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Abstract

Focused proof-search is ordinarily presented as a proof theory unto
itself. We show how it can also be presented in the form of a translation
of the language of polarized propositions into an ordinary unfocused logic
with two simple connectives that embody a bounded amount of focusing
reasoning on the creation and consumption of linear atomic propositions.
These atomic propositions function as tokens in a token-passing scheme
that can be seen to embody the restrictions on proof-search that focus-
ing imposes. For example, to begin another focus phase while one is in
progress — which should not be possible — would require consuming a
linear token that is not yet available.

1 Introduction

Focusing [And92] is a phenomenon discovered by Andreoli in the setting of
reducing nondeterminism in proof search, but it is increasingly clear that it a
deep property of all well-behaved logