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Abstract

The methodology by which deductive systems and metatheorems about
them are encoded in the logical framework LF is well understood. Many
(but not all) of these ideas have already been successfully extended to the
case of encoding stateful deductive systems in the linear logical framework
LLF.

The main gap is the heretofore open question of whether one can bring
to LLF the full power of relational metatheory as used with LF. This tech-
nique reduces the statement and proof of a wide class of theorems about
deductive systems to the totality of certain typed, recursively defined re-
lations, a property that can often be verified mechanically. The difficulty
of making this technique work in the linear case comes from the lack of a
sufficiently expressive language to capture invariants on how the context
of linear hypotheses is manipulated.

I claim that the gap can be closed by use of ideas from hybrid logic,
an approach to temporal and modal logic that allows explicit reference to
modal worlds. These ideas, when appropriately adapted to the setting of
logical frameworks using linear logic, provide an elegant and predicative
way of effectively quantifying over and manipulating linear contexts. I
describe a hybrid logical framework HLF, a conservative extension of LLF
in which one can encode precise formal theorems about stateful deductive
systems. I propose as a thesis project that this language be used as the
foundation of a system capable of mechanically checking proofs of these
theorems.

1 Introduction

When designing languages and tools for mechanized mathematical reasoning,
a balance must be struck between competing concerns for expressiveness and
simplicity. An expressive language can make representation of informal mathe-
matics in it seem easy, but it can be harder to ascertain in a complex language
that any particular representation is not itself somehow subtly mistaken. A sim-
pler language is conversely easier to understand, and therefore easier to trust,
but may make expressing certain concepts more laborious.

My proposal takes place in a progression of logical frameworks whose designs
subscribe to the idea that one should begin at the simple end of this spectrum,



and add new features only with adequate confidence that their usefulness out-
weighs any difficulty they create in reasoning about the correctness of encodings
in the expanded language. Especially it should be the case that any extension
is conservative — it should not affect the correctness of any encodings in an
earlier framework.

One such step in this progression was from the logical framework LF [HHP93]
to the linear logical framework LLF [CP02]. By incorporating features of linear
logic [Gir87] LLF among other benefits permits elegant encodings of stateful
deductive systems, for example programming languages with imperative refer-
ence cells. However, the methodology surrounding LF has not been completely
extended to LLF. The way that LF is used in practice involves not only en-
coding deductive systems themselves, but encoding and mechanically verifying
meta-theorems about such systems. An example of a meta-theorem for a pro-
gramming language is type safety, that executing a well-typed program does not
‘go wrong’; a typical meta-theorem for a logic is that it satisfies cut elimination.

There has not yet been any way to similarly check meta-theorems in LLF:
it is a logical framework, but not yet an effective metalogical framework, as
LF is. Although what are believed to be proofs of meta-theorems can be (and
indeed have been [CP02]) encoded, the missing piece is being able to state the
right theorem in a formal way! The principal obstacle is the fact that LLF
represents state with a context of linear assumptions, which act as consumable
resources. The required behavior of this context must somehow be captured
in the statement of a meta-theorem, yet there is no apparent way to do this
directly in the language of LLF.

I propose to make a conservative extension of LLF to solve this problem.
This extension is in fact most naturally expressed directly as an extension of
LF: the linear features of LLF turn out to be particular ways of using the features
of the proposed extension.

The extension consists of adding to LF ways of forming new types, and new
kinds (the expressions that classify types and families of types). These type and
kind constructors are directly inspired by logical connectives in hybrid logic, an
approach to modal logic which allows explicit syntactic reference to a notion of
‘world’ usually found in the semantics of modal logic. There are related hybrid
type constructors, which when added to LF, first of all yield a system in which
LLF can be faithfully embedded, and secondly make it possible to syntactically
refer to the context of stateful deductive systems, allowing precise statements
of meta-theorems.

I claim the following:

Thesis Statement: An extension of the type theory of LF with
hybrid type and kind constructors provides the foundation for a met-
alogical framework capable of encoding and verification of metathe-
orems about stateful deductive systems.

The remainder of this document is divided as follows. Section 2 gives some
of the background in (linear) logical framework methodology as used in prior



work. Section 3 explains in more detail the problem I intend to solve. Section 4
describes what work I have already completed toward this goal. Section 5 con-
tains what of the remaining work constitutes the core focus of the proposed
thesis project, and section 6 lists other goals I would like to accomplish if time
permits. Section 8 gives a projected timeline, and section 7 discusses related
work.

2 Background

2.1 What is a logical framework?

A logical framework is a meta-language for encoding deductive systems — other
languages, such as logics and programming languages — and for encoding rea-
soning about them. It consists of a type theory, and an encoding methodology,
by which one translates the customary informal descriptions of deductive sys-
tems into the type theory. The language being encoded referred to as the object
language, and the framework in which it is encoded is the representation lan-
guage.

Throughout this proposal I will be concerned with the family of languages
descended from the logical framework LF, due to Harper, Honsell and Plotkin
[HHP93]. The type theory of LF itself is quite minimal compared to other
popular logical frameworks (e.g. Coq, NuPrl, Isabelle). It is essentially just the
simply typed A-calculus with dependent function types Ilz:A.B.

The syntax of the terms and types of LF can be given by

Terms M,N :=X x.M | M N |c|x
Types A :=Tlx:A.B|a My ---M,

There is also a language of kinds, which classify type families:
Kinds K ::=Ilz:A.K | type

The kind Ilx1:A; - - - Ilxz,: A, .type describes type families indexed by n ob-
jects, of types A1 up to A,. Such a type family can be thought of as a function
taking arguments, and returning a type.

We also will write as usual A — B (resp. A — K) for the degenerate version
of Ilx:A.B (resp. Ilz:A.K) where x doesn’t actually appear in B (resp. K).
Terms, just as in the simply-typed A-calculus, are either function expressions,
applications, constants from the signature, or variables. Types are dependent
function types, or else instances of type families a from the signature, indexed
by a series of terms.

The typing judgment I' = M : A says whether a term M has a type A in a
context I' of hypotheses. Typing rules for the introduction and elimination of
functions are as follows:

I'z:A+-M:B 't M:1lz:A.B 'EN:A
' Ae.M :1lz:A.B I'M N :{N/z}B




From these the behavior of dependent types is apparent from the substitution
{N/z}B in the function elimination: the type of the function application M N
depends on what the argument N was, for it is substituted for the variable z,
which occurs free in B. Any variable in the context can be used to form a
well-typed term as well, via the variable rule

z:AeTl
I'tz: A

Since terms appear in types, one must be clear about which pairs of types
count as equal. For the time being, we may take the simplistic view that terms
(and therefore types that mention terms) are simply considered indistinguishable
up to a, 8,n convertibility. In Section 4 below we will discuss in more detail a
modern treatment of this issue.

2.2 LF methodology

Now the question of whether a given term is well-typed depends on the signa-
ture of declarations of typed constants and type families. To formally encode a
deductive system in LF is to create a signature for which the objects and pred-
icates of the deductive system are in suitable correspondence with well-formed
expressions in LF. The remainder of this section provides some examples of
typical encoding techniques.

2.2.1 Data Structures

A recursive datatype can be represented by declaring a type, and declaring one
constant for each constructor of it. For example, the syntax of the natural
numbers can be represented by putting into the signature the declaration of one
type, and two constants, for zero and successor:

nat : type

z : nat. s : nat — nat

The theories of programming languages and logics often involve variable
binding and require that renamings of bound variables are considered equivalent.
To encode this explicitly (or to use a different representation, such as deBruijn
indices) can be extremely tedious. A common alternative is to use higher order
abstract syntax [PE89], in which the variables and variable binders in the object
language are defined in terms of the variables and function argument binding
in the representation language.

The untyped lambda calculus

ex=Ar.e|elex|x
is represented in this style by the type declaration

exp : type



and the constant declarations
lam : (exp — exp) — exp

app : exp — exp — exp

The fact that lam requires a function as its input is what makes the encoding
higher-order. To encode a lambda term such as A\z.z x, we specifically pass lam
a function that uses its argument everywhere the variable bound by that lambda
appears. Thus lam(Az.app © ) is the encoding of A\z.x .

2.2.2 Judgments

Predicates on data can be represented by taking advantage of dependent func-
tion types. The slogan is ‘judgments as types’: judgments (predicates) of objects
are encoded as type families indexed by those objects.
For example, the usual linear order > on natural numbers can be encoded
as follows.
ge : nat — nat — type

ge_z : IIM:at.ge M z
ge_s : IIM:nat.IN:nat.ge M N — ge (s M) (s N)

The type family ge is indexed by two natural numbers: because of ge_z and
ge_s, it is the case that for any M and N, the type ge M N is inhabited if
and only if M represents a number greater than or equal to the number N
represents.

To represent recursive functions, we apply the standard idiom of traditional
logic programming languages such as Prolog, viewing functions as relations be-
tween their inputs and outputs. For example the function plus on natural num-
bers is thought of as a relation on triples of nat: the triple (M, N, P) belongs
to the relation just in case indeed M + N = P.

In LF, this relation, just like the binary relation > described above, can be
encoded as a type family. In this case it is declared as

plus : nat — nat — nat — type

plus_z : IIN:mat.plus z N N
plus_s : UM :nat.IIN natllP:nat.plus M N P
— plus (s M) N (s P)

The Twelf system [PS99] has considerable support for reasoning about func-
tions defined in this way. It has a logic programming interpreter, so it can run
programs by solving queries. Moreover it has several directives which can be
used to verify properties of logic programs:



e Modes are descriptions of the intended input-output behavior of a relation.
A mode specification for plus above is plus + M + N — P: its first two
arguments M, N are understood as input (+), and its third argument P
is output (—). A relation is well-moded for a given mode specification if
each clause defining it correctly respects the given modes.

e A relation is said to cover its inputs, when for any inputs it is given, it
will reduce search to another set of goals.

e A relation is terminating if this reduction of goals to subgoals always
terminates.

