to-symbol derivatives
– Computational graph + symbolic representation of 

derivatives (enables computation of higher derivatives)
– Theano
– TensorFlow



Computation graph for 1-layer MLP

[DL Ch. 6.5.7] 

Weight decay regularizer
prefers: smaller weights 



General back-propagation
• get_operation(V): returns the operation 

that computes V, e.g., function pointer
• get_consumers(V, G): returns children of 

node V in computational graph G
• get_inputs(V, G): returns parents of V in G
• op.bprop(inputs) ∇X z = (∇XYj )

j
∑ ∂z

∂Yj
op.f(inputs)j



General back-propagation outer loop



General back-propagation inner loop

children

parents

Avoid redundant computation

∇X z = (∇XYj )
j
∑ ∂z

∂Yj
op.f(inputs)j



Computational cost of backprop

• Forward propagation stage: 
–O(number of weights) matrix multiplications

• Backward propagation state:
–O(number of weights) matrix multiplications
–Memory cost O(mnh) where m is the number 

of examples in minibatch; nh, number of 
hidden units



Hyperparameters & validation sets
• Tuning parameters that we can use to control 

learning algorithms
• Setting that is inappropriate to learn from 

training set
• Validation sets: part of training data, e.g., 80% 

training set for learning model parameters, 20% 
validation set for tuning hyperparameters



Imagine processing this input 
image composed of 12,192,768 
pixels in fully connected neural 
networks

Convolutional Neural Networks



Convolutional networks [LeCun 1989]
are neural networks for processing data 
shaped in grid-like topology that use 
convolution in place of matrix multiplication 
in some layers.
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Convolution
Convolution is an operator between two functions f and g of a real-
valued argument t, defining an integral of piece-wise multiplication of 
f and g as one of the functions, g, is shifted over the other function f

e.g., f is noisy sensor reading; g is a weighting function, s(t) = f*g(t) is 
weighted average of sensor reading—higher weights for recent 
readings 

56CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 

s(t) = ( f *g)(t) = f (i)g(t − i)
i∫ di

age shift over values of t

t

f

g

Continuous functions



Convolution
Convolution is an operator between two functions f and g of a real-
valued argument t, defining an integral of piece-wise multiplication of 
f and g as one of the functions, g, is shifted over the other function f

e.g., f is noisy sensor reading; g is a weighting function, s(t) = f*g(t) is 
weighted average of sensor reading—higher weights for recent 
readings 
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s(t) = ( f *g)(t) = f (i)g(t − i)
i∫ di

age shift over values of t

t

f

g

Continuous functions



Convolution
Convolution is an operator between two functions f and g of a real-
valued argument t, defining a sum of piece-wise multiplication of f 
and g as one of the functions, g, is shifted over the other function f

e.g., f is noisy sensor reading; g is a weighting function, s(t) = f*g(t) is 
weighted average of sensor reading—higher weights for recent 
readings 
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s(t) = ( f *g)(t) = f (i)g(t − i)
i=−∞

∞

∑
age shift over values of t

t

f

g

Discrete functions



Convolution in CNNs
Convolution is an operator between input (data) tensor I and kernel 
(parameters) tensor K of multiple real-valued arguments, defining a 
sum of piece-wise multiplication of I and K as the kernel K is shifted 
over input data I

e.g., 2-D image input data
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S(i, j) = (I *K )(i, j) = I(m,n)K(i−m, j − n)
n
∑

m
∑

input

kernel
shift over values of i and j



Convolution is commutative
Convolution is an operator between input (data) tensor I and kernel 
(parameters) tensor K of multiple real-valued arguments, defining a 
sum of piece-wise multiplication of I and K as the kernel K is shifted 
over input data I

e.g., 2-D image input data
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S(i, j) = (I *K )(i, j) = I(m,n)K(i−m, j − n)
n
∑

m
∑

input

kernel
shift over values of i and j

S(i, j) = (K * I )(i, j) = I(i−m, j − n)K(m,n)
n
∑

m
∑

input

kernel

Kernel is flipped



Cross-correlation of convolution 
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S(i, j) = (I *K )(i, j) = I(i+m, j + n)K(m,n)
n
∑

m
∑

input

kernel Kernel is not flipped

Commonly also referred to as “convolution” 



