Overview

• Probability basics
• Reinforcement learning
 – Markov Decision Process
 – Solving MDPs
• References
 – Reinforcement learning – Sutton & Barto, Second edition, 2018
 – Planning algorithms – LaValle, 2006
 http://planning.cs.uiuc.edu/
Planning recap

• \(A^* \)
 – Admissible (underestimate) heuristics
 – Consistent (monotonic) heuristics
• Nonnegative cost for Dijkstra
• Termination action for any-length value iteration
• Dynamic programming – recursion
 \(V(x_t) \) as a function of \(V(x_{t+1}) \) or \(V(x_{t-1}) \)
Exit from deterministic world
Enter stochastic world
Probability preliminaries

- Probability represents uncertainty
- $0 \leq P(A) \leq 1$
- $P(\text{True}) = 1$
- $P(\text{False}) = 0$
Probability preliminaries

- Probabilities over all events sum to 1
- \(P(A) + P(\sim A) = 1 \)
- \(P(\sim A) = 1 - P(A) \)

\(p(A) \): Probability of \(A \) being true
\(p(\sim A) \): probability of \(A \) not being true
Probability preliminaries

• Probabilities over all events sum to 1

\[\sum_{v \in D(x)} P(x = v) = 1 \]

Where \(D(x) \) denotes the domain of valid values for variable \(x \)
\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]
Conditional probability

$p(A)$: Probability of A (given the world)

A: You will be in Hawaii next month. \hspace{1cm} P(A) = .1$
Conditional probability

$p(A)$: Probability of A (given the world)

A: You will be in Hawaii next month.
B: You are invited to a meeting in Hawaii next month.

$P(A) = .1$
$P(B) = .05$
$P(A \land B) = .04$
Conditional probability

\[p(A) \]: Probability of \(A \) (given the world)

- A: You will be in Hawaii next month.
- B: You are invited to a meeting in Hawaii next month.

\[P(A) = .1 \]
\[P(B) = .05 \]
\[P(A \cap B) = .04 \]

\[P(A) + P(\sim A) = 1 \]
Conditional probability

\[p(A|B) \]: Probability of A “given” B

A: You will be in Hawaii next month.
B: You are invited to a meeting in Hawaii next month.

\[
p(A|B) = \frac{p(A \cap B)}{p(B)}
\]

\[P(A) = 0.1 \]
\[P(B) = 0.05 \]
\[P(A \cap B) = 0.04 \]
\[P(A|B) = \frac{0.04}{0.05} = 0.8 \]

\[P(A|B) + P(\neg A|B) = 1 \]
Conditional probability
\(p(A|B) \): Probability of A "given" B

\[
p(A \mid B) = \frac{p(A \cap B)}{p(B)}\]

\[
p(A \cap B) = p(A \mid B)p(B)\]

\[
p(A \mid B)p(B) = p(B \mid A)p(A)\]
Conditional probability
\[p(A|B): \text{Probability of } A \text{ “given” } B \]

\[
p(A \mid B) = \frac{p(A \cap B)}{p(B)}
\]

\[
p(A \cap B) = p(A \mid B)p(B)
\]

\[
p(A \mid B)p(B) = p(B \mid A)p(A)
\]

Bayes’ rule:
\[
p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}
\]
If you mail me your stub I will pay you $100.

Expected value of mailing your stub = $100

$100 - $60 = $40
If you mail me your stub I will pay you $100. If I don’t receive it I won’t pay anything. Probability of mail getting lost is 0.5.
If you mail me your stub I will pay you $100. If I don’t receive it I won’t pay anything. Probability of mail getting lost is 0.5. Expected value of mailing your stub = 0.5x$100 + 0.5x$0 = $50 $50 - $60 = -$10
Expected value

- $X = x_1, \ldots, x_n$: set of n possible outcomes
- $v(x_i)$: value associated with outcome x_i
- $p(x_i)$: $p(X=x_i)$ probability of outcome x_i; $\sum_{i=1}^{n} p(x_i) = 1$
- Expected value for a single value $X=x_i$: $p(x_i)v(x_i)$
Expected value

- $X = x_1, \ldots, x_n$: set of n possible outcomes
- $v(x_i)$: value associated with outcome x_i
- $p(x_i)$: $p(X=x_i)$ probability of outcome x_i; $\sum_{i=1}^n p(x_i) = 1$
- Expected value for a single value $X=x_i$: $p(x_i)v(x_i)$
- Expected value of X:

$$E(X) = \sum_{i=1}^n p(x_i)v(x_i)$$
Questions on preliminaries?
Learning what to do to solve a problem

• e.g. how to open a door
Supervised learning

• Told what to do from someone who knows how to solve the problem
• Learning from examples
Reinforcement learning

• Interact with environment to learn what works and what doesn’t
Reinforcement learning

What is the objective of reinforcement learning?
Policy

Prepare what to do in every possible situation to maximize long-term expected reward from there.