These properties are all in principle potentially very difficult (or impossible)
to decide exactly, but there are good decidable conservative approximations to
them. When a relation R is well-moded, and satisfies coverage and termination
properties, then it is a total relation: for every set of inputs, there is at least
one output such that R relates the given inputs to that output.

Thus for many total relations (for example plus above) it can be mechanically
verified in Twelf that they are total.

2.2.3 Metatheorems

A salient advantage of the above style of encoding is the fact that what we
might think of as executions of the function plus are available as data to be
manipulated in the same way as, say, natural numbers. With this it is possible
to do meta-logical reasoning in LF [Sch00]: proving metatheorems about entire
deductive systems.

An example metatheorem is associativity of plus. A constructive interpre-
tation of this claim is that we must exhibit a function that for all numbers
ni,na, ng, yields evidence that (ny + ng) + n3 = ny + (n2 + nz). Therefore in
LF it suffices to define a total relation that takes as input derivations of

plus NQ N3 N23

plus N1 N23 M
plus N1 N2 N12

and outputs a term of type
plus N12 N3 M

Such a relation indeed can be described in LF as follows: (leaving many IIs
and their arguments implicit hereafter for brevity)

plus_assoc : plus N1 Nog M — plus N1 Ny Nig

— plus No N3 Nag — plus Nio N3 M — type

pa/z : plus_assoc plus_z plus_z P P.



pa/s : plus_assoc Py Py P3 Py
— plus_assoc (plus_s P1) (plus_s Py) Ps (plus_s Py)

Again, in order for this defined relation to count as a proof of associativity of
plus, it must be total in precisely the same sense as the one mentioned at the
end of the previous section, in this case for the mode specification plus_assoc +
P, + P, + P; — P;. In this way, the totality-checking facilities of Twelf can
be used to verify a wide range of metatheorems.

2.3 Logical frameworks for stateful systems

LF by itself is quite adequate for a wide range of encodings of logical and
programming language features, but not as effective for those involving state and
imperative update. It is possible to use, for instance, store-passing encodings to
represent a programming language with imperative reference cells, but this is
inconvenient in much the same way as is ‘coding up’ references via store-passing
when using a pure functional programming language. One also quickly bumps
up against the classic so-called frame problem when describing large, complex
states whose evolution over time is described in terms of small modifications.
The generally large ‘frame’ of state variables that don’t change in any particular
state transition must still be described, thus complicating the encoding.

An elegant solution to these obstacles can be found in the applications of
linear logic. Linear logic provides a logical explanation for state, and leads to
straightforward encodings of stateful systems. Research on the logical frame-
works side [CP02] has proven that it is possible to incorporate these ideas into
a conservative extension of LF called LLF (for ‘Linear Logical Framework’),
yielding a system appropriate for encodings of stateful deductive systems.

In the remainder of this section, we provide a brief survey of the theory and
applications of linear logic, and of the framework LLF.

2.3.1 Introduction to Linear Logic

Linear logic is a substructural logic in which there are linear hypotheses, which
behave as resources that can (and must) be consumed, in contrast to ordinary
logical hypotheses which, having been assumed, remain usable any number of
times throughout the entirety of their scope. These latter are therefore termed
unrestricted hypotheses in contrast to linear ones. Linear logic is ‘substructural’
because among the usual structural rules that apply to the context of hypotheses
— exchange, contraction, and weakening — the latter two are not applicable to
linear hypotheses.

Although linear logic was originally presented with a classical (that is to say
multiple-conclusion) calculus, we will summarize here a fragment of judgmental
intuitionistic linear logic as given by Chang, Chaudhuri, and Pfenning [CCP03],
for it is more closely related to the linear logical framework discussed below.

The core notion of linear logic is the linear hypothetical judgment, written
A I Atrue, where A is a context of hypotheses A; true, ..., A, true. This judg-
ment is read as intuitively meaning ‘A can be achieved by using each resource



in A exactly once’. For brevity we leave off the repeated instances of true in
the sequel and write sequents such as Aq,..., A, = A.

Which judgements can be derived are determined by inference rules. There
is a hypothesis rule

h
Apar

which says that A can be achieved if the set of hypotheses is precisely A. Note
that because weakening on the context of linear hypotheses is not permitted,
this rule does not allow us to derive B, A i+ A.

This judgmental notion leads to a new collection of logical connectives. For
an idea of how some of them arise, consider the pervasively used example of a
vending machine: suppose there is a vending machine that sells sticks of gum
and candy bars for a quarter each. If I have one quarter, I can buy a stick of
gum, but in doing so, I use up my quarter. This fact can be represented with
the linear implication —o as the proposition quarter — gum. Now it is also the
case that with my quarter I could have bought a candy bar. Notice specifically
that T can achieve both the goals gum and candy with a quarter, but not both
simultaneously. So in some sense quarter implies both gum and candy, but in
a different sense from the way two quarters implies the attainability of gum and
candy, for with fifty cents I can buy both.

There are accordingly two kinds of conjunction in linear logic, &, which rep-
resents the former, ‘alternative’ notion of conjunction, and ®, which captures
the latter, ‘simultaneous’ conjunction. The linear logic propositions that repre-
sent the facts just discussed are quarter — gum & candy (with one quarter I am
able to buy both gum and candy, whichever I want) and quarter ® quarter —o
gum ® candy (with two quarters I am able to buy both gum and candy at the
same time).

Ail-A—oB Ay l- A AAF B
—o EE——Y ]
A, A =B AtA—B
Al+-A& B Al+-A& B AlFA Al B
—  &F1 ———— &E2
AlFA AW+ B A+-A& B
AFASB M ABEC Ak A Ak B
&
A, A = C AL, A HAQB

The difference between the two conjunctions is visible from their introduction
rules. In &I, in order to establish that A & B can be achieved from resources
A, one must show that A can be achieved from A, and that B can be achieved
from the same set of resources A. In ®I, however, to achieve A ® B from some
resources, one must exhibit how those resources can be divided into A; and Ay
so that A yield A and A, yield B.

The system described so far can only describe linear hypotheses. So that
it can also express everything ordinary intuitionistic logic can, one can add to
it the notion of unrestricted hypotheses, and a modal operator ! that mediates
between the linear and unrestricted judgments. The proposition !A construed as



a hypothetical resource has the interpretation of an unlimited and unrestricted
supply of copies of A — any number of them, zero or more, may be used. We
do not give inference rules for ! here, but refer the reader to [CCP03]. The only
property of ! that is of interest below is that the usual intuitionistic implication
= has a decomposition in linear logic

A= B (14) - B

2.3.2 Applications of Linear Logic

This notion of consumable hypotheses is useful for representing ephemeral facts
of a stateful system — those that may cease to be valid after the state of the
system changes.

Consider a finite state machine with states S and a transition relation R C
Sx X xS, where (s,0,s’) € R means that the system may go from state s to s if
it receives input character o from some alphabet ¥. This can be represented in
linear logic by supposing that there are atomic predicates state(s) and input(¥)
for states s € S and strings £ € ¥*, and taking as axioms

I~ state(s) @ input(al) —o state(s') ® input(l)
for each (s,0,s’) € R. With these assumptions, it is the case that
I~ state(s) @ input(f) —o state(s') ® input(e)

(where € is the empty string) is derivable just in case the finite machine, started
in state s, can in some number of steps read all of the input ¢, and end up in
state s’. Take in particular the system where S = {s1,s2}, ¥ = {a,b}, and
R = {(s1,a,s2), (s2,b, s2), (s2,a,s1)}. With input ab the system can go from
$1 to s2, and there is a proof in linear logic of the corresponding judgment,
abbreviating state(s) ® input(f) as si(s,£). Here is a sketch of it:

, , , : hyp
- si(s1,ab) —o si(s2,b) si(s1,ab) - si(s1,ab)

- si(s2,b) —o si(s2,¢) si(s1,ab) b= si(s2,b)
si(s1,ab) - si(sa,€)

- si(s1,ab) —o si(sa,¢€)

—o

—o

—o

Note that this claim would not be true if we tried encoding the FSM in
ordinary logic by using the axioms

k state(s) A input(ol) = state(s") Ainput(f)

for each (s, 0,s’) € R. For then in the example FSM we could form a derivation
of state(sy) Ainput(a) = state(si) A input(e), despite the fact that the above



FSM could not go from state s; to itself on input a. The derivation can be
constructed in the following way, abbreviating in this case state(s) A input(¥)
as si(s,£): First form the derivation

, , : : hyp
si(s1,a) t si(s2, ) si(s1,a) - si(s1,a)

Do AE1 NE2

si(s1,a) t state(s2) si(s1,a) = input(a)

i
si(s1,a) t si(s2,a)

Now plug in D like this:
D

- si(s2,a) = si(s1,€) si(s1,a) b si(sg,a)

si(s1,a) - si(s1,€)
=1

b= si(s1,a) = si(s1,€)

The usual logical connectives used in this way clearly fail to account for state
changes; we were able to cheat and illogically combine some of the information
from the previous state of the evolving FSM in which the input string was a,
together with the information from a later time when the machine’s current
state was so.

2.3.3 The Linear Logical Framework

LLF is an extension of LF to support a linear hypothetical judgment.
Where the typing judgment of LF is

T'-M:A
the typing judgment of LLF is
IAFEM:A

adding a context A of linear variables x:A. It retains from LF the context I'
of unrestricted variables — the variables in A are resources that must be used
exactly once, but the variables in I' behave as ordinary variables just as in LF,
and are allowed to be used without restriction.