Example of 2-D 
convolution
[Fig 9.2]
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Piece-wise multiplication

Feature map



Properties of convolution in neural networks

• Sparse interactions
• Parameter sharing
• Equivariant representations
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Sparse interactions
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m inputs

n outputs

Matrix multiplication
O(m x n)

Convolution
O(k x n)

Output nodes affected by input 
node x3

[Fig. 9.2]



Sparse interactions
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m inputs

n outputs

Matrix multiplication
O(m x n)

Input notes affecting 
output node s3

[Fig. 9.3]

Receptive field of s3



Sparse interactions

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 66

m

n

Matrix multiplication
O(m x n)

Convolution
O(k x n)

k= ~ 100s

m = 12,192,768  



Parameter sharing
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“Tied” weights
= Used once



Parameter sharing
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“Tied” weights
= Used once

Learn weights once
= Used for every location

[Fig 9.5]

Reduce memory 
requirement for storing 
parameters



Equivariant to translation

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 69

f (g(x)) = g( f (x))

Function f(x) is equivariant to function g if:

Convolution is equivariant to translation, 
i.e., if the input changes, the output 
changes the same way.



Equivariant to translation
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f (g(x)) = g( f (x))

Convolution f is equivariant to translation function g if:

0 7 0

1 8 1

6 5 8

0 70 0

10 80 10

60 50 80
0 0 70

0 10 80

0 60 50

g(x,y)=input(x-1,y)10convolution



Equivariant to translation
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f (g(x)) = g( f (x))

Convolution f is equivariant to translation function g if:

0 7 0

1 8 1

6 5 8

0 70 0

10 80 10

60 50 80
0 0 70

0 10 80

0 60 50

10 g(x,y)=input(x-1,y)

0 0 7

0 1 8

0 6 5

convolution

10convolutiong(x,y)=input(x-1,y)



Convolutional layer

Components of convolutional layer
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Convolution stage:
Affine transformation

Detection stage:
Nonlinearity
e.g., ReLU

Pooling stage

Input

Output

Pooling function: to 
refine the output



Pooling

• Max pooling [Zhou & Chellappa, 1988]: report the 
maximum output among a rectangular neighborhood

• Average pooling
• L2 norm pooling
• Weighted average pooling
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Pooling over spatial regions 

74

[Fig 9.8]

Invariance to translation (small shift)

CMU 16-785: Integrated Intelligence in Robotics 
(jeanoh@cmu.edu) 



Pooling over features
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[fig 9.9]

Invariance to features, e.g., rotation

Max pooling



Pooling also provides
• Invariance to translation or other transformations
• Efficiency via downsampling—i.e., fewer pooling units than 

detection units
• Support for variable-size input by varying the size of offset 

between pooling regions to meet fixed size output
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[Fig 9.10]



Convolution with a stride
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[Fig 9.12]

Computationally 
wasteful



Convolution with a stride
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Convolution with a stride

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 79

Stride of size 2



Zero padding
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…

No zero padding, 
valid convolution

Full zero padding, 
same convolution

Convolution shrinks the network size



Example: Image classification 
• ImageNet Large-Scale Visual Recognition Challenge 

(ILSVRC): 1.2M training, 50K validation, and 150K 
testing images

• Fixed-size input 
• 5 Convolutional layers + 3 fully connected layers
• 2 GPUs
• 1000 classes image classification
• Reducing overfitting by:

– Data augmentation (image translation, horizontal 
reflection, intensity alteration using PCA)

– Dropout (zero out output with some probability, e.g., 
0.5)
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AlexNet [Krizhevsky et al., 2012]
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AlexNet
Input: 224x224x3 (RGB)

96 (48+48) 11x11x3 kernels
Softmax over 
1000 classes

[Krizhevsky et al., 2012]

[Fig 3]



Regularization

Any modification we make to a learning 
algorithm to reduce “generalization error” as 
opposed to “training error”



