
Research Statement

Jason Reed

Research Agenda

Motivations

Mathematics succeeds when it builds bridges: a result connecting one approach (or one entire field
of study) to another allows existing ideas to be transported across it, to be reused, reexamined, and
applied to new problems. A venerable example is the Curry-Howard correspondence, the observation
that type theorists, programming language designers, logicians, and category theorists are often
studying the same objects under different names. It tells us in particular that we ought not, and
need not be satisfied with programming languages that appear to us as a jumbled bag of features,
for we can look to logic (and type theory, and category theory) for advice as to how to organize the
features of our programming language in a more coherent way.

My underlying interest is in finding ways to tell a similarly satisfying story about the foundations
of the wide (and growing) variety of nonstandard logics, for example modal logics expressing nuances
of necessity, possibility, knowledge, belief, time, and location, or substructural logics capturing
resources used linearly, strictly, affinely, or precisely n times, or according to tree-shaped bunched
contexts, or in a particular order. I believe that we ought not and need not be satisfied with logics
that appear to us as a jumbled bag of propositional connectives which perhaps, by apparent lucky
coincidence, happen to satisfy a handful of convenient theorems. Rather we should be able to look
to deeper organizing principles to guide us when introducing new logical ideas, and designing new
logics.

The payoff is that creating new languages suited to the task at hand should become nearly
as routine as, say, writing new programs, when we have better measures of their mathematical
coherence and fitness. Just as type systems afford greater confidence to the working programmer
that her partial program, while complex, still makes sense, improving our understanding of the
principles underlying the design of a logical system itself allows us to more easily describe more
complicated logics while remaining confident that we will be able to effectively use and reason about
them.

When we can more freely invent new logical ideas, we can then obtain new types for functional
programming, new mechanisms in logic programming languages, and new challenges for the design of
algorithms for type checking, type inference, unification, and compilation. As far as applications are
concerned my research to date has focused on introduction of new logical ideas to logical frameworks,
tools for representation of formal systems and automated reasoning about them.

Future Directions

What makes a logic well-behaved?
How can the space of ‘all possible logics’ be characterized?

To be sure these are informal, underspecified questions. Nonetheless we seem to have some
significant leads to pursue. The oldest and most basic are the principle of cut-elimination and
identity that we find in Gentzen’s relating of natural deduction to sequent calculus: to whatever

1



2

extent logic is about a consequence relation, we at least expect it to be suitably transitive and
reflexive, just as categories have composition and identities. One can find in Martin-Löf [ML96] a
carefully articulated and comparatively modern statement of a judgmental standpoint concerning
the role of propositions and propositional connectives, further constraining the design of logics. And
finally we have the development in the late 80s and early 90s by Girard, Andreoli, and others, of
properties that increasingly seem sine qua non criteria for a ‘sensible’ logic: in short that their
propositions can be polarized [Gir91, Gir93] and that their proofs can be focused [And92].

My aim for a unifying account of substructural logics is by way of translations into simpler,
non-substructural logics, that preserve the focusing structure of the logic. See [RP09] and below
for the groundwork of this approach, but there is much work to be done here investigating other
particular logics.

Judgmental modal concepts — such as the necessary and lax truth of Pfenning and Davies
[PD01], and the exponential ! of linear logic — also seem to beg an explanation for the common
themes of their definitions. Some preliminary ideas about decomposing several known modalities
into a pair of connectives of opposite polarity (being the logical equivalent of adjoint functors from
category theory) can be found in [Ree09].

What good is understanding logic?
What are its applications?
How can we effectively implement and reason about logical algorithms?

I am interested in type-checking, proof-checking, and proof-synthesis algorithms. A theme un-
derlying all of these is the need for good unification algorithms, and aggressive approximations to
undecidable unification problems.

One important role for unification is making logical frameworks more practical and pleasant to
use. Type inference is not strictly necessary, as the user could in principle supply every type to every
argument, but this is unthinkable in practice. Implementations of unification algorithms themselves
are also one of the few places where an imperative style is considered necessary for performance,
where trailing and undo mechanisms are then required to compensate for lack of purity, when we
wish to pretend as if we had programmed functionally all along. Are there new language features
or reasoning patterns to better account for the very limited form of state that unification typically
uses?

Unification is also of course at the heart of logic programming. I suspect that many of the
challenges posed by the prospect of logic programming with substructural logics might well be
solved ‘merely’ (although it is still no small project) by appropriate unification algorithms over an
algebraic equational theory suited to the substructural logic in question.

Completed Work

Substructural Logical Frameworks

The logical framework LF [HHP93] and the Twelf [PS99] implementation built on top of it are
capable of advanced representation techniques (such as higher-order abstract syntax [PE89]) for en-
coding formal systems such as programming languages, and supports theorem-checking for inductive
theorems represented constructively as logic programs.