Mapping from state to action(s)
• Deterministic policy: \(\pi(s) \rightarrow a \)
• Stochastic policy: \(\pi(s,a) = \pi(als) \rightarrow p(als) \) for each available action \(a \)
Reinforcement learning

• Reward function: immediate reward of state
• Value function: long-term reward of state
• Policy: a mapping from state to action(s)
• Find a policy that maximizes long-term reward
Markov property

It doesn’t matter how you got here, but whatever happens now depends only on the current state.

\[p(s_{t+1} = s', r_{t+1} = r \mid s_t, a_t, s_{t-1}, a_{t-1}, \ldots, s_0, a_0) = p(s_{t+1} = s', r_{t+1} = r \mid s_t, a_t) \]
Reward vs. utility

• Decision theory
• Reward: face value
• Utility: relative value based on which people make decisions
• e.g., the second piece of cheesecake or $100K today vs. $100K in 10 years
• Discounted rewards
Short-term vs. long-term benefits

• Decision making based on:
 – Immediate rewards
 – Long-term rewards
 – Long-term expected rewards
 – Discounted long-term expected rewards
Stochastic state transition

- Deterministic

\[s \xrightarrow{a} s_i, r(s_i) \]

- Nondeterministic

\[s \xrightarrow{a} s_i, r(s_i), p(s_1|s,a), p(s_2|s,a), \ldots, p(s_n|s,a) \]

\[\sum_{i=1}^{n} p(s_i|s,a) = 1 \]
Markov Decision Process

- MDP = \{ S, A, T, r, \gamma \}
- S: set of states
- A: set of actions
- T: state transition matrix \(S \times A \times S \rightarrow R \)
- r: reward function \(S \times A \rightarrow R \)
- \(\gamma \): discount factor \((0,1]\)
Value function

\[V^\pi(s) = E_\pi \{ R_t \mid s_t = s \} = E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\} \]

State-value function for policy \(\pi \): expected return of starting at state \(s \) and follow policy \(\pi \) thereafter.

\[Q^\pi(s,a) = E_\pi \{ R_t \mid s_t = s, a_t = a \} = E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a \right\} \]

Action-value function for policy \(\pi \).
State-value function

\[V^\pi(s) = E_\pi \{ R_t \mid s_t = s \} \]

\[= E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\} \]

State-value function for policy \(\pi \): expected return of starting at state \(s \) and follow policy \(\pi \) thereafter.

Backup diagram
Action-value function

\[Q^\pi(s, a) = E_{\pi} \{ R_t \mid s_t = s, a_t = a \} \]

\[= E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a \right\} \]

Action-value function for policy \(\pi \): expected return of starting at state \(s \), taking action \(a \), and follow policy \(\pi \) thereafter.

Backup diagram
Bellman equation of value function

\[V_\pi(s) = E_\pi \{ R_t \mid s_t = s \} \]

\[= E_\pi \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \mid s_t = s \right\} \]

\[\gamma^0 r_{t+1} + \gamma^1 r_{t+2} + \gamma^2 r_{t+3} + \ldots \]

\[= r_{t+1} + \gamma (\gamma^0 r_{t+2} + \gamma^1 r_{t+3} + \ldots) \]

\[= r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{(t+1)+k+1} \]
Bellman equation of value function

\[V^{\pi}(s) = E_{\pi} \{ R_t \mid s_t = s \} \]

\[= E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\} \]

\[= E_{\pi} \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \mid s_t = s \right\} \]

\[= \sum_a \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[E(r_{t+1} \mid s, a, s') + \gamma E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \mid s_{t+1} = s' \right\} \right] \]
Bellman equation of value function

\[V^\pi(s) = E_\pi \{ R_t \mid s_t = s \} \]

\[= E_\pi \left\{ \sum_{k=0}^\infty \gamma^k r_{t+k+1} \mid s_t = s \right\} \]

\[= E_\pi \left\{ r_{t+1} + \gamma \sum_{k=0}^\infty \gamma^k r_{t+k+2} \mid s_t = s \right\} \]

\[= \sum_a \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[E(r_{t+1} \mid s, a, s') + \gamma V^\pi(s') \right] \]
Optimal policy