Parameter norm penalties
• L2 norm regularization (aka Tikhonov

regularization or ridge regression)

• L1 norm regularization
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Ω(θ ) = 1
2
w

2

2

Ω(θ ) = w
2
= wi

i
∑



Data augmentation
• Train on more data
• Invariant to various transformations
• Effective in image classification, object recognition
• But not for all problem domains
• Examples

– Rotation
– Horizontal, vertical flip
– Translation
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Early stopping

During training, keep track of the parameters 
that give the lowest validation error, return 
them at the end
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[Fig 7.3]

While training error is 
decreased, validation 
error may go up due 
to overfitting



Batch normalization

• Internal covariance shift: the distribution of input 
to each layer changes as the parameters of 
previous layer changes

• Normalize layer inputs for each mini-batch
• Advantages: 
– higher learning rate, faster training
– No dropout needed
– Accepted as part of common architecture
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[Ioffe & Szegedy, 2015]



Other methods for regularization
• Noise injection, label smoothing
• Parameter sharing
– CNN

• Bootstrapping aggregating (aka bagging) –
ensemble or model averaging

• Dropout [Srivastava et al., 2014] 
– Ignore random output with some probability, 

meaning not used for learning at all
– Popular earlier but not so much currently
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Recurrent Neural Networks



Whereas CNNs process a grid of values, 
Recurrent neural networks (RNNs) 
(Rumelhart et al., 1986) model and process 
sequential data.
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Processing sequential data
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In 1-D CNN, an output is a function of neighboring inputs

input

output



Processing sequential data
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In 1-D CNN, an output is a function of neighboring inputs

In RNN, an output is a function of current input & previous output

input

output

input

output



RNN for processing sequence
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x

h

f ht = f (ht-1, xt; θ) 

In RNN, an output is a function of current input & previous output

Recurrent connection: indicates 
interaction between current & 1 time 
step before 



RNN for processing sequence
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x

h

f

h… ht-1 ht ht+1

xt-1 xt xt+1 input

outputh…

f f f f

ht = f (ht-1, xt; θ) 

In RNN, an output is a function of current input & previous output

Unfolding

Recurrent connection: indicates 
interaction between current & 1 time 
step before 



RNN Patten I
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Recurrent connections between hidden units; output once at the end

[Fig. 10.5]



RNN Pattern II
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[Fig. 10.4]

Recurrent connections between the current output and the next hidden 
unit; output every time step



RNN Pattern III
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[Fig 10.3]

Recurrent connections between hidden units; output every time step



Forward propagation in RNN
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[Fig 10.3]

Recurrent connections between hidden units; output every time step

a(t ) = b+Wh(t−1) +Ux(t ) ,
ht = tanh(a(t ) ),

o(t ) = c+Vh(t ) ,
ŷ (t ) = softmax(o(t ) )Activation ( previous hidden 

unit + current input )
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[Fig 10.3]

Recurrent connections between hidden units; output every time step

a(t ) = b+Wh(t−1) +Ux(t ) ,
ht = tanh(a(t ) ),

o(t ) = c+Vh(t ) ,
ŷ (t ) = softmax(o(t ) )From hidden unit to output unit; 

e.g., unnormalized log 
probabilities of all values of a 
discrete variable such as words or 
characters
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[Fig 10.3]

Recurrent connections between hidden units; output every time step

a(t ) = b+Wh(t−1) +Ux(t ) ,
ht = tanh(a(t ) ),

o(t ) = c+Vh(t ) ,
ŷ (t ) = softmax(o(t ) )

Softmax to get normalized 
probabilities 
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An example RNN where input and out sequences have the same length

L x(1) ,...,x(τ ){ }, y (1) ,..., y (τ ){ }( )
= L(t )

t
∑

= − log pmodel y
(t ) x(1) ,...,x(t ){ }( )

t
∑

…



BPTT
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∇L(t )L =
∂L
∂L(t )

=1

∇o(t )L( )i =
∂L
∂oi

(t )
=
∂L
∂L(t )

∂L(t )

∂oi
(t )
= ŷi

(t ) −1
i ,y( t )