My PhD thesis work began with the attempt to find a corresponding methodology of inductive
theorem-checking for the linear logical framework LLF developed by Cervesato and Pfenning [CP02].
With type-constructors taken from the proofs-as-types interpretation of linear logic [Gir87], LLF sup-
ports encodings that manipulate stateful update in a modular and elegant fashion. For instance, the
encoding of a programming language with updateable reference cells becomes significantly simpler.



3

However, the strategies familiar from experience using Twelf for representing the statement of in-
ductive theorems about such systems do not easily extend to the linear case: there are complications
with the way that the linearity interacts with dependent types.

The solution [Ree07] was to tease apart linear hypotheses into ordinary variables as such on
the one hand, and on the other hand, abstract identifiers of linear resources, akin to the role of
the abstract identifiers of Kripke worlds in hybrid modal logics [ABM01, BdP03, BdP06]. These
identifiers are moreover first-class entities in the language, subject to an algebraic discipline (i.e.
that they form a commutative monoid) that reflects the expected structural properties of the linear
context, and critically allows the logical framework user to refer explicitly to bundles of resources
(in other words, linear contexts) when stating theorems.

Generalizing this work also leads to a much more powerful analysis of the role of structured con-
texts in substructural logics. In joint work with Pfenning [RP09], we describe a similar construction
that isolates the algebraic behavior of the context — in a fashion related to Belnap’s display logic
[Bel82] — and works uniformly as a constructive resource semantics for linear, ordered and bunched
logic, simply by varying the algebra involved.

Algorithms for Mechanized Reasoning

Unification, solving equations for unknowns that are syntactic expressions, is a pervasive problem
in automated reasoning. Higher-order unification , in which the unknowns can be functions, is
undecidable, but has subsets that admit practical algorithms [DHK95], which are used frequently in
practice.

However, their theory turns out to be surprisingly subtle. The version of unification implemented
in Twelf, for instance, is not terminating — despite the sketch of a proof of its termination in the
literature [DHKP96]! One rewrite rule in an algorithm that works by progressively simplifying a
set of equations my sometimes subtly unsimplify a remote part of the problem. One could simply
remove the offending rewrite, but at the cost of solving only a smaller subset of all higher-order
unification problems. I proposed and prove correct a modified rewrite step to replace it [Ree08],
yielding a new, terminating constraint simplification algorithm for a dynamic pattern fragment of
higher-order unification in a dependent type system.

Proof irrelevance is a property of some components of data structures that some sort of witness
— a proof — of a property is required, but which one it is does not matter. The concept is connected
to certain modal logics studied by Pfenning [Pfe01], and Awodey and Bauer [AB01]. The ability
to mark certain parts of large certificates (for instance in a proof-carrying code [NL97] setting) as
proof irrelevant enables optimizations that elide those parts, asking the recipient of the certificate to
reconstruct them — perhaps proofs of easily (but tediously) re-provable decidable properties. Proof
irrelevance guarantees that the possibility that the recipient reconstructs a different proof will not
affect the validity of the rest of the proof.

I investigated the extension of the type theory LF [Ree03] and the higher-order unification
algorithm used on it to include proof-irrelevance features [Ree02a, Ree02b]. My presentation en
passant fixed a minor bug in the original work of Pfenning [Pfe01], in which the Validity lemma did
not actually hold, due to some confusion about the meaning of proof irrelevance at the kind level
(as opposed to the type level). The modifications to the type system and associated algorithms were
comparatively simple, a testament to the modularity of the underlying ideas.

Classical Logic vs. Constructive Logic

It is well-known [Gri90, Par92, OS97, Wad03] that classical logic can be interpreted as a programming
language with control operators such as call/cc. The embedding of intuitionistic logic into classical
modal logic means that intuitionistic logic itself — which ordinarily corresponds to a plain λ-calculus
— can be regarded instead as a programming language that does have control operators, but which



4

are subject to essentially modal restriction to avoid provability of classical tautologies such as double-
negation elimination.

Frank Pfenning and I described [RP07] this intuitionistically compatible form of call/cc in a
labelled deduction style [Gab90] and gave a novel constructive proof for its soundness, whose algo-
rithmic content is a non-deterministic translation of programs that eliminates uses of intuitionistic
call/cc and is compatible with dependent types. The proof has been formally verified on the propo-
sitional fragment in the Twelf meta-logical framework.

The fact that the intuitionistic call/cc is compatible with dependent types is significant, because
we have thereby avoided Herbelin’s counterexample [Her05] which demonstrates that unbridled use
of classical logic causes proofs to collapse. I feel this is an excellent object lesson in the importance
of constructive reasoning in language design.

References

[AB01] Steve Awodey and Andrej Bauer. Propositions as [Types]. Technical report, Institut
Mittag-Leffler, 2001.

[ABM01] C. Areces, P. Blackburn, and M. Marx. Hybrid logics: Characterization, interpolation
and complexity. Journal of Symbolic Logic, 66(3):977–1010, 2001.

[And92] J. M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation, 2(3):297–347, 1992.

[BdP03] T. Braüner and V. de Paiva. Towards constructive hybrid logic. Elec. Proc. of Methods
for Modalities, 3, 2003.

[BdP06] Torben Braüner and Valeria de Paiva. Intuitionistic hybrid logic. To appear., 2006.

[Bel82] Nuel Belnap. Display logic. Journal of philosophical logic, 11:375–417, 1982.

[CP02] Iliano Cervesato and Frank Pfenning. A linear logical framework. Inf. Comput.,
179(1):19–75, 2002.

[DHK95] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher-order unification via explicit
substitutions. In D. Kozen, editor, Proceedings of the Tenth Annual Symposium on Logic
in Computer Science, pages 366–374, San Diego, California, June 1995. IEEE Computer
Society Press.

[DHKP96] Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank Pfenning. Unification via
explicit substitutions: The case of higher-order patterns. In M. Maher, editor, Proceed-
ings of the Joint International Conference and Symposium on Logic Programming, pages
259–273, Bonn, Germany, September 1996. MIT Press.

[Gab90] Dov Gabbay. Labelled deductive systems. Technical Report 90-22, University of Munich,
1990.

[Gir87] J.Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

[Gir91] Jean-Yves Girard. A new constructive logic: classical logic. Mathematical structures in
Computer Science, 1:255–296, 1991.

[Gir93] Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic, 59:201–217,
1993.



5

[Gri90] Timothy Griffin. A formulae-as-types notion of control. In Conference Record of the 17th
Annual Symposium on Principles of Programming Languages (POPL’90), pages 47–58,
San Francisco, California, January 1990. ACM Press.

[Her05] Hugo Herbelin. On the degeneracy of sigma-types in presence of computational classical
logic. In TLCA, pages 209–220, 2005.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the justifications of the
logical laws. Nordic Journal of Philosophical Logic, 1(1):11–60, 1996.

[NL97] George C. Necula and Peter Lee. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Langauges (POPL ’97),
pages 106–119, Paris, January 1997.

[OS97] Luke Ong and Charles Stewart. A Curry-Howard foundation for functional computation
with control. In Conference Record of the 24th Annual Symposium on Principles of
Programming Languages (POPL’97), pages 215–227, Paris, France, January 1997. ACM
Press.

[Par92] Michel Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction.
In Logic Programming and Automated Reasoning, pages 190–201. Springer LNCS 624,
1992.

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Math-
ematical Structures in Computer Science, 11(4):511–540, 2001.

[PE89] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the
ACM SIGPLAN ’88 Symposium on Language Design and Implementation, pages 199–
208, Atlanta, Georgia, June 1989.

[Pfe01] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type the-
ory. In J. Halpern, editor, Proceedings of the 16th Annual Symposium on Logic in Com-
puter Science (LICS’01), pages 221–230, Boston, Massachusetts, June 2001. IEEE Com-
puter Society Press.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical
framework for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th Inter-
national Conference on Automated Deduction (CADE-16), pages 202–206, Trento, Italy,
July 1999. Springer-Verlag LNAI 1632.

[Ree02a] Jason Reed. Higher-order pattern unification and proof irrelevance. Appears in TPHOLs
2002 Track B proceedings, NASA tech report CP-2002-211736, 2002.

[Ree02b] Jason Reed. Proof irrelevance and strict definitions in a logical framework. Technical
Report CMU-CS-02-153, Carnegie Mellon University, 2002.

[Ree03] Jason Reed. Extending higher-order unification to support proof irrelevance. In David A.
Basin and Burkhart Wolff, editors, Theorem Proving in Higher Order Logics, 16th In-
ternational Conference, TPHOLs 2003, Rome, Italy, September 8-12, 2003, Proceedings,
volume 2758 of Lecture Notes in Computer Science. Springer, 2003.

[Ree07] Jason Reed. Hybridizing a logical framework. In P. Blackburn, T. Bolander, T. Braner,
V. de Paiva, and J. Villadsen, editors, Proceedings of the International Workshop on
Hybrid Logic (HyLo 2006), 2007.



6

[Ree08] Jason Reed. Higher order constraint simplification in a dependent type theory. Submit-
ted. Available at http://www.cs.cmu.edu/∼jcreed/papers/csl08-hocs.pdf, 2008.

[Ree09] Jason Reed. A judgmental deconstruction of modal logic. Draft manuscript, 2009.

[RP07] Jason Reed and Frank Pfenning. Intuitionistic letcc via labelled deduction. In C. Are-
ces and S. Demri, editors, Proceedings of the 5th Workshop on Methods for Modalities
(M4M5), 2007.

[RP09] Jason Reed and Frank Pfenning. A constructive approach to the re-
source semantics of substructural logics. Submitted. Available at
http://www.cs.cmu.edu/∼jcreed/papers/rp-substruct.pdf, 2009.

[Wad03] Philip Wadler. Call-by-value is dual to call-by-name. In ICFP ’03: Proceedings of the
eighth ACM SIGPLAN international conference on Functional programming, pages 189–
201, New York, NY, USA, 2003. ACM Press.


