
Spring 2019

Planning
Overview

• Planning
 – AI planning
 – Path planning

• References
 – Planning algorithms – LaValle, 2006
 http://planning.cs.uiuc.edu/
 – Motion planning – Kelly, 2013
 – AI the modern approach – Russell & Norvig 3rd edition
Planning

Classical planning
AI planning
Path planning
Motion planning
Robot planning
…
Define planning
Define planning

“Devise a plan of action to achieve one’s goal” [Russell & Norvig]

Find a sequence of actions to take to reach goal state from initial state
Example: planning

Find a sequence of actions to take to reach goal state from initial state

Initial state: B I G

Actions: right right

Goal state: B I G
Blocks world example

Predicates:
(Block X): X is a block
(On X Y): X is on Y
(Clear X): There is nothing on X.

Operators:
P ^ Q: Both P and Q are true.
P ∨ Q: Either P or Q is true.
~P: P is not true.

Initial state

G
B
I
Blocks world example

Predicates:
(Block X): X is a block
(On X Y): X is on Y
(Clear X): There is nothing on X.

Operators:
P ∧ Q: Both P and Q are true.
P ∨ Q: Either P or Q is true.
~P: P is not true.

Initial state: (Block G)^ …
Exercise 1: define state

Initial state:
Goal state:
Exercise 1: define state

Initial state: $(\text{On } G \space B)^{\land} (\text{On } B \space I)^{\land} (\text{On } I \space \text{Table})^{\land} (\text{Clear } G)$

Goal state: $(\text{On } B \space I)^{\land} (\text{On } I \space G)^{\land} (\text{On } G \space \text{Table})^{\land} (\text{Clear } B)$
Action changes the world

• Action can be taken when **pre-conditions** are satisfied
• Action has **effects** (or **post-conditions**)

Example:

`Action (MoveToBlock ?b ?from ?to)`
Precond: …
Effect: …
Exercise 2: define action

Action (MoveToBlock ?b ?from ?to)
Precond:

Effect:

(MoveToBlock B I G):
Move block B from I to G
Exercise 2: define action

Action (MoveToBlock ?b ?from ?to)

[Modified from Fig 10-3, Russell & Norvik]

(MoveToBlock B I G):
Move block B from I to G
Exercise 3: take action

(MoveToBlock B I G)

Precond: (On B I)^(Clear B)^(Clear G)^
 (Block B)^(Block G)^(!= I G)^(!= B I)^(!= B G)

Effect: (Clear I)^^(On B G)^~(Clear G)^~(On B I)

Initial state: (On G Table)^^(On I Table)^^(Clear G)^^(Clear B)^^(On B I)

Goal state: (On G Table)^^(On I Table)^(Clear B)^^(Clear I)^^(On B G)
Exercise 3: take action

(MoveToBlock B I G)
Precond: (On B I)^(Clear B)^(Clear G)^
 (Block B)^(Block G)^^(≠ I G)^^(≠ B I)^^(≠ B G)
Effect: (Clear I)^(On B G)^~(Clear G)^~(On B I)

Initial state: (On G Table)^^(On I Table)^(Clear G)^^(Clear B)^^(On B I)^
 ^^(Clear I)^^(On B G)
Goal state: (On G Table)^^(On I Table)^(Clear B)^^(Clear I)^^(On B G)
Planning search space

Initial state

Goal state
Planning and scheduling

• What is the difference between planning and scheduling?

• Scheduling is resource allocation, ideally in an optimal way
Motion Planning

“Convert high-level specification of tasks from humans into low-level descriptions of how to move” [LaValle’06]

Slides are based on Planning Algorithms (LaValle’06)
Desiderata for planners

• Sound
 – Feasible – vehicle constraints
 – Admissible – avoid obstacles

• Complete
 – If any solution exists, it will be found
 – Otherwise, report failure

• Optimal: If more than one solutions exist the best will be generated
Discrete feasible planning

Problem formulation

• X: a set of states
• $U(x)$: a set of actions available in state x in X
• $f(x,u)$: state transition function for every state x, u in X
• x_I: Initial state
• x_G: Goal state
Search graph

- **Is_goal?** (state s) \rightarrow yes | no
- **Get_actions** (state s) \rightarrow set of actions A
- **Next_state** (state s, action a) \rightarrow state s'
States of state

• Unvisited
• Dead
• Alive
Search

Backward, bidirectional

```plaintext
FORWARD-SEARCH
1 Q.Insert(x_I) and mark x_I as visited
2 while Q not empty do
3 \( x \leftarrow Q.GetFirst() \)
4 if \( x \in X_G \)
5 \( \text{return SUCCESS} \)
6 forall \( u \in U(x) \)
7 \( x' \leftarrow f(x, u) \)
8 if \( x' \) not visited
9 \( \text{Mark } x' \text{ as visited} \)
10 \( Q.Insert(x') \)
11 else
12 \( \text{Resolve duplicate } x' \)
13 \( \text{return FAILURE} \)  [LaValle Fig. 2.4]
```

Priority Queue

- Breadth-first
- Depth-first
- Best-first
- Iterative deepening
- Dijkstra
- A* (A-star)
Forward search

\(s_I \)

\(Q \)
Forward search

Q

Is goal (s)? Return SUCCESS

Is empty (Q)? Return FAIL
Forward search

Apply each action in state \(s \) and get resulting state \(s' \)

Haven’t visited \((s') \)?

Sort states according to...
Breadth-first
Depth-first
Optimal planning

• Cost optimization
• Efficient search
Dijkstra’s algorithm

• Sort according to cost-to-come to the state so far
• Nonnegative costs
A*

- Cost-to-come $C(x) + \text{Cost-to-go } G(x)$
- Admissible (underestimate) heuristics
- $G(x) = 0$: Dijkstra
Value iteration

• Fixed-length plans (length=K)
• $O(|U|^K)$
• Value iteration
 – Cost “to go” or
 – Cost “to come”
 – Dynamic programming
Backwards value iteration

K-step plan
Stages 1, ..., K, F
Actions $u_1, ..., u_K$
States $x_1, ..., x_K, x_F$
State transition $f(x,u)$

Cost of taking action u_i in state x_i

Accumulated cost-to-go from stage k to F under optimal plan

$G^*_k(x_k) = \min_{u_k, ..., u_K} \left\{ \sum_{i=k}^{K} l(x_i, u_i) + l_F(x_F) \right\}$

Number of actions

$F = K+1$; x_F denotes final state;
$l_F(x_G) = 0$, $l_F(x) = \infty$ for all $x \neq x_G$

[LaValle Ch. 2]
Backward value iteration

\[G^*_K(x_K) = \min_{u_K} \left\{ l(x_K, u_K) + l_F(x_F) \right\} \]

\[G^*_K(x_K) = \min_{u_K} \left\{ l(x_K, u_K) + G^*_F(f(x_K, u_K)) \right\} \]

\[G^*_K(x_K) = \min_{u_K} \left\{ l(x_K, u_K) + G^*_{K+1}(x_{K+1}) \right\} \]

\[l_F = G^*_F \]

\[x_F = f(x_K, u_K) \]
Backward value iteration

\[
G_k^*(x_k) = \min_{u_k, \ldots, u_K} \left\{ \sum_{i=k}^{K} l(x_i, u_i) + l_F(x_F) \right\}
\]

\[
G_k^*(x_k) = \min_{u_k} \left\{ l(x_k, u_k) + \min_{u_{k+1}, \ldots, u_K} \left\{ \sum_{i=k+1}^{K} l(x_i, u_i) + l_F(x_F) \right\} \right\}
\]
Backward value iteration

\[
G^*_k(x_k) = \min_{u_k, \ldots, u_K} \left\{ \sum_{i=k}^{K} l(x_i, u_i) + l_F(x_F) \right\}
\]

\[
G^*_k(x_k) = \min_{u_k} \left\{ l(x_k, u_k) + \min_{u_{k+1}, \ldots, u_K} \left\{ \sum_{i=k+1}^{K} l(x_i, u_i) + l_F(x_F) \right\} \right\}
\]

\[
G^*_k(x_k) = \min_{u_k} \left\{ l(x_k, u_k) + G^*_{k+1}(x_{k+1}) \right\}
\]
Fixed-length plans (length=K)

- $O(|U|^K)$
- Value (= cost to go) iteration
 - Dynamic programming
 - $O(K|X||U|)$
You are in NSH and want to be at UC in exact 3 stages with minimum cost

(3 stages means 3 actions, 4 states, i.e., K=3)
Example
Example
Example
Example

\[G^*_k(x_k) = \min_{u_k} \left\{ l(x_k, u_k) + G^*_{k+1}(x_{k+1}) \right\} \]

<table>
<thead>
<tr>
<th></th>
<th>WH</th>
<th>NSH</th>
<th>GHC</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>G^*_4</td>
<td>\infty</td>
<td>\infty</td>
<td>\infty</td>
<td>0</td>
</tr>
<tr>
<td>G^*_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G^*_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G^*_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Forward value iteration

Optimal cost to come

\[C_k^*(x_k) = \min_{u_1, \ldots, u_{k-1}} \left\{ l_I(x_1) + \sum_{i=1}^{k-1} l(x_i, u_i) \right\} \]

\[C_k^*(x_k) = \min_{u_k^{-1} \in U^{-1}(x_k)} \left\{ C_{k-1}^*(x_{k-1}) + l(x_{k-1}, u_{k-1}) \right\} \]

\(l_I(x_I) = 0, \quad l_I(x) = \infty \) for all \(x \neq x_I \)
Example

\[C_k^*(x_k) = \min_{u_k^{-1} \in U^{-1}(x_k)} \left\{ C_{k-1}^*(x_{k-1}) + l(x_{k-1}, u_{k-1}) \right\} \]

<table>
<thead>
<tr>
<th></th>
<th>WH</th>
<th>NSH</th>
<th>GHC</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>C_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

\[C^*_k(x_k) = \min_{u_k^{-1} \in U^{-1}(x_k)} \left\{ C^*_{k-1}(x_{k-1}) + l(x_{k-1}, u_{k-1}) \right\} \]

<table>
<thead>
<tr>
<th></th>
<th>WH</th>
<th>NSH</th>
<th>GHC</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C^*_1)</td>
<td>(\infty)</td>
<td>(0)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(C^*_2)</td>
<td>(?)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C^*_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C^*_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

\[C_k^*(x_k) = \min_{u_k^{-1} \in U^{-1}(x_k)} \left\{ C_{k-1}^*(x_{k-1}) + l(x_{k-1}, u_{k-1}) \right\} \]

<table>
<thead>
<tr>
<th></th>
<th>WH</th>
<th>NSH</th>
<th>GHC</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>C_2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

\[C_{k}^{*}(x_k) = \min_{u_{k}^{-1} \in U^{-1}(x_k)} \left\{ C_{k-1}^{*}(x_{k-1}) + l(x_{k-1}, u_{k-1}) \right\} \]

<table>
<thead>
<tr>
<th></th>
<th>WH</th>
<th>NSH</th>
<th>GHC</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C*<sub>1</sub></td>
<td>∞</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>C*<sub>2</sub></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>C*<sub>3</sub></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C*<sub>4</sub></td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Any length optimal planning

[States X, Actions U, State transition function f, initial state s_I, goal state s_G] +

\[
L(\pi_K) = \sum_{k=1}^{K} l(x_k, u_k) + l_F(x_F)
\]

Additive cost function for any K-step plan π_K

Termination action u_T in action set $U(x)$

$l(x, u_T) = 0; f(x, u_T) = x$

Taking u_T doesn’t accumulate cost nor change state
Any length optimal planning

\[G^*(x) = \min_u \left\{ l(x, u) + G^*(f(x, u)) \right\} \]

Optimal cost to go

\[u^* = \arg\min_{u \in U(x)} \left\{ l(x, u) + G^*(f(x, u)) \right\} \]

Optimal action
Example

\[G^*(x) = \min_u \left\{ l(x, u) + G^*(f(x, u)) \right\} \]

<table>
<thead>
<tr>
<th></th>
<th>WH</th>
<th>NSH</th>
<th>GHC</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G^*_0)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>(G^*_{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G^*_{-2})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G^*_{-3})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G^*_{-4})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G^*_{-5})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Termination action \(u_T \)

1/15/19
Example

\[G^*(x) = \min_u \left\{ l(x, u) + G^*(f(x, u)) \right\} \]

<table>
<thead>
<tr>
<th></th>
<th>WH</th>
<th>NSH</th>
<th>GHC</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G^*_0)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>(G^*_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G^*_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G^*_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G^*_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G^*_5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Termination action \(u_T\)
Example

$$G^*(x) = \min_u \left\{ l(x, u) + G^*(f(x, u)) \right\}$$

<table>
<thead>
<tr>
<th></th>
<th>WH</th>
<th>NSH</th>
<th>GHC</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>G^*_0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>G^*_1</td>
<td>∞</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>G^*_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G^*_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G^*_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G^*_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Termination action u_T
Example

\[G^*(x) = \min_u \left\{ l(x, u) + G^*(f(x, u)) \right\} \]

<table>
<thead>
<tr>
<th></th>
<th>WH</th>
<th>NSH</th>
<th>GHC</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G_0^*)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>(G_{-1}^*)</td>
<td>(\infty)</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Termination action \(u_T\)
Example

\[G^*(x) = \min_u \left\{ l(x, u) + G^*(f(x, u)) \right\} \]

<table>
<thead>
<tr>
<th></th>
<th>WH</th>
<th>NSH</th>
<th>GHC</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G^*_0)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>(G^*_{-1})</td>
<td>(\infty)</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(G^*_{-2})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G^*_{-3})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G^*_{-4})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G^*_{-5})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Termination action \(u_T\)

1/15/19

CMU 16-785: Integrated Intelligence in Robotics

Jean Oh 2019
Example

\[G^*(x) = \min_u \left\{ l(x, u) + G^*(f(x, u)) \right\} \]

<table>
<thead>
<tr>
<th></th>
<th>WH</th>
<th>NSH</th>
<th>GHC</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G_0^*)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>(G_{-1}^*)</td>
<td>(\infty)</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(G_{-2}^*)</td>
<td>(\infty)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G_{-3}^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G_{-4}^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G_{-5}^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Termination action \(u_T \)

1/15/19
Example

\[G^*(x) = \min_u \left\{ l(x, u) + G^*(f(x, u)) \right\} \]

<table>
<thead>
<tr>
<th></th>
<th>WH</th>
<th>NSH</th>
<th>GHC</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G^*_0)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>(G^*_1)</td>
<td>(\infty)</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(G^*_2)</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(G^*_3)</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(G^*_4)</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(G^*_5)</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Termination action \(u_T \)

1/15/19
Navigation planning

• Costs are revealed during execution
• Implicit constraint on state transition: robots cannot teleport
• D* (D-star): Dynamic, backward variation of Dijkstra (cost to go) [Stentz’94]

D* path planner

NASA Mars Curiosity Rover

D

- Backward Dijkstra; sort Q according to $G_{\text{best}}(x)$
- $G_{\text{best}}(x)$: lowest cost to go while in Queue
- $G_{\text{cur}}(x)$: current cost to go (possibly higher than G_{best} due to dynamic updates)
- $G_{\text{via}}(x, x')$: cost to go from x by traveling via x'

\[
x' = f(x, u)
\]

\[x \quad u \quad x' \quad ... \quad S_G\]
\(x \leftarrow \arg\min_{x \in Q} (G_{\text{best}}(x)) \)

If \(G_{\text{best}}(x) < G_{\text{cur}}(x) \)
for all \(x' = f(x,u) \)
\begin{align*}
&\text{If } G_{\text{via}}(x,x') < G_{\text{cur}}(x) \text{ & } G_{\text{cur}}(x') \leq G_{\text{best}}(x) \\
&\quad G_{\text{cur}}(x) := G_{\text{via}}(x,x') \text{ & } \pi(x) = u
\end{align*}
for all \(x' \) that can reach \(x \) in 1 action, i.e., \(x = f(x',u') \)
\begin{align*}
&\text{If } x' \text{ is unvisited} \\
&\quad \pi(x') := u' \\
&\quad \text{insert } x' \text{ onto } Q \text{ with cost } G_{\text{via}}(x',x)
\end{align*}
If \(\pi(x') = u' \) but \(G_{\text{via}}(x',x) \neq G_{\text{cur}}(x') \)
\begin{align*}
&\quad \text{insert } x' \text{ onto } Q \text{ with cost } G_{\text{via}}(x',x)
\end{align*}
If \(\pi(x') \neq u' \) but \(G_{\text{via}}(x',x) < G_{\text{cur}}(x') \)
\begin{align*}
&\quad \text{if } G_{\text{cur}}(x) = G_{\text{best}}(x) \text{ then } \pi(x') := u' \text{ & insert } x'
\end{align*}
onto \(Q \)
\begin{align*}
&\quad \text{else insert } x \text{ onto } Q \text{ with } G_{\text{cur}}(x)
\end{align*}
If \(x' \) is dead,
\begin{align*}
&\text{if } \pi(x') \neq u', G_{\text{via}}(x,x') < G_{\text{cur}}(x), \text{ and } G_{\text{cur}}(x) > G_{\text{best}}(x) \\
&\quad \text{then insert } x' \text{ back onto } Q \text{ with cost } G_{\text{cur}}(x')
\end{align*}
If $G_{\text{best}}(x) < G_{\text{cur}}(x)$ then the cost of x is actually higher than thought (underestimated)
If $G_{\text{best}}(x) < G_{\text{cur}}(x)$ then the cost of x is actually higher than thought.

\[\pi(x') = u' \text{ but } G_{\text{via}}(x',x) \neq G_{\text{cur}}(x') \]
1) $G_{\text{best}}(x) = G_{\text{cur}}(x)$

If $G_{\text{best}}(x) < G_{\text{cur}}(x)$ then the cost of x is actually higher than thought.

$\pi(x') \neq u'$ but $G_{\text{via}}(x',x) < G_{\text{cur}}(x')$
If $G_{\text{best}}(x) < G_{\text{cur}}(x)$ then the cost of x is actually higher than thought.

2) $G_{\text{best}}(x) \neq G_{\text{cur}}(x)$

$\pi(x') \neq u'$ but $G_{\text{via}}(x',x) < G_{\text{cur}}(x')$
Motion Planning

"Convert high-level specification of tasks from humans into low-level descriptions of how to move" [LaValle’06]

Natural language \rightarrow GoTo (X,Y) \rightarrow D* \rightarrow Waypoints (x_1,y_1) (x_2,y_2) …
Next

• Preparing for data-driven approaches
• Dataset analysis