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t ) = b+Wh(t−1) +Ux(t ) ,
ht = tanh(a(t ) ),
o(t ) = c+Vh(t ) ,
ŷ (t ) = softmax(o(t ) )

L(t ) = −log pmodel y
(t ) x(1) ,...,x(t ){ }( )



BPTT

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 103

∇L(t )L =
∂L
∂L(t )

=1

∇o(t )L( )i =
∂L
∂oi

(t )
=
∂L
∂L(t )

∂L(t )

∂oi
(t )
= ŷi

(t ) −1
i ,y( t )

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t ) = b+Wh(t−1) +Ux(t ) ,
ht = tanh(a(t ) ),
o(t ) = c+Vh(t ) ,
ŷ (t ) = softmax(o(t ) )

L(t ) = −log pmodel y
(t ) x(1) ,...,x(t ){ }( )

Input to softmax

True answer (1 at 
index i, 0 elsewhere)

Loss between true answer and 
predicted output
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∇h(τ )L =V
T∇

o(τ )
L

∇h(t )L =
∂h(t+1)

∂h(t )
⎛

⎝
⎜

⎞

⎠
⎟

T

(∇
h( t+1)
L)+ ∂o(t )

∂h(t )
⎛

⎝
⎜

⎞

⎠
⎟

T

(∇
o( t )
L)

=WT (∇
h( t+1)
L)diag 1− (h(t+1) )2( )+V T (∇

o( t )
L)

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t ) = b+Wh(t−1) +Ux(t ) ,
ht = tanh(a(t ) ),
o(t ) = c+Vh(t ) ,
ŷ (t ) = softmax(o(t ) )

L(t ) = −log pmodel y
(t ) x(1) ,...,x(t ){ }( )

h(t+1) & o(t)

-- At the final time step (no h(τ+1)) 
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∇h(τ )L =V
T∇

o(τ )
L

∇h(t )L =
∂h(t+1)

∂h(t )
⎛

⎝
⎜

⎞

⎠
⎟

T

(∇
h( t+1)
L)+ ∂o(t )

∂h(t )
⎛

⎝
⎜

⎞

⎠
⎟

T

(∇
o( t )
L)

=WT (∇
h( t+1)
L)diag 1− (h(t+1) )2( )+V T (∇

o( t )
L)

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t ) = b+Wh(t−1) +Ux(t ) ,
ht = tanh(a(t ) ),
o(t ) = c+Vh(t ) ,
ŷ (t ) = softmax(o(t ) )

L(t ) = −log pmodel y
(t ) x(1) ,...,x(t ){ }( )

h(t+1) & o(t)

-- At the final time step (no h(τ+1)) 

h(t+1) = tanh (b + Wh(t) + Ux(t+1))
f(x) = tanh(x)
f’(x)=1-{f(x)}2
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∇h(τ )L =V
T∇

o(τ )
L

∇h(t )L =
∂h(t+1)

∂h(t )
⎛

⎝
⎜

⎞

⎠
⎟

T

(∇
h( t+1)
L)+ ∂o(t )

∂h(t )
⎛

⎝
⎜

⎞

⎠
⎟

T

(∇
o( t )
L)

=WT (∇
h( t+1)
L)diag 1− (h(t+1) )2( )+V T (∇

o( t )
L)

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t ) = b+Wh(t−1) +Ux(t ) ,
ht = tanh(a(t ) ),
o(t ) = c+Vh(t ) ,
ŷ (t ) = softmax(o(t ) )

L(t ) = −log pmodel y
(t ) x(1) ,...,x(t ){ }( )

h(t+1) & o(t)

-- At the final time step (no h(τ+1)) 

h(t+1) = tanh (b + Wh(t) + Ux(t+1))
f(x) = tanh(x)
f’(x)=1-{f(x)}2
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∇cL =
∂o(t )

∂c

⎛

⎝
⎜

⎞

⎠
⎟

t
∑

T

∇
o( t )
L = ∇

o( t )
L

t
∑

∇bL =
∂h(t )

∂b(t )
⎛

⎝
⎜

⎞

⎠
⎟

t
∑

T

∇
h( t )
L = diag 1− (h(t ) )2( )∇h( t )

L
t
∑

∇V L =
∂L
∂oi

(t )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇Voi

(t )

t
∑ = ∇

o( t )
L( )

t
∑ h(t )

T

∇W L =
∂L
∂hi

(t )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇

W ( i )hi
(t )

t
∑ = diag 1− (h(t ) )2( ) ∇h( t )

L( )
t
∑ h(t−1)

T

∇U L =
∂L
∂hi

(t )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇

U ( i )
hi
(t )

t
∑ = diag 1− (h(t ) )2( ) ∇h( t )

L( )
t
∑ x(t )

T

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t ) = b+Wh(t−1) +Ux(t ) ,
ht = tanh(a(t ) ),
o(t ) = c+Vh(t ) ,
ŷ (t ) = softmax(o(t ) )

L(t ) = −log pmodel y
(t ) x(1) ,...,x(t ){ }( )

= 1
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∇cL =
∂o(t )

∂c

⎛

⎝
⎜

⎞

⎠
⎟

t
∑

T

∇
o( t )
L = ∇

o( t )
L

t
∑

∇bL =
∂h(t )

∂b(t )
⎛

⎝
⎜

⎞

⎠
⎟

t
∑

T

∇
h( t )
L = diag 1− (h(t ) )2( )∇h( t )

L
t
∑

∇V L =
∂L
∂oi

(t )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇Voi

(t )

t
∑ = ∇

o( t )
L( )

t
∑ h(t )

T

∇W L =
∂L
∂hi

(t )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇

W ( i )hi
(t )

t
∑ = diag 1− (h(t ) )2( ) ∇h( t )

L( )
t
∑ h(t−1)

T

∇U L =
∂L
∂hi

(t )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇

U ( i )
hi
(t )

t
∑ = diag 1− (h(t ) )2( ) ∇h( t )

L( )
t
∑ x(t )

T

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t ) = b+Wh(t−1) +Ux(t ) ,
ht = tanh(a(t ) ),
o(t ) = c+Vh(t ) ,
ŷ (t ) = softmax(o(t ) )

L(t ) = −log pmodel y
(t ) x(1) ,...,x(t ){ }( )
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∇cL =
∂o(t )

∂c
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⎜
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t
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T

∇
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o( t )
L

t
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⎜
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⎠
⎟

t
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T
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t
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∇V L =
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∂oi
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⎝
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⎞

⎠
⎟⎟

i
∑ ∇Voi

(t )

t
∑ = ∇

o( t )
L( )

t
∑ h(t )

T

∇W L =
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⎝
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⎠
⎟⎟
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∑ ∇

W ( i )hi
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t
∑ = diag 1− (h(t ) )2( ) ∇h( t )

L( )
t
∑ h(t−1)

T

∇U L =
∂L
∂hi

(t )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
∑ ∇

U ( i )
hi
(t )

t
∑ = diag 1− (h(t ) )2( ) ∇h( t )

L( )
t
∑ x(t )

T

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t ) = b+Wh(t−1) +Ux(t ) ,
ht = tanh(a(t ) ),
o(t ) = c+Vh(t ) ,
ŷ (t ) = softmax(o(t ) )

L(t ) = −log pmodel y
(t ) x(1) ,...,x(t ){ }( )
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∇cL =
∂o(t )
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∇
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t
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t
∑ = diag 1− (h(t ) )2( ) ∇h( t )

L( )
t
∑ x(t )

T

Model parameters: U, V, W, b, and c
Nodes: x(t), h(t), o(t), and L(t)

a(t ) = b+Wh(t−1) +Ux(t ) ,
ht = tanh(a(t ) ),
o(t ) = c+Vh(t ) ,
ŷ (t ) = softmax(o(t ) )

L(t ) = −log pmodel y
(t ) x(1) ,...,x(t ){ }( )
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An example RNN where input and out sequences have the same length

…

Computing this loss w.r.t. to model parameters 
is expensive; runtime O(τ), memory O(τ).

Can we parallelize this?



Recall: RNN Pattern II
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[Fig. 10.4]

Con: Less powerful
Pro: Each time step can be trained independently in parallel 



Teacher forcing

CMU 16-785: Integrated Intelligence in Robotics (jeanoh@cmu.edu) 113
[Fig. 10.6]

During training, use the ground truth from 
previous time step as input to compute the 
hidden unit of the current time step



Teacher forcing
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[Fig. 10.6]

During test time, use the 
predicted output from the 
previous time step to 
compute the current 
hidden unit

During training, use the ground truth from 
previous time step as input to compute the 
hidden unit of the current time step



Teacher forcing
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[Fig. 10.6]

During test time, use the 
predicted output from the 
previous time step to 
compute the current 
hidden unit

During training, use the ground truth from 
previous time step as input to compute the 
hidden unit of the current time step
To become robust to open-loop mode, train 
with both teacher’s inputs and self-
generated inputs



Determining when to end

• Special end of sequence symbol [Schmidhuber 2012]
• Bernoulli output at each time step to determine whether to 

continue or stop
• Add extra input to predict the length of output [Goodfellow et al., 

2014]
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Single vector input
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A  dog  with blue …



Bidirectional RNNs
(Schuster & Paliwal, 1997)

• Prediction may depend on the entire input
• Very successful in many applications:
– Handwriting recognition (Graves et al., 2008, 

2009)
– Speech recognition (Graves & Schmidhuber

2005, 2013)
– Bioinformatics (Baldi et al., 1999)
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x(1), …, x(t-1),  x(t),  x(t+1), …, x(τ)



Bidirectional RNNs
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[Fig. 10.11]

Forward in time

Backward in time



Encoder-Decoder
Sequence-to-Sequence Architecture

• Map variable-length input sequence to variable-length output 
sequence

• Machine translation [Cho et al., 2014][Sutskever et al., 2014]
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Encoder-Decoder
Sequence-to-Sequence Architecture

Encoder (reader or input) RNN 
processes input sequence x=(x(1), 
…, x(nx))and emits context C
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Encoder-Decoder
Sequence-to-Sequence Architecture

Encoder (reader or input) RNN 
processes input sequence x=(x(1), 
…, x(nx))and emits context C

Decoder (writer or output) 
RNN is conditioned on the 
context C to generate output 
sequence y=(y(1), …, y(ny))



Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber 1997)

• To handle long-term dependence better
• Gated RNNs
• Self-loop gates controlled by another hidden units
• Extremely successful 

– Speech recognition
– Handwriting
– Machine translation
– Social navigation
– Image captioning
– Parsing
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ht-1 ht ht+1… …Standard 
RNN

xtxt-1 xt+
1

ytyt-1 yt+
1

Hidden unit
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LSTM

ht-1 ht ht+1… …Standard 
RNN

xt

…

xt-1 xt+1

…

ytyt-1 yt+1

xtxt-1 xt+
1

ytyt-1 yt+
1

Hidden unit

LSTM cell
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LSTM cell
ft =σ Wf ht−1 +U f xt +bf( )Forget gate
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LSTM cell
ft =σ Wf ht−1 +U f xt +bf( )Forget gate

it =σ Wiht−1 +Uixt +bi( )Input gate
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LSTM cell
ft =σ Wf ht−1 +U f xt +bf( )Forget gate

it =σ Wiht−1 +Uixt +bi( )Input gate

!Ct = tanh WCht−1 +UCxt +bC( )
Ct = ft ∗Ct−1 + it ∗ !Ct

State
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LSTM cell
ft =σ Wf ht−1 +U f xt +bf( )Forget gate

it =σ Wiht−1 +Uixt +bi( )Input gate

!Ct = tanh WCht−1 +UCxt +bC( )
Ct = ft ∗Ct−1 + it ∗ !Ct

State

ot =σ Woht−1 +Uoxt +bo( )
ht = ot ∗ tanh(Ct )

Output gate 



Summary
• Feedforward neural networks
• Backpropagation 
• Convolutional neural networks
• Recurrent neural networks