Following the slogan of propositions as types, LLF adds new type construc-
tors (and new term constructors for them) corresponding to propositional con-
nectives of linear logic. The grammars of terms and types in LF are extended
by

M= | XeM | M "N |(M,N)| ;M| ()

A= |A—B|A&B|T

The grammar of the language of kinds remains the same; this will become
important in Section 3.1. Inhabiting the linear function type —o are linear func-
tions Az.M, which can be used in linear function application M " N. The type

10



M & N is a type of pairs, formed by (M, N) and decomposed with projections
m1 M, moM. The type T is a unit for &; it has a single inhabitant (). The typing
rules for these new constructs are as follows:

I''A\FM:A—-oB F;AQI—N:A_O A2 A-M: B o
AL, A M"N: B AR MM:A—B
AR M: A & Ay AFM: A AFN:B
DA FRmM: A e ;AR(M,N): A& B

— 711
;AR :T
Moreover the existing LF rules must be modified to accommodate the linear
context. The LF variable rule splits into two rules, depending on whether the
variable used was from the unrestricted or linear context:

z:Ael
—— hyp _—1
Iy Fax: A iaxtAFx: A
Since every variable in the linear context must be used exactly once, the
linear context must be empty in the case of the use of an ordinary unrestricted

variable, and must contain exactly the variable used in the case of using a linear
variable. The dependent function typing rules become

hyp

Ie: A;A-M:B o AR M :Tlx:A.B I''FN:A
AR A M :TIx:A.B I'A+M N :{N/z}B

This means that IIs are still essentially functions of ordinary, non-linear, un-
restricted arguments: this fact manifests itself in the A rule as the appearance of
the variable = in the unrestricted context, and in the application rule as the fact
that the linear context is empty in the typing of V. Since non-dependent unre-
stricted implication decomposes as (IA) — B, and since in a sense the domain
of a II is also unrestricted, one might ask whether a comparable decomposi-
tion of II exists. In other words, is there a ‘linear II,” written as IlxtA.B such
that in some sense Iz:A.B = Ix*(!A).B? We return to this question briefly in
section 3.1 and section 4

2.4 Encodings in the Linear Logical Framework

The two major examples of encodings into LLF given by Cervesato and Pfen-
ning [CP02] are of a programming language, MiniML with references, and of a
logic, namely the linear sequent calculus. The first encoding takes advantage of
linearity directly to represent state changes resulting from imperative features
in the programming language. The second uses the new features introduced in
the linear logical framework to easily encode the logic that inspired them. We
will focus on this latter encoding as a running example throughout the rest of
this proposal.

11



2.4.1 Linear Sequent Calculus

Just as ordinary higher-order abstract syntax encodes object-language binders
as framework-level binders, we can in LLF encode object-language linearity with
framework-level linearity.

So that we can later talk about proving cut elimination as a metatheorem, we
consider the sequent calculus instead of the natural deduction formulation of the
logic. As is typical of sequent calculi, the linear sequent calculus is identical to
the natural deduction system in the introduction rules, (except they are instead
called ‘right rules’) but instead of elimination rules it has rules that introduce
connectives on the left. For instance, the left rules for —o, ®, and & are:

AA Ay BRC

—oL
A1, Ay, A— BHFC
AAKC A, Bt C
&L1 &L2
AA& BEC AA& BFC

A A BFC
— oL
AA® B C

The following is an encoding of the linear sequent calculus in LLF. We declare
a type for propositions

o : type
and two type families, one for hypotheses, and one for conclusions.

hyp : 0 — type
conc : o — type

The propositional connectives —o, &, ® are encoded as constructors of the type
of propositions

lol:0—0—o0
amp:0—0—o0

tensor :0 — o0 — o0

Thereafter we can encode the left and right inference rules —oL and — R for —o
as two constants

lolr : (hyp A —o conc B) —o conc (lol A B)
loll : conc A —o (hyp B —o conc C') — (hyp (lol A B) —o conc C')

and similarly for the rules &R, & L1, and & Lo:

12



ampr : conc A & conc B —o conc (amp A B)
ampll : (hyp A — conc C) — (hyp (amp A B) —o conc C)
ampl2 : (hyp B —o conc C) —o (hyp (amp A B) —o conc C)

and for the rules ® R and ®L:

tensorr : conc A — conc B —o conc (tensor A B)
tensorl : (hyp A —o hyp B —o conc C) —o (hyp (tensor A B) —o conc C)

Finally, the init rule
init

Al A

is represented by the declaration
it : hyp A —o conc A

The encoding uses higher-order function types to represent the structure
of the context, and uses linearity in the framework to represent linearity of
hypotheses in the object language.

The representation of a derivation such as

init

—o L

init
Al A BW+ B
A—oB,AF+ B
—oR
A—-oBlA—oB R
- (A — B) — (A — B)

can be built up as follows. The end goal is a derivation of k- (A — B) — (A —o
B), which will be represented as an LLF term M of type

conce (lol (lol A B) (lol A B))

The last proof rule used was —R, so M will be lolr " (j\le) for some M;
such that -;z*hyp (lol A B) - M; : conc (lol A B). That the constructor lolr
requires a linear function corresponds exactly to the fact that the inference rule
—o R requires a derivation with a linear hypothesis. Working up through the
proof, we use — R again, and so we choose M7 to b be lolr”~ (S\yMg) for some
M5 such that

saxthyp (lol A B),y: hyp A+ My : conc B

And then Ms should be a use of loll, to match the use of —o L; subsequently at
the leaves of the proof tree, we must use init. The final representation of the
proof is

M = lolr~ (Az.lolr ™ (Ay.loll " (init"y) "~ (Az.init " 2) " z))

13



3 Problem: Mechanized Metatheory for LLF

What is missing from the above methodology is a complete analogue to the way
metatheorems are encoded LF. It is still possible to write down the essential
computational content of the proofs themselves in LLF (and in fact has been
done [CP02]) but it is not known how to capture the statement of theorems
about stateful deductive systems in terms of LLF relations. The proofs that
have been carried out are still encoded as relations, but the type of the relation
is insufficiently precise to capture the intended theorem.

Casting the problem in terms of thinking of proofs as programs, we may
say that it is still possible to write the programs we want in LLF, but not to
give these programs precise enough types to ensure that they are the programs
we meant to write. The goal of the proposed thesis project is, essentially, to
establish a language of types to solve this problem.

3.1 Cut Admissibility in Intuitionistic and Linear Logic

We can examine how this problem arises in the case of trying to mechanically
verify a proof of cut admissibility for the sequent calculus encoded above.

First we note some facts about how encoding a structural proof [Pfe95, Pfe00]
of cut admissibility works for ordinary intuitionistic logic. The theorem to be
shown is that the cut rule, which allows us to eliminate a ‘proof detour’ A, is
admissible:

Theorem 3.1 (Intuitionistic Cut Admissibility) If '+ A and T, A - C
thenI' = C.

This is represented as a relation mapping derivations of conc A and hyp A —
conc C' to a derivation of conc C.

ca: conc A — (hyp A — conc C) — conc C — type (1)

The context I' = Aj,..., A, of hypotheses in the statement of the theorem
corresponds in the encoding to an LF context of variables =1 : hyp A1,..., Ty, :
hyp A, that might occur in the two input, and one output derivation. This
strategy — representing the object language context with the representation
context — is effective because the context I is shared across the two premises
and conclusion of the theorem. When forming a term in the type family ca
(that is, a derivation of of some instance of the theorem) all variables in the
LF context are naturally available for unrestricted use in both premises and the
conclusion.
Now the statement of cut admissibility, on the other hand, is

Theorem 3.2 (Linear Cut Admissibility) If A; = A and Ay, At C, then
Ay, A C.

In the linear sequent calculus the nontrivial relationships of the various contexts
to one another is essential for the meaning of the cut admissibility theorem. Yet
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there is no evident way of writing the theorem as an LLF relation that captures
these invariants.

The simplest attempt to adapt (x) is to simply replace the type-level — with
a —o, yielding

ca : conc A — (hyp A —o conc C) — conc C — type (2)

However, the use of unrestricted function space — discards any information that
might have been known about the context used to make terms of type conc A,
hyp A —o conc C', and conc C: recall that the unrestricted arrow requires its
argument to be well-typed in an empty linear context.

What seems desirable is to use linear connectives somehow to express the
fact that A; and As are disjoint contexts, and that the context A, As in the
output derivation is the combination of them. Suggestively, one might try to
write

ca: ((conc A® (hyp A —o conc C)) & conc C') —o type (3)

to capture the fact that two input derivations have disjoint contexts, and that
the output derivation of conc C has the same context as the two input deriva-
tions taken together. The multiplicative conjunction ® expresses that two goals
are to be achieved with disjoint parts of the current context, and the additive
conjunction that two goals are to be achieved with the same context.

The main problem here is that this isn’t even a valid declaration of an LLF
type family — LLF does not have ‘—o type’ in its language of kinds. Another
apparent problem is that LLF doesn’t have ®, but this can be avoided by
a standard currying transformation of the encoding where the type A; ® Ay is
simulated by a declared constant type t4, 4, : type and a constant createq, 4, :
Ay — Ay —ota, 4, (or else by working in CLF, which does have ®). To have a
linear function space whose codomain is the kind ‘type’ would mean that there
would be a notion of type family whose indices were themselves somehow linear.
This was the approach suggested by early work [Pfe94] on encoding linear cut
elimination. Although work by Ishtiaq, Pym, et al. [IP98, Ish99] has studied
this sort of dependent-substructural function space in other logics, to the best
of our knowledge it has not been carried out adequately with index objects that
are actually linear in the sense of Girard’s linear logic, as opposed to obeying
substructural disciplines as found in relevant logic and bunched logic.

Using — type instead of —o type to stay within LLF yields the type family

ca : ((conc A® (hyp A —o conc C)) & conc C') — type (4)

but this use of the unrestricted arrow has the same problem as in (2).

It is nonetheless possible to encode a correct proof of the linear cut admissi-
bility theorem, but only by representing object-language linear by unrestricted
LF variables — it is this feature of the representation that loses essential infor-
mation about the use of linear resources. Consequently it is possible to write
incorrect cases of the proof of this theorem, and they will nonetheless typecheck.