- $\pi \geq \pi'$ iff. $V^\pi(s) \geq V^{\pi'}(s)$ for every state s
- Optimal policies π^* share optimal state-value function V^* (or action-value function Q^*)

\[
V^*(s) = \max_{\pi} V^\pi(s), \forall s \in S
\]

\[
Q^*(s,a) = \max_{\pi} Q^\pi(s,a), \forall s \in S, a \in A
\]

\[
Q^*(s,a) = E \left\{ r_{t+1} + \gamma V^*(s_{t+1}) \mid s_t = s, a_t = a \right\}
\]
Bellman optimality equation for V^*

\[
V^*(s) = \max_{a \in \mathcal{A}(s)} Q^\pi^*(s, a)
\]

\[
= \max_a E_{\pi^*} \left\{ R_t \big| s_t = s, a_t = a \right\}
\]

\[
= \max_a E_{\pi^*} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \big| s_t = s, a_t = a \right\}
\]

\[
= \max_a E_{\pi^*} \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \big| s_t = s, a_t = a \right\}
\]

\[
= \max_a \left\{ r_{t+1} + \gamma V^*(s_{t+1}) \big| s_t = s, a_t = a \right\}
\]

\[
\sum_{a} \sum_{s'} p(s' \big| s, a) \left[E(r_{t+1} \big| s, a, s') + \gamma V^*(s') \right]
\]
Bellman optimality equation for Q^*

$$Q^*(s,a) = E\left\{ r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1},a') \mid s_t = s, a_t = a \right\}$$

$$= \sum_{s'} p(s' \mid s,a) \left[E(r_{t+1} \mid s,a,s') + \gamma \max_a Q^*(s',a') \right]$$
Bellman optimality equations

\[V^*(s) = \max_a E_{\pi^*} \left\{ r_{t+1} + \gamma V^*(s_{t+1}) \mid s_t = s, a_t = a \right\} \]
\[= \max_a \sum_{s'} p(s' \mid s, a) \left[E(r_{t+1} \mid s, a, s') + \gamma V^*(s') \right] \]

\[Q^*(s, a) = E \left\{ r_{t+1} + \gamma \max_a Q^*(s_{t+1}, a') \mid s_t = s, a_t = a \right\} \]
\[= \sum_{s'} p(s' \mid s, a) \left[E(r_{t+1} \mid s, a, s') + \gamma \max_a Q^*(s', a') \right] \]
Solving MDP

• Have a probability model
• Dynamic programming
 – Policy iteration
 – Value iteration
Bellman equation

• $V^\pi(s)$: Value of expected return when starting from state s and following policy π

\[
V^\pi(s) = E_\pi \{ r_{t+1} + \gamma V^\pi(s_{t+1}) | s_t = s \}
= \sum_a \pi(s,a) \sum_{s'} p(s' | s,a) \left[E(r_{t+1} | s,a,s') + \gamma V^\pi(s') \right]
\]
Backward value iteration

\[G^*_k(x_k) = \min_{u_k, \ldots, u_K} \left\{ \sum_{i=k}^{K} l(x_i, u_i) + l_F(x_F) \right\} \]

\[G^*_k(x_k) = \min_{u_k} \left\{ l(x_k, u_k) + \min_{u_{k+1}, \ldots, u_K} \left\{ \sum_{i=k+1}^{K} l(x_i, u_i) + l_F(x_F) \right\} \right\} \]

\[G^*_k(x_k) = \min_{u_k} \left\{ l(x_k, u_k) + G^*_{k+1}(x_{k+1}) \right\} \]
Any length optimal planning

\[G^*(x) = \min_u \left\{ l(x, u) + G^*(f(x, u)) \right\} \]

Optimal cost to go

\[u^* = \arg\min_{u \in U(x)} \left\{ l(x, u) + G^*(f(x, u)) \right\} \]

Optimal action
Policy iteration

• Policy evaluation
• Policy improvement
Iterative policy evaluation

Estimate values of states following a certain policy

• Initialize $V_0(s) = 0$ for all states s in S
• Update rule based on Bellman equation:

\[
V_{k+1}(s) = E_{\pi} \left\{ r_{t+1} + \gamma V_k(s_{t+1}) \mid s_t = s \right\}
= \sum_a \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[E(r_{t+1} \mid s, a, s') + \gamma V_k(s') \right]
\]

• Repeat until values converge for all states
• Output $V \approx V^\pi$
Policy improvement

Given two deterministic policies π & π':

If $Q^\pi(s, \pi'(s)) \geq V^\pi(s)$, for all s in S

Then $V^{\pi'}(s) \geq V^\pi(s)$, for all s in S

While following policy π, if changing one action according to π' yields higher or equal return then π' must be better or as good as π.
Policy improvement

Find new greedy policy π' given policy π:

$$\pi'(s) = \arg\max_a Q^\pi(s, a)$$

$$= \arg\max_a E\left\{ r_{t+1} + \gamma V^\pi(s_{t+1}) \mid s_t = s, a_t = a \right\}$$

$$= \arg\max_a \sum_{s'} p(s' \mid s, a) \left[E(r_{t+1} \mid s, a, s') + \gamma V^\pi(s') \right]$$

If $V^\pi = V^{\pi'}$

$$V^{\pi'}(s) = \max_a E_{\pi'} \left\{ r_{t+1} + \gamma V^{\pi'}(s_{t+1}) \mid s_t = s, a_t = a \right\}$$

$$= \max_a \sum_{s'} p(s' \mid s, a) \left[E(r_{t+1} \mid s, a, s') + \gamma V^{\pi'}(s') \right]$$

Policy improvement must result in a strictly better policy unless the original policy is already optimal.

Bellman optimality equation
Example: gridworld

[Sutton & Barto 2nd edition, Example 4.1]

- $R_t = -1$ on all transitions
- $\gamma = 1$ (no discount)
- State transition: deterministic (no fail).
- Actions that would result in outside the grid put the agent back to the original state.
Convergence of iterative policy evaluation

$k=0$

V_k for random policy

<table>
<thead>
<tr>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

$k=1$

Greedy policy w.r.t. V_k

Random policy

$V_{k+1}(s) = E_{\pi}\{r_{t+1} + \gamma V_k(s_{t+1})|s_t = s\}$

$= \sum_{a} \pi(a|s) \sum_{s'} p(s'|s,a)[E(r_{t+1} | s,a,s') + \gamma V_k(s')]$

$\pi'(s) = \arg\max_a Q^\pi(s,a)$

$= \arg\max_a E\{r_{t+1} + \gamma V^\pi(s_{t+1})|s_t = s, a_t = a\}$

$= \arg\max_a \sum_{s'} p(s'|s,a)[E(r_{t+1} | s,a,s') + \gamma V^\pi(s')]$

$V_1(s_1) = \text{up}(0.25*(-1+0)) + \text{down}(0.25*(-1+0)) + \text{left}(0.25*(-1+0)) + \text{right}(0.25*(-1+0)) = -1$

$\pi(s_1) = \arg\max_a [\text{up}(-1-1), \text{down}(-1-1), \text{left}(-1+0), \text{right}(-1,-1)] = \text{left}$
Convergence of iterative policy evaluation

V_k for random policy

<table>
<thead>
<tr>
<th>$k=0$</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Greedy policy w.r.t. V_k

<table>
<thead>
<tr>
<th>$k=1$</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$k=2$</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-1.7</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-1.7</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-1.7</td>
<td>0.0</td>
</tr>
<tr>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-1.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$k=3$</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-2.4</td>
<td>-2.9</td>
<td>-3.0</td>
<td>-3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-2.4</td>
<td>-2.9</td>
<td>-3.0</td>
<td>-2.9</td>
<td>-3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-2.9</td>
<td>-3.0</td>
<td>-2.9</td>
<td>-2.4</td>
<td>-3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-3.0</td>
<td>-2.9</td>
<td>-2.4</td>
<td>-3.0</td>
<td>-2.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$k=10$</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-6.1</td>
<td>-8.4</td>
<td>-9.0</td>
<td>-9.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-6.1</td>
<td>-7.7</td>
<td>-8.4</td>
<td>-8.4</td>
<td>-9.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-8.4</td>
<td>-8.4</td>
<td>-7.7</td>
<td>-8.4</td>
<td>-9.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-9.0</td>
<td>-8.4</td>
<td>-6.1</td>
<td>-8.4</td>
<td>-9.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$k=\infty$</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-14.0</td>
<td>-20.0</td>
<td>-22.0</td>
<td>-22.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-14.0</td>
<td>-18.0</td>
<td>-20.0</td>
<td>-20.0</td>
<td>-22.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-20.0</td>
<td>-20.0</td>
<td>-18.0</td>
<td>-14.0</td>
<td>-22.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-22.0</td>
<td>-20.0</td>
<td>-14.0</td>
<td>0.0</td>
<td>-22.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Random policy

Greedy policy w.r.t. V_k

Optimal policy

[Sutton & Barto 2nd edition, Fig. 4.1]
Policy iteration

Policy evaluation

\[\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{I} \ldots \xrightarrow{I} \pi^* \xrightarrow{E} V^* \]

Policy improvement

tingification”
Policy iteration

1. Initialize for all s in S: $V(s) \in \mathbb{R}, \pi(s) = A(s)$
2. Policy evaluation
 Repeat until values converge:

 $$V_{k+1}(s) = \sum_a \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \left[E(r_{t+1} \mid s, a, s') + \gamma V_k(s') \right], \forall s \in S$$

3. Policy improvement:

 $$\pi'(s) = \arg\max \sum_a \sum_{s'} p(s' \mid s, a) \left[E(r_{t+1} \mid s, a, s') + \gamma V^\pi(s') \right], \forall s \in S$$

 – If policy stays stable stop; else go to 2
Summary

• Reinforcement learning and MDP formulation
• Dynamic programming for solving MDP
• Curse of dimensionality: number of states grow exponentially in the number of state variables
• Next
 – Exploration vs. exploitation
 – Reward shaping