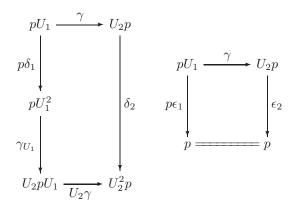
A Comonadic Generalization of **Top**

Jason Reed

December 6, 2006

Consider an object $P : \mathbb{C} \to \mathbb{C}$ at of the coslice category \mathbb{CAT}/\mathbb{C} at. A *P*-space is defined as pair (C, U, ϵ, δ) where *C* is an object of \mathbb{C} , and *U* is a comonad (with counit ϵ and comultiplication δ) in the category *PC*. We usually just refer to *C* when the naming of the remaining pieces is evident. A *P*-continuous map $C_1 \to C_2$ between *P*-spaces is given by a pair (f, γ) where $f : C_1 \to C_2$ and γ is a natural transformation $Pf \circ U_1 \to U_2 \circ Pf$ such that (abbreviating Pf = p)

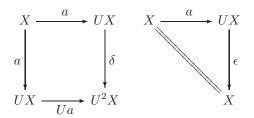


In other words, γ is a coalgebra morphism $\gamma_{U_1} \circ (p\delta_1) \to \delta_2$, and also $p\epsilon_1 \to \epsilon_2$, acting on coalgebras for the functor U_2 , and the constantly-*p* functor, respectively.

Composition and identities are defined by

$$(f',\gamma')\circ(f,\gamma) = (f'\circ f,(\gamma'*Pf)\circ(Pf'*\gamma))$$
$$id_{C,U} = (id_C,id_U)$$

Thus we get a category P**Spa** of P-spaces and P-continuous maps. An *open* object of a P-space C is a U-coalgebra, an arrow $a : X \to UX$ in PC satisfying 'comonoid action' axioms with respect to the comonad:



Lemma 0.1 There is a functor $Op : PSpa \rightarrow Cat$, which takes a *P*-space and yields the category its of open objects.

Proof Arrows in Op(C) are the standard notion of coalgebra morphism. The effect of Op on an arrow in P**Spa** is as follows. We take in (f, γ) a P-continuous map $C_1 \to C_2$, and must output a functor $Op(C_1) \to Op(C_2)$. First we define the object part of this functor: if $a: X \to UX$ is an open object in C_1 , then we claim $\gamma_X \circ Pf(a)$ is an open object in C_2 , with underlying object Pf(X).

We must check that the comonad algebra axioms hold. Abbreviate again Pf = p. Cells marked A follow by hitting assumptions with p, N follows by naturality of γ , and \star are from the definition of P-continuous.

$$pX \xrightarrow{pa} pU_1X \xrightarrow{\gamma_X} U_2pX$$

$$pa \qquad A \qquad p\delta_1$$

$$pU_1X \xrightarrow{pU_1a} pU_1^2X \times \qquad \delta_2$$

$$\gamma_X \qquad N \qquad \gamma_{U_1X} \qquad \downarrow$$

$$U_2pX \xrightarrow{U_2pa} U_2pU_1X \xrightarrow{U_2\gamma_X} U_2^2pX$$

$$pX \xrightarrow{pa} pU_1X \xrightarrow{\gamma_X} U_2pX$$

$$\downarrow \rho_1 \times \qquad \downarrow \epsilon_2$$

$$pX \xrightarrow{pX} pX \xrightarrow{pX} pX$$

For the arrow part of the functor $Op(C_1) \to Op(C_2)$ we must consider com-

position of coalgebra morphisms, but these are preserved by $a \mapsto \gamma_X \circ pa$:

pX	pa	pU_1X	γ_X	$U_2 p X$
pf	A	pU_1f	N	$U_2 pf$
pY		pU_1Y	γ_Y	$U_2 pY$
pg	А	pU_1g	Ν	$U_2 pg$
pZ	pc	v pU_1Z	γ_Z	$U_2 pZ$

as are identities:

$$pX \xrightarrow{pa} pU_1X \xrightarrow{\gamma_X} U_2pX$$

$$p(id) | \qquad A \qquad pU_1(id) \qquad N \qquad \qquad \downarrow U_2p(id)$$

$$pX \xrightarrow{pa} pU_1X \xrightarrow{\gamma_X} U_2pX$$

Theorem 0.2 Let P be the functor $\mathbf{Sets}^{\mathrm{op}} \to \mathbf{Cat}$ that takes X to the evident poset category arising from its powerset $\mathcal{P}X$ ordered by inclusion, and takes a function $f : X \to Y$ to its inverse image map $f^{<} : \mathcal{P}Y \to \mathcal{P}X$. Then the category **Top** is isomorphic to $P\mathbf{Spa}^{\mathrm{op}}$.

Proof For a *P*-space *C*, take *C* as the underlying set of the topology, and the open objects of *C* as the open sets of the topology. Given a topological space (X, \mathcal{T}) , let *U* be the interior operation. The comonad data ϵ and δ simply record the decreasing and idempotent properties of the interior operation in a topological space. Then (X, U, ϵ, δ) is a *P*-space. Check that the two definitions of continuity match up.

Conjecture There is a nice class of maps from the open objects of C_1 to the open objects of C_2 such that every map that belongs to this class arises from a P-continuous map.