We first explain the encoding of a case from the correct theorem, and go
on to show how it can be modified to yield an unsound ‘proof’. Suppose the
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derivations of Ay = A and As, A + C are named & and F, respectively. If
they happen to both introduce the top-level propositional connective of the cut
formula A, then the situation is called a principal cut. In the principal cut case
for —o, the cut formula A is of the form A; — As and £ and F are built out of
derivations as follows:

Dl DQ DS
A A — Ay Aoy, Agg, Ay —0 A= C

cut

Alv Ale AQQ = C
From this we can construct a derivation that only uses the cut rule (or equiva-
lently applies the induction hypothesis of the admissibility theorem) at smaller
cut formulae:

Do D1
cut
Ay, Aoy = A Ago, Ap = C

cut

A17A217A22 =C

This reasoning is encoded as

prems : 0 — type
p:conc A —o (hyp A —o conc C') — prems C
ca : (prems C & conc C) — type
ca/lol/principal :
IID;:(hyp Ay —o conc Asg). IDy:(conc Ay).
IIDs:(hyp Az —o conc C). IIDy:(conc Az). IIDs:(conc C).
ca (p~(lolr™ (M. Dy "))~ (Az.loll "Dy " (Ax.D3 " x) " z), Ds)
—ca(p"Dy" (S\Z.Dl “x),Dy)
— ca(p Dy (A\2.D3" z),Ds)

Here prems is an instance of the currying technique mentioned above in order
to simulate ®. The long prefix of IIs at the beginning names all derivations used
in the case. The first subsequent line establishes that this clause treats the case
where the first derivation is constructed from —R (i.e. using lolr in LLF) and
the second from —oL (i.e. using loll in LLF). The two subgoals contain the
instructions to cut Dy against D; to yield a derivation D4 of conc As, and to
then cut D4 against D3 to yield Ds, a derivation of conc C.

To see why the type system is not helping enough to determine that this
case is correctly reasoned, imagine that we incorrectly wrote the —o right rule

as
A A AW B

AlFA—oB
which in LLF would be encoded as

lolrbad : (hyp A —o hyp A —o conc B) —o conc (lol A B)

_oRbad

16



It is easy to check that this rule destroys cut admissibility: there is a proof using
cut

AR A—-oB,A A+ B Rbad
ARA—oBWt+A—-B AA—-BHWF B
AR A—oB,A+B

but no cut-free proof of A® A — B, A I+ B — and the reason for this is the
extra linear occurrence of A. Yet there is still a well-typed (but erroneous!)
LLF proof case

—o

ca/lolbad/principal :

IID1:(hyp A1 —o hyp A1 —o conc As).

11D} :(hyp A1 —o conc Ag).IIDs:(conc Ay).

IIDs:(hyp A1 —o conc C).IIDy:(conc As).

IIDs5:(conc C).

ca (p”~ (lolrbad” (A\z.Xy.D1" 2" y)) " (Az.loll "Dy~ (Az.Ds " x)" z), Ds)

— (Ily:hyp Ar.ca (p" D" (Ax.D1"z"y),D1"y))
— ca(p"Dy” (Ax. D} " x),Dy))
—calp" Dy (Az.Ds" ), Ds)

which corresponds to cutting Do twice into D;! In a paper proof this would
result in transforming

Dy Do D3
Ay, A A e Ay Rbad Aoy A1 A, Ay = C
A A — Ay Aoy, Aoy, Ay —0 A = C .
cu

A1, Ao, Agp = C

into
Do Dy
Dy Asi A Ar A Ak A
Aoy i Ay Mgk, Dy
N cut Ass, As b C

cut

A15A21)A21)A22 t=C

The fact that two copies of Ay arrive in the context is a clear mistake, yet the
type system LLF and encoding methodology above do not provide any clear
mechanism for preventing it: all derivations are quantified by the unrestricted
dependent type constructor II, and carry no information about the linear context
they are supposed to be valid in.
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4 Preliminary Results

My initial attempt to solve this problem was searching for a type system with
a ‘linear I’ that supported kinds of the form A — type. The system I arrived
at, although technically sound, seemed inconvenient and unattractive in several
ways, and moreover did not seem a good fit for typical example metatheorems
such as the one given above. Since it was not a very fruitful line of investigation,
I will not go into any further detail about it in this document.

Instead, what now seems most promising is an extension of LF with features
similar to those found in hybrid logic. Hybrid logic [ABMO01, Bla00, BdP06,
CMSO06] was originally developed as an approach to temporal and modal logics
with Kripke-like semantics. One posits new language features at a purely syn-
tactic level, which effectively reify the Kripke possible worlds in the semantics.
The name ‘hybrid’ comes from the fact that the resulting logic is somewhere
between traditional modal logic and the opposite extreme of simply embedding
(the Kripke semantics of) modal logic in first-order logic and reasoning there.
Instead, a limited but expressive supply of logical tools for accessing Kripke
worlds are provided, leading to a logic that is often (depending on which version
is considered) still decidable, and more suited to particular domain applications
than general first-order logic.

I claim that similar benefits can be obtained with (at least the LLF fragment
of) linear logic. One can allow explicit mention of certain ‘resource labels’
inspired not by Kripke semantics, but the resource semantics given by Galmiche
and Méry [GMO3]. Because they nonetheless behave somewhat like Kripke
worlds, I use ‘world’ and ‘label’ more or less interchangeably in the sequel.

The language of LF extended with these labels (and appropriate type con-
structors that manipulate them) can express enough concepts of linear logic to
generalize LLF, and also has enough expressive power to accurately encode the
above theorems as relations.

In the following subsections I will attempt to motivate the design and key
ideas of this new system in terms of basic considerations about representing
resource consumption, after which I describe the system in more formal detail.
Finally, solutions are sketched to the theorem encoding problems for the running
example.

4.1 Toward a Hybrid Reconstruction of LLF

We have seen already that a linear hypothesis must be used exactly once, and
that this behavior can be enforced by restricting the use of substructural rules
in the context.

Consider the following alternate strategy for controlling uses of hypotheses:
instead of I' - M : A, take as the basic typing judgment I' = M : A [U], where
U is a mapping of variables in I" to numbers, indicating how often they are used.
Thus we might have

x:Ay:B,z:Chcxzy:Dz=2y=1,2= 0]
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Linearity in this system could be imposed after the fact by saying that the
only valid typing derivations are those that end with every linear variable being
mapped to 1 in U. The typing rule for —o could enforce linearity of functions
as follows:

Ie:AFM:B[Uz=1]
T Ae.M:A— B[U|

However, this does not make it any easier to quantify over what resources
are used. If we were to come up with a notion of well-formedness of usage
specification Us, it would depend on the shape of the current context, and we
would likely be back in the same spot of having to quantify over contexts.

The solution is an alternate, more abstract representation of the same infor-
mation found in usage specifications U. Let there be a separate syntactic class
of worlds

pgu=alpxqle

which may be world variables « from the context, combinations p * g of two
worlds, or the empty world e. The binary operator * is assumed to form a
commutative monoid with e: that is, * is commutative and associative, and
p*e€, €% p, and p are considered equal.

Worlds can be used to encode information about how often variables are

used in a very simple way. If each linear variable x1,...,z, in the context is
associated with a unique world variable from a4, . .., a,, and an world expression
ki times k, times

IR IR T

represents the situation where, for all ¢, the variable z; is used k; times.
The central judgment of the type theory is now

T'F M : Alp|

read as, “M has type A in context I', and resources p are consumed to produce
M.” Contexts may now include also world variables:

:=.--|T«a: world

and the rule for typing variables now specifies that to simply use a hypothesis
directly requires using no resources:

x:Ael
I'kx: Al
similarly constants from the signature X exist without using any resources:

c:AeX
T'kec: Al
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In order to explicate the previously vague notion of how worlds are ‘associated’
with variables, let there be a new type constructor @ that takes a type and a
world, which internalizes the notion of the new judgmental feature [p]:

An=..-| AQp
Its typing rules are
I'-M: Alp
I'F M : (AQ@p)[q]
I'F M : (AQp)[q]

' M: Alp)

Note that neither of these rules introduce any new term constructs: the type
AQp is merely a refinement of the type A, meaning that AQp’s inhabitants are a
subset of A’s. Now we can give typing rules for —o, which define linear functions
in terms of world labels. They are:

I'ya:world,z : AQa - M : Blp * a]
I+ Az.M: A —o Blp|

'k M:A— Blp] ' N: Alq]
' M"N : Blpx*d]

In the introduction rule, a fresh world variable « is created, and the function
argument is hypothesized not at type A, but at type AQa — the information at
type A itself it is only available by applying the @ elimination rule and thereby
consuming resource «. Furthermore, the body of the function must consume
the resource a exactly once, along with whatever resources p the containing
expression was already required to consume.

In the elimination rule, if the function consumes resources p, and its argu-
ment consumes resources ¢, then the application consumes the combined re-
sources p * ¢, just as the usual rule for —o elimination features a combination
A1, Ao of contexts. Note, however, that here the context I' is shared across
both premises, because resource use is completely accounted for by the world
annotations.

4.2 Hybrid Logical Connectives

The main reason to tease out the information about resource use into a sepa-
rate object is to be able to manipulate it with other logical connectives, and
corresponding type operators. The most common connectives found in the lit-
erature on hybrid logic are the universal quantifier Va.A over worlds, and a
somewhat more peculiar quantifier, the ‘local binding’ |«a.A operator, which
binds a variable a to the current world at the time it is analyzed.
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Both of these type constructors again introduce no term constructors. The
typing rules for | allows access to the ‘current world’ via its typing rules as

follows:
I'=M: ({p/a}A)lp]
THM: (la.A)]p]
'EM: (la.A)p]

I'=M:({p/a}A)p]
And the typing rules for V are:

T« :world - M : Alp]
I'FM: (Va.A)p]

't M: (Va.A)p| I'F ¢ : world
I'EM:({g/a}A)lp]

Moreover, we can add universal quantification to the language of kinds:

K= |VaK

Since this only involves quantification over objects of a particular syntactic sort
(that is, worlds) which themselves are not assumed linearly (that is, once we
hypothesize a world to exist, there is no linear occurrence discipline that says
we must use it in some label) this extension to the language of kinds involves far
less complication than would be required by adding —. The ability to write V in
kinds will be central to the technique I propose below for encoding statements
of metatheorems in HLF.

Before getting to that, however, it is expedient to explain how these extra
connectives are already useful for providing (together with ordinary function
types) a decomposition of —. It turns out that the terms of type A — B are
in bijective correspondence with those of type

Va.|8.(AQa) — (BQ(S * «))

(the scope of V and | are generally both meant to extend as far to the right as
possible) In fact, we can take this type as a definition of —o as mere syntactic
sugar. One effect this has is to collapse A and A (and M N with M " N) as term
constructors, which I argue in Section 4.3.4 to be benign.

To see why this definition of — works, notice that for every derivation

T'ya:world,z : AQa - M : Bp * a]
I+ Az.M: A —o Blp|
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that would take place in the system with a ‘first-class’ —o, there is a derivation

T'ya:world,z : AQa - M : Bp * a
T a:world,z : AQa - M : BQ(p * a)[p]
T, a:world - A\x.M : AQa — BQ(p * a)[p]
o :world - Ax.M : |.AQa — BQ(S * a)[p]
'k Az.M :Va.|8.AQa — BQ(S * a)[p]

in the system with a defined —o, and a similar correspondence holds for the
elimination rule.

4.3 HLF Formal Description

In order to give a formal account of HLF, I take advantage of a pair of fairly
modern pieces of logical frameworks machinery.

One is the idea of hereditary substitution, pioneered by the formulation of
CLF, which can be seen as a Curry-Howard analogue to the logical technique
of structural cut elimination [Pfe95, Pfe00]. It allows the following approach
to equality on terms: Instead of first considering all possible terms, and there-
after identifying them up to 5 and 7 conversion, consider only terms already in
canonical (S-normal, n-long) form. One constrains the syntax of the system to
only allow these terms to be written.

Ordinarily, substitution of a term for a variable — even if both terms in-
volved were originally themselves canonical — may create a beta-redex, e.g.
{AzAz2.M/y}(y c1 c2) = (Axz.Az.M) ¢1 c2. However, the syntax of the language
of terms is supposed to rule out such non-g-normal terms. The definition of
substitution must therefore be modified to carry out S-reductions, which them-
selves involve substitutions, and so on hereditarily, until the resulting term is
normal.

The key technical result to be shown, then, is that on well-typed terms, this
process always terminates and yields an answer of the correct type. One benefit
of using hereditary substitution and considering only canonical forms of terms
is that equality of terms and types is defined by a-equivalence alone, vastly
simplifying previous accounts of decidability of typechecking, which typically
involved rather complicated logical relations arguments.

The second device I employ is a presentation in spine form, [CP97b] which
is the A-calculus analogue of the logical notion of focussing developed by An-
dreoli [And92], and later extended by Girard [Gir01]. Focussing enjoins us to
carry out eliminations of certain logical connectives, (the ‘negative’ connectives,
in Girard’s terminology) all at once in a sequence, until we reach a positive
proposition, or else perhaps an atomic proposition. Conspicuously, all of the
type operators in HLF are in the negative fragment.

All arguments to a function, and all projections from a pair are therefore
constrained to appear in spines, and all terms involving these eliminations take
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the form of a head, that is a variable or constant, applied to a spine that
reduces it to base type. For instance, instead of Az.\y.(m (¢ z)) y, we write
Az \y.c- (x;m;y). The spine is a list of instructions: first apply to x, then take
the first component, then apply to y.

4.3.1 Language

The complete syntax of the language is as follows:

Worlds p,q,7r i= a | p*xq]|e
Kinds K :=Tlz:A.K | Va.K | type
Types Auw=Tx:AB|a-S|VaB||la.B|AQp | A& B|T
Terms M =Xz M |c-S|xz-S| (M, M)| ()
Spines S = ()| (M;8)] (m;5)
Contexts i=-|Tz:A|T,«: world

4.3.2 Judgments

There are four typing judgments:

T'tp:world
' M: Alp
T'F A:type
I'ES: Alp] > C[r]

The first simply checks that a world expression is well-formed. The second is
type-checking parameterized by a world as discussed above, and the third checks
well-formedness of types, notably not parameterized by any world. The last is
the typing judgment is on spines: T' + S : A[p] > C|[r] says that S is a spine
that, if a head (variable or constant) of type AQp is applied to it, it will yield
a term of type C' consuming resources 7.

4.3.3 Type Checking

We write R to stand for either x-S or ¢- S. The relation = ¢y is equivalence
of worlds up to Associativity and Commutativity of « and Unit laws for * and
€.

I'tR:a-S[p] S=a8" p=acvq

'cR:a-Sq|
Iz: AR M : Blp] I« : world - M : B[p]
'k Xz.M : Tlz:A.Blp) 'k M :Va.B[p]
DhM:({p/a}B)pl Tk M: Alg
' M: |a.B[p] I'F M : AQq[p]
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D'F M :Ailp] T+ My Aslp] _
T F (M, M) : Ay & Aslp] LHEQ =Tl
c:AeX TES: Alg > C[r]
'ke-S:Cr
x:Ael I'ES: Alg > C[r]
'tz S:C[r]

4.3.4 Spine Typing

TH():a-Sp>a- S

I'FM: Al 'k S:{M/x}B[p] > C|r]
'k (M;S): Hx:A.Bp] > C[r]

'k q: world 'k S:{q/a}Bp] > Cr]
T+ S:Va.B[p > Clr]
I'FS:{p/a}Blp] > C[r]

I'FS: la.Blp] > Cr|
'k S: Alg) > C[r]

'k S: AQq[p] > Cr]

T'ES: Alp] > Clr]

Tk (m;8): A1 & Asp] > Cr]

It is worth noting that types do not appear in terms, for this means that
worlds (which do appear in types, via AQp) in turn do not appear in terms.
Because of this, equality of terms remains simply the identity up to a-conversion.

The term language, we claim, is essentially identical to that of LLF, if it
were specified in spine form, and with syntactically enforced canonical forms.
Linear and ordinary lambdas (and respectively, their applications) are identified,
but this identification is consistent with the absence of type annotations that
already comes with the canonical-forms only paradigm. Arguably the difference
between unrestricted functions and linear functions is just a difference of type
annotation on the argument, and so need not be recorded in the term.
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4.3.5 Hereditary Substitution

Substitution {N/z}¢ of N for z at type C is a partial function from types to
types, from terms to terms, and from spines to spines. It is annotated with a
type to ensure that calls to the substitution function always terminates with
an answer, or (this possibility being sensible because it is a partial function)
being undefined. Other, less algorithmic presentations are possible, but we are
interested in showing that there is a terminating type-checking algorithm, so
this is the most appropriate.

Substitution {p/a}""d of the world p for the world variable « is also a
function from types to types, and from worlds to worlds.

The definition of substitution in almost all cases is straightforward homo-
morphism. Let o abbreviate {N/z}¢ and ¢’ abbreviate {p/a}"°"d.

o(Ay.M) = Xy.(c M)

(M, Ms) = (o My, 0 M) o) =)
oy-S)=y-(c8) (fz#y) olc-S5)=c-(05)
() =0
o(M;S) = (cM;0S)

o(mi; S) = (m509)

oe=¢€ o(p*q) =opx*oq
{p/a}worlda =p
of=p  (fa#p)

In the case of substitution into a A, the usual convention is taken that we
first rename bound variables if necessary to be distinct from the variable being
substituted for, in order to avoid capture.

The remaining case is when a variable being substituted for is actually used,
which invokes another partial function, [N | S]¢, pronounced ‘N reduces against
S at type C".

{N/2}C (- §) = [N | {N/}°S)

The ‘reduces’ function carries out [-reductions, and is mutually recursive

with substitution. It is defined as follows:

.M | (N S)[1 48 = [{N/a} M | S)7

(R0 =R
[M | s]74 = [M | S}
[M | )t = [M | 5]

[M | S]Aer = [M | S
[(My, My) | (i3 $)| 41442 = [M; | 5]

([N | S]€ is undefined otherwise, if none of the above clauses apply.)
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4.4 Metatheory of HLF

As mentioned, the metatheory of logical frameworks in the LF family tradi-
tionally involved spending considerable effort [HP01, HP05] showing that an
algorithm for typechecking coincided with a (not obviously decidable) defini-
tion of the typing judgment that involved a type conversion rule

I'FM:A A=, B
I'-M:B

The more recent approach, considering canonical forms only, does not have
this rule, and pushes the work of establishing 8n-equivalence into the definition
of substitution. Therefore the requisite theorems are those that establish that
definition of substitution is correct. Since substitution carries out 3 reductions
hereditarily, it is not apparent that it is well-founded as a function definition.
However, since every substitution and reduction operation above is indexed by
the type of the object being substituted, the type index can be seen to always
decrease, and this ensures termination. The recursive definition of {N/x}¢M
and [N | S]¢ is well-founded according to a lexicographic order that puts priority
on the size of C' decreasing, and then is ordered by the subject M, or in the case
of reduction, simultaneously the size of N and S. This is essentially the same
termination order as in the structural proof of cut admissibility [Pfe95, Pfe00].

Given that substitution is a well-defined partial function, we want to be
certain that it always yields an answer on well-typed terms, and that that answer
is itself appropriately typed.

Theorem 4.1 (Substitution Property) Assumel', A,p are well-formed. Sup-
pose T = M : Ale], and T F r : world. Let o abbreviate {M/x}*, and o
abbreviate {r/a}"d.

o [fT,z: AT+ N : Blp] thenT,o" + oN : 6B[p].

o [fT,z: ATVE S : Alp] > Clg], then T, 0T’ F oS : cAlp] > oC[q].

o IfT,z: AT F B:type then I',ol'" - 0B : type.

o IfT, o : world,I” = N : B[p] thenT',o'T" + N : ¢/ B[o'p].

o IfT,a:world, TV F S : Alp] > Clq], then T',0'T" = S : o' Alo’p] > o'C[o’q].
e IfT",a:world, IV B : type then I',d'T’ - ¢'B : type.

e IfT'-N:Alp| and T+ S: Alp] > C[q], then T =[N | S]*: C[q].

Proof By lexicographic induction on the type of the object being substituted,
and subsequently the typing derivation of the object being substituted into.
Some standard lemmas are required to show that consecutive substitutions ap-
propriately commute with each other. m
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The substitution property justifies replacing the possibility of carrying out
[-reductions in types with the requirement that all types and terms mentioned
are already beta-normal. There is a parallel theorem that must be shown to
justify the requirement that all types and terms mentioned are already 7-long.
It states that for any variable, there is an n-expansion of it, which behaves as
an identity for the operation of substitution.

Theorem 4.2 (Identity Property) For every well-formed type A, there is a
term 1’y (z) such that

o z: Ak ni(x): A
o IfT,x: A+ M : B, then [n%(y)/y]*M = M.
o IfT'F M : A, then [M/y]*(n%(y)) = M.
Proof After making a slight generalization to n-expansion of a partially applied

head, the proof proceeds by lexicographic induction first on the type A, and
subsequently on the structure of the term M, if any. =

Decidability of typechecking is in our case still not quite immediate, for the
Y left rule
't q: world 'k S:{q/a}Blp] > Cr]
'k S:Va.Blp] > Clr]

leaves the identity of the instantiating world ¢ up to nondeterministic guessing.
However, we can proceed with typechecking leaving a free variable in place of
q, and eagerly solve constraints = 4cp that arise from the rule

Fl—RaS[p] S:aS/ P =AcuU q
I'R:a-5q

as they arise. In this way typechecking reduces to unification over a term lan-
guage with one constant and one binary operator that together satisfy the
axioms of a commutative monoid. Fortunately, this problem is known to be
decidable [Sti81].

Lastly we can show that the system is a conservative generalization of an
appropriate presentation of LLF: assume as mentioned above that it is given in
spine form, with canonical forms syntactically enforced, and with the evident
definition of hereditary substitution. Let it have only one A (and one notion
of application) for both linear and unrestricted functions. As pointed out in
Section 4.3.4, this syntactic collapse is entirely appropriate in canonical-forms-
only style, since it is analogous to the removal of type annotations on function
arguments, which are already absent.

Make the following definitions, which relate LLF contexts to HLF contexts,
formalizing the intuition of Section 4.1:
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Definition Suppose A is an LLF context, of the form z1 : Ay,...x, : A,.
Let A® be the HLF context

(a1 :world, x1 : A1Qay, ..., ap : world, z, : A,Qa,,)

Let aa be the world o * - - - x vy
Let Al, be the LLF context @i, : Aiy,..., @i, : Ai,, if p=ay * - xay,.

Now the following results hold:

Theorem 4.3 (Soundness) Suppose A is a valid LLF context, and A is a
valid LLF type.

o IfT,A®F M : Alp] then DAL, Frr M 2 A.
o IfT,A®F S: Alp] > C[r] and r =acuv p * q, then LAl FLr S A>C.
Proof By induction on the typing derivations. m

Theorem 4.4 (Completeness) Suppose I' is well-formed, and suppose A is
a valid type in T'.

o IfT;AbLp M: A, then T,A® F M : Alaa]

o IfT;AFLr S: A>C, then T,A" - S : Alp] > Clq|, for any A’ that
extends A® and any p such that A’ F p : world, for some ¢ =acu ana * p.

Proof By induction on the typing derivations. m

4.5 Application: Cut Admissibility in Linear Logic

We continue with the running example, and show how the problems encoding
linear cut admissibility as a metatheorem in LLF can be solved with HLF. The
desired cut admissibility theorem can now be encoded as

ca : Va.V[3.
(conc A)Qa
— (hyp A —o conc C)Q@Qg
— (conc C)Q(a x B)
— type

The reason this encoding is correct follows directly from the form that terms
can take at types (conc A)Q@Qp, (hyp A —o conc C')Qgq, and (conc C)Q(p * q) for
particular worlds p and ¢. Using the definitions in the previous section, assume
a context I' is of the form A® for an LLF context A. Any instance

ca M1 Mg M3

of the type family ca has the property that there exist worlds p, ¢ (instantiating
the variables a, 3) such that
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A® F M, : conc Alp]
A® = M; : hyp A —o conc Clq]
A® = Ms : conc Clp * q]

The second derivation, for example, by inversion on the rules defining —o, indi-
cates that Ms is of the form Az.MJ, and

A9 oz world, z : hyp AQa = My : conc Claa]
or in other words
(A, zhyp A)® = My : conc Claa ]

and M) must be a term that linearly uses every hypothesis in A, 2% hyp A. We
can see therefore that the kind of this type family is sufficiently precise to allow
as inputs pairs of derivations that consume different sets of resources p and
q respectively from the amalgamated context I', and enforces that the output
derivation must use both p and ¢ together.

There is a concern worth discussing about whether it is necessary to enforce
disjointness of p and ¢q. HLF as presented cannot (at least it is not obvious that
it can naturally) capture a requirement of disjointness, but this is no obstacle to
the correctness of the present metatheorem. Its interpretation is that for every
set of resources p and ¢, the two input derivations using p and ¢ respectively
can be transformed into a derivation using p * ¢. For linear cut elimination we
only need this result for when p and ¢ happen to be disjoint, and so it follows
as a special case of the metatheorem.

A typical clause of the HLF proof of linear cut admissibility looks much like
the existing proof LLF, except that the types of II-bound variables are modified
to account for resource use. The principal cut case of —o is now encoded as

ca/lol/principal : Va.NB.¥7y.
IID;:(hyp A1 —o conc A2)Qa.IIDy:(conc A1)QpS.
IIDs:(hyp As —o conc C)Qy.IIDy4:(conc Az)Q(a * ).
IIDs:(conc C)Q(a * (6 *7)).
ca (lolr Ax. Dy z) (loll Dy (Ax.Ds x)) D5
—ca Dy (Ax.D; x) Dy
—ca Dy (Ax.Ds3 x) D5

which represents the same reasoning as in 3.1, only here the behavior of the
linear contexts in the object language is correctly captured. Note in particular
how the variables «, 3,7 correspond exactly to Aj, Asy, Ags in the informal
reasoning. Moreover, trying to translate the example incorrect proof case given
above leads directly to a type error, because the types conc CQ(a  § ) and
conc CQ(a * 3% 3 *~) (the types of the required conclusion, and the result of
the reasoning contained in the bad proof, respectively) are not equal.

I claim the similarity of this proof in HLF to the existing one encoded in
LLF is an important benefit of the system I propose: that in order to write
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proofs, very little if any new thinking is required outside the proof techniques
already developed for LLF. It is likely that type reconstruction can discover
the correct types (and therefore world labels) for implicitly II-bound variables
in most cases, and so even the relatively minor extra work involved in writing
them might be avoided.

5 Proposal Core

5.1 HLF Type Theory

I propose first of all to settle on a final type theory for HLF, ideally not very
different (perhaps not at all) from the present one. It will need to satisfy the
metatheoretic properties expected of such an extension of LF. In the canonical-
forms-only style, since the complexity of determining equality of terms is pushed
into the definition of substitution, a central result is showing that the substitu-
tion property (Theorems 4.1) and identity property (4.2) hold.

Furthermore for the system to be usable in practice we must show that
typechecking is decidable, and that canonical forms are structured as required
for known encodings to be adequate.

5.2 Logic Programming

The main task after the type theory is established is to understand how logic
programming works over the type theory. This is so that the later work of
devising algorithms for checking metatheoretic properties such as coverage is
done with a clear idea of their intended meaning in terms of logic program
execution.

Since logic programming over LF [Pfe91] is well understood, it remains to
understand what incremental effect adding labels has on the known operational
semantics.

This can be divided into two parts. First, to understand how it works
globally assuming the particular constraint solving problem for worlds (and the
commutative monoid equational theory already described) has been adequately
solved. In other words, we assume the constraint solving problem has an ‘oracle’
which either outputs a most general unifier, or signals that it cannot find one,
and outputs remaining constraints. Similar to the eager constraint-solving of
higher-order unification constraints, it may be possible to proceed even when
there are not immediately most general unifiers, and allow later instantiations
to put unification problems back into a more tractable problem fragment.

To develop the remainder of the algorithm even assuming world constraint-
solving is understood may still be somewhat nontrivial, because of subtleties in
the behavior of higher-order unification in the presence of linearity [CP97a].

An example of this concern arises in trying to solve the unification problem

r:BFX "z=c" (Y1 2)" (Yax) (*)
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in a signature where a is a base type and ¢ : a — a —o a, for the free variables
X :B —a,Y1,Ys : B — a. If we simply run ordinary unification on this,
ignoring linearity at first, we get the solution

X:=Xxe” Y1 2)" (Ya2)

which, on its face, is not linearly valid: x is potentially used twice, possibly not
at all, depending on the instantiations of Y7, Y5. The answer is that there are
two maximally general solutions, which are incomparable in the instantiation
order,

(X :=dxc (Zy " x) Wo, Y1 := e 2y " x,Ys :=Wo)

X=X xeWy (Zs " 2), Y1 =W, Yo := . Zy "

where Z1,Z5 : B — A and W1, W5 : A.

The message to be taken away from this example that is seems linear higher-
order unification problems cannot be solved by doing ordinary higher-order uni-
fication and filtering out only those instances of the solution that are well-typed
as linear terms.

However, consider the same unification problem in the language of HLF. In
it the variable X gets the type Va. BQa — a@q, and ¢ has the type (expanding
the HLF definition of —o)

Vp1, B2.(aQp) — (a@Qf2) — a

For the expression
X :=Xx.c (Y7 z) (Ya x)

to be well-typed, it must be that
Y; x: 0;[pi]

such that p; * p2 = a.

The solutions to the linear unification problem are exactly the HLF solutions
satisfying this constraint. There is still not a most general unifier, but for this
example, in contrast to LLF, the ‘two-phase’ strategy of doing ordinary higher-
order unification and subsequently imposing linearity constraints does yield a
complete set of unifiers, because of the expressivity of HLF’s language of worlds.

Moreover, the formalism of HLF suggests an explanation for why the above
example fails to have a most general unifier, by way of an analogy to the use
of patterns in higher-order unification [DHKP96]. Briefly, a pattern is a term
whose head is a free variable X applied to a sequence of distinct bound vari-
ables (and importantly not constants or other terms) z1,...,z,. Unification
equations one side of which are a pattern can be immediately simplified, and if
the other side has no free variables at all, immediately solved.

There is a sense in which the left hand side of (x) is not a pattern, in that
X * x hides an application to €, which is not a variable, but a constant. The
type of X, of X is Va.BQa — a@q, this € the instantiation of a. I conjecture
that there is a generalization of the notion of higher-order pattern that includes
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these ‘applications’ to world expressions, and predict that unification problems
involving these generalized patterns satisfy the same simplification properties
already enjoyed by patterns.

Once the general notion of unification is figured out, I can take apart the
black box and actually address the constraint solving problem itself, looking
to prior work on ACU unification. It is known that the unifiability problem
for ACU is decidable, but it still must be determined under which circum-
stances most general unifiers are guaranteed. I conjecture that the image of
the translation of LLF is, informally speaking, ‘well-behaved’, but already it
does not possess MGUs in every case, as witnessed by simple equations like
381:world.3B2:world. 31 * B2 = «, which can indeed arise from type-checking, e.g.

a:world,x:aQq, f: T —-oT—ookFfTT:o

This term typechecks if and only if there is some way to use up the resource «
given two resource-sinks T, which arises as precisely the equation above; it has
two maximally general solutions, 1 := €, 82 := « and (1 := «a, B2 := €, neither
of which is an instance of the other.

It is the case that full ACU unification! is required for typechecking general
HLF terms. The reduction from an arbitrary ACU unification problem to a
typechecking problem is rather simple:

Given a set of equations

E:{plquvvaZQn}

over world variables aq,...,an, 01, ... Om, then there exists a set of r1,...,7n,
such that every equation in {ry/3;}"" ... {r,, /B " E is true, if and only if
the typing

aq :world, ... oy world= M : A

holds in a signature with one base type o : type, where

M=Mf.f-(Ax1.21; - ; A\Tp-2p)
A= WVp... VB Idy — -+ —Id, - 0)—o0
Id; = 0Qp; — 0Qg;

5.3 Metatheory of Logic Programming

The three main metatheoretic properties of logic programs we care about are
modes, coverage, and termination.

Mode checking is the simplest of the three, though it is not clear how worlds
and modes interact. For the time being, all examples I have treat worlds as input
arguments, but conceivably it would be useful to be able to express nontrivial
computations that yield worlds as output. In section 6.3 I suggest how this
might be accomplished.

L Although not, as is sometimes found in the literature, in the sense of allowing arbitrary
extra term constructors apart from the binary function symbol and nullary unit.
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Coverage is probably the hardest task. In previous work [SP03], coverage is
approached through the notions of immediate coverage, and splitting. Whether
a clause immediately covers some subgoal depends on higher-order pattern uni-
fication [DHKP96], in possibly a different variant than is required for mere
type-checking. The notion of pattern is already something which may require
attention, as alluded to in Section 5.2. However, it seems that with the way
linearity is implemented in HLF in terms of a separation of worlds and terms,
it may come out to something more simple, so that the pattern language only
needs to be extended to handle pairs, which is relatively straightforward and
already adequately studied [Dug98].

Finally, I have to consider termination. Since worlds are always finite con-
catenations of world parameters, there is a simple and natural termination or-
dering, one that is slightly more general than the subterm ordering would be
for ordinary terms, namely the length of such sequences. It would be desir-
able therefore to devise an example where it is useful to ‘swap’ world variables
around in a less uniform way while nonetheless reducing overall length.

5.4 Applications

As part of the thesis I intend to establish that the framework is in fact capable
of expressing interesting properties about stateful deductive systems. The cur-
rent set of examples I believe to work includes extending the cut admissibility
theorem for the linear sequent calculus, and the type preservation theorem for
MiniML with references due Cervesato and Pfenning, to precise statements and
effective extensions of their proofs. Also I can achieve a simple proof of cor-
rectness the logic program that nondeterministically permutes a list using the
linear context.

6 Additional Potential Thesis Work

Having committed to the core of the proposal, there remain a number of other
ideas that I would like to pursue as part of the thesis project, if there is enough
time.

6.1 Ordered Logic

Ordered logic, a substructural logic that eliminates exchange as well as contrac-
tion and weakening, was studied by Lambek [Lam58] in the context of mathe-
matical linguistics, and later studied by Polakow [Pol01], who built the logical
framework OLF based on it. Since the proposed type system here (much like
other proposals of labelled deduction) cleanly separates the algebra of world-
labels from the rest of the logic, I expect it to be able to encode OLF and
reasoning about systems encoded in it by modifying the algebra on worlds.
For instance, the ordered linear arrows —» and — that append a hypothesis
to the right (respectively to the left) side of the ordered context can be simulated
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by adding a new associative, but not commutative, operator e to worlds:

pu=---|peg

Given this, the encoding of — can be modified to yield

A — B =45 Va.|.AQa — BQ(F e o)
A B =45 Va.| B.AQa — BQ(a e )

Here are several simple examples that seem promising as applications for the
substructural metatheory I have worked out so far:

6.1.1 List Reverse

Polakow’s thesis [Pol01] discusses how the ordered context can be used as a
queue to reverse a list. Assuming lists are defined by

elt : type

list : type

nal : list

cons : elt — list — type
the program is

queued : elt — type

rev : list — list — type

rev/nil :rev L L

rev/incons : rev (cons H TL) K « (queued H « rev TL K)
rev/outcons : rev nil (cons H K) « queued H « rev nil K

Here one might like to prove that this implementation of reverse is correct
with respect to a definitional implementation in pure LF:

drev : list — list — type

revacc : list — list — list — type

drev/rule : drev L K «— revacc L nil K

revacc/cons : revacc (cons H TL) ACC K « revacc TL (cons H ACC) K
revace/nil : revacc nil ACC ACC

This can be stated at the top level as
correct :rev L K — drev L K — type
which then requires an obvious lemma

lemmal : rev L K — revacc L nil K — type
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which in turn requires a less apparent generalization. We must account for the
intermediate stages of execution of rev, during which the ordered context is
populated. The solution is to write a predicate which mediates between the
state of the ordered context, and an ordinary list that it represents:

med : list — type

med/nil : med nil

med/cons : Vp.Ng.(med (cons H TL))Q(p e q)
— (med K)Qp
— (queued H)Qq

The contract of med is that the type (med L)@Qp is inhabited iff p is an or-
dered list of world variables associated with hypotheses queuedHy, . . . queuedH,,,
and L is the list [Hy,..., H,]. Given this, the required generalization is

lemma?2 : Vp.(rev L K)Qp — (med ACC)Qp — revacc L ACC K — type

6.1.2 Ordered Cut Admissibility

Ordered logic has, just as linear logic, a sequent calculus, which satisfies a cut-
admissibility property:

Proposition 6.1 If QF A, and Qp, A, Qr F C, then Qp,Q,Qr - C.
This can be encoded as

ca :Ya.¥BL NBR.
(conc A)Qa
— (VB.(hyp A)QB — (conc C)Q(BL e S e Br))
— (conc C)Q(B, e e BR)
— type

Note the use of quantifiers to express the notion of the ‘hole’ in the middle of
the context into which the cut takes place. With ordered logic, this complication
means that there are not, as with linear logic, even any suggestive encodings
into analogous ‘type family with ordered linear arguments’ comparable to the
attempt in Section 3.1 The use of labels and quantifiers on the other hand
addresses with the problem with hardly any difficulty at all.

6.2 Language Simplification

There remain opportunities for further reduction, compilation, and explanation
of the proposed type theory in terms of other languages with fewer primitives.

I speculate that it is possible to ‘compile away’ all use of |, and any use of @
at types that are not base types. Observe for instance that the following pairs
of types are equal in terms of the objects that inhabit them:

(la.A)@p = ({p/a}A)ap
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(Tlz:A.B)Qp = Tlx:(AQe).(BQp)
(Va.A)Qp = Va.(AQp)
(AQq)Qp = AQq

These equations let us ‘push down’ instances of @ toward base types, elim-
inating | along the way. This compilation is a sort of elaboration, in that it is
not particularly desirable to work in its target language: it is convenient to be
able to use high-level connectives like — defined locally in terms of |. However,
it may turn out to be simpler to describe the metatheoretic properties in terms
of the lower-level language.

Moreover the theory of worlds up to certain equalities and the behavior of V
seem like they could be explained away by a suitable variant of proof irrelevant
LF. However this reduction does not appear to simplify, but rather complicates,
direct coverage analysis.

6.3 Kind Language Modifications

In the current proposed type system of HLF, the kind language of LF is extended
with aV. An alternative is to allow something of the form more akin to a genuine
IT for worlds,

Kinds K ::= .- | ITa:world. K’

In this case the use of a type family so Il-indexed by a world would actually
mention a world in its list of arguments. If we declared

o : type k:o a : Ila:world.o@a — type

then a € k would be a type. Contrast this to V, which does not require any
explicit application to a world. If instead we declared of a that

a : Ya.oQatype

then a k by itself, with no application to the world ¢, would be a type.

The IMa:world above, which would allow worlds to appear in the argument
list of atomic types, could potentially complicate type-checking, but on the
other hand it would make it possible to name world-arguments to type families
explicitly, so that, for example, they could be described as input or output
arguments in mode specifications.

6.4 Implementation

An implementation of the system would be desirable, to ensure the correctness
of all the examples. At a bare minimum, to faithfully implement all the theory I
have proposed to work out, it would need to typecheck terms in canonical form,
and do mode, coverage and termination checking.

Another important feature for practicality of use — one that is already
quite standard in using LF — is term and type reconstruction at the front-
end, so that the user can omit information such as implicit II quantification
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and corresponding arguments, when they can be inferred. This would involve
significant use of unification algorithms, perhaps of a different variant from the
use of unification in other parts of the implementation. In particular care is
required when most general unifiers (possibly) do not exist, and unification over
ACU introduces further opportunities for this difficulty to arise, apart from the
fact that it is already possible in higher-order unification outside the pattern
fragment.

6.5 The Positive Fragment

HLF, like LLF, only includes negative connectives from linear logic, those that
have invertible introduction rules. It would be nice to support positive con-
nectives such as 1, ®, @, !, which have invertible elimination rules, but it is not
apparent how to integrate them with the labelled framework. Watkins et al.
solved this problem insofar as adding positive connectives to LLF, yielding the
concurrent logical framework CLF. The threat to conservativity of canonical
forms that the elimination forms of these new connectives pose was resolved by
introducing a monad to isolate the concurrent effects.

Particularly worrying for the chances of successfully wedding HLF with pos-
itive connectives is the apparent ability [Ree06] to represent a logical connective
related to the additive arrow in the logic of bunched implications, as

la.AQa — BQa

There are some claims [O’H03] based on category-theoretic reasoning that bunched
and linear logic are fundamentally incompatible. In linear logic, & does not dis-
tribute over @: the sequent A & (B®C)F (A & B) @ (A & C) is not derivable.
In bunched logic, the additive conjunction (there usually written A instead of
&) does distribute over disjunction (in bunched logic usually written V instead
of @). The claim is that this is necessarily so, given the fact that A is a left
adjoint (its right adjoint is the additive arrow) and categorically left adjoints
must preserve (i.e. distribute over) colimits, an example of which is disjunction.

If in HLF there is a sufficiently strong sense in which the function type above
is right adjoint to &, then we would expect some sort of distributivity between
& and @, in violation of it being equivalent to full linear logic.

6.6 Encoding Modal Logics

Another collection of logical ideas that would be useful to incorporate would
obviously be those from modal logic, from which hybrid logic originally arose.
It is not unthinkable to add in machinery to track an accessibility relation <
between world labels, but this would complicate the constraint solving problem
considerably.

It seems prima facie like it has a minimal impact on the inference rules
themselves. In one place in the typing rules, world equality would become
world inequality. However, if V at the kind level is replaced (or augmented
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with the presence) of a true IT over worlds, (which may be motivated anyhow
by concerns with the metatheory) it would be necessary compare the argument
lists of type families for inequality. This would likely result in imposing a sort of
positivity on occurrences of worlds as arguments to type families, which seems
unsettlingly arbitrary.

7 Related Work

7.1 Metalogical Approaches

McCreight and Schiirmann [MS03] aim to solve the same general problem as I do,
but their approach differs in that they devise a meta-logic that explicitly refers
to, and quantifies over entire contexts. This leads to some complications with
operations on contexts: well-formedness of contexts depends on well-formedness
of (dependent!) types within them, and so their definitions are therefore more
complicated.

The world labels in HLF effectively stand for object language contexts in
most examples, but they themselves are not representation contexts, and are
therefore are of a much more predicative flavor. What worlds are, and when they
are well-formed can be explained solely in terms of simple algebraic properties,
i.e. the theory of a commutative monoid. The fact that they can then effectively
stand for contexts is simply a consequence of the expressiveness of the type
system as a representation language.

7.2 Constraint Domains

It is reasonable, especially in light of the fact that we already consider variants of
the language of world-labels for ordered logic, to suppose that the appropriate
level of generality leaves open the algebraic theory of worlds to a sufficiently
language of syntactic sorts, inhabitants of those sorts, and rules determining
when two objects are considered equal.

Research on constraint domains and Constraint Handling Rules [Frii98] may
afford a general strategy for accounting for equational theories, of which the
ACU theory we require for encoding LLF is just a special case. This would
involve considerably more open-ended work than I am willing to commit to in
this thesis, but it is certainly an interesting avenue of future work, for if the
rewrite rules determining equality can be themselves expressed as LF clauses of
a declared equality relation, then by staying within a suitably reflective version
of LF, one could subsume the expressivity a wide range of logical frameworks
affording open-ended constraint domains. Already Roberto Virga has studied
constraint domains [Vir99] such as the integers, rationals, and strings for LF,
but for our applications we require constraint domains that are open-ended
(that new worlds can be hypothesized by V) and that the equational theory on
hypothetical worlds can be defined equationally.
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7.3 Hybrid Logic

Hybrid logic arose out of the desire for more expressive formulation of modal
logics. While it has traditionally been concerned with classical logics, there has
been some recent forays into constructive hybrid logics, by Chadha, Macedonia
and Sassone [CMS06], Murphy, Crary, Harper and Pfenning [VCHP04], and
dePaiva and Braiiner [BAdP03, BAP06].

The implication — or, equivalently, function type — in dePaiva and Braiiner’s
work is particularly interesting, since it differs from the trivialization of the IT
I have proposed: its argument and body are both supposed to be at the same
world that the function is typed. Its introduction and elimination rules in our
notation would be

T,z: AQpt+ M : Blp] 't M : Alp) ' S: Blp] > Clq]
'k Az.M: A— Blp) ' (M;S): A— Blp] > C|q]

However, much like the reconstruction of —o, this arrow can be simulated
with | operator. It looks like

A — B = |allz:AQa.B

Work by Hardt and Smolka [HS06] also encountered a situation where the
operators | and @ can be ‘compiled away’ in favor of types that simply have
indices of some kind. However, their work involves Kripke worlds with accessi-
bility, rather than resources labels with a monoid operation.

7.4 Bunched Semantics

The semantics of BI, the logic of bunched implications [OP99, Pym99, Pym02]
have been studied by Pym, O’Hearn, and Yang [POY04], and Galmiche and
Méry [GMO3].

Our interest is primarily in the algebraic forcing semantics, in which the
clauses for bunched additive conjunction A and ‘magic wand’ — are similar in
structure to the HLF rules for & and —o.

The general algebraic setup is that there is a monoid M with operation
* (featuring an additional preorder structure that captures the intuitionistic
properties of BI), whose elements m act as Kripke worlds in a relation F. The
pertinent clauses are

mEAABiff mE Aand mF B
mE A—«B iff (Vn € M)(nF A implies m *xn F B)

The similarity between the first and the introduction rule for & is evident.
For the second, observe that the Vn in the semantics is represented by the
hypothetical world variable «, and the English-language implication is replaced
by the assumption that there is a variable x : AQaq.
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This relationship between the semantics of BI and the syntactic system of
HLF supports the idea that we should perhaps be able to prove that a frag-
ment of BI embeds faithfully in HLF, realizing a syntactic interpretation of the
semantic machinery of Kripke forcing.

7.5 Substructural Logic Programming

Dale Miller has written a survey [Mil04] of the field of linear logic programming.

Extant linear logic programming languages include Lolli [Hod92, HM91,
HM94, Hod94], a typeless first-order linear logic programming language, and
Forum [Mil96], an extension of Lolli to a multiple-conclusion sequent, meant to
capture some notion of concurrency among the conclusions. The type system of
CLF [KWW03a, KWWO03b] also supports a logic programming language, Lol-
liMon [LPPWO5]. Andreoli’s early work with focussing also inspired a language
LO he developed with Pareschi [AP90], which, like its logical counterpart in the
original focussing system, was classical.

A particularly relevant piece of work to ours is the linear constraint man-
agement system [Hod92, CHPO0O] used in it. This system was developed to
efficiently track how knowledge of linear uses of variables is managed during
logic programming proof search. We expect it to be fruitful to compare their
system to simply eagerly performing constraint-solving on labels — ideally they
might turn out to be isomorphic, providing a alternative logical explanation for
why their algorithm works.

Polakow, who developed the ordered logical framework OLF [Pol01], also
considered ordered logic programming [Pol00]. Examples of ordered logic pro-
grams appear above in section 6.1.

8 Conclusion and Plan

I have proposed a novel type system as the foundation of a metalogical frame-
work for mechanical verification of metatheorems about deductive systems in
substructural logics. The type system is rooted in established logical ideas from
hybrid logic, and can be applied to achieve precise statement of metatheorems
whose formalization has already been studied.

The proposed thesis project consists of adapting known and well-studied
algorithms to the expanded language. Because of the size of, and experience
with, this body of work, I claim that it is feasible to complete the project in a
reasonable amount of time.

Specifically, my intended date of completion of the thesis project is May of
2008. Beginning work in December 2006, this gives 18 months. Here is a rough
allocation of that time, based on my current understanding of the difficulties
of various parts of the project. These are not necessarily consecutive blocks of
time; I specifically expect that work on the foundational issues might be spread
out over the duration of the project if requirements ‘downstream’ in particular
algorithms require changes to the type theory.
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e Basic type theory: 2 months

— Definition of language of terms, types, kinds.

— Type system, appropriate definition of hereditary substitution.

Proof of substitution property

Proof of decidability of typechecking

Proof of correctness of embedding of LLF
e Logic Programming: / months

— Operational semantics apart from world-specific constraint-solving:
2 months. This chiefly involves figuring out how unification works
with respect to V and @.

— Operational semantics of constraint-solving: 2 months. This will
involve substantial digging into the literature of ACU unification.

e Coverage Checking: 5 months.

— Splitting: 4 months Here I need to figure out more about unification
in HLF, and decide what sort of case splitting specifically on world
labels can be supported. The counterexamples known from the study
of linear unification [CP97a] must be dealt with, although it is quite
possible it goes away due to the identification of A and A

— General Algorithm: 1 month

e Termination Checking: 2 months.
Here I need to investigate what termination measures extend to the la-
belled terms.

e Implementation: & months

— Typechecking: 0 months This is already effectively done.
— Metatheorem Checking: & months Extend algorithms from Twelf to
match up with the theory developed above.
e Examples: 2 months

Develop existing examples more, and once the implementation is finished,
put them in a form that can be mechanically checked.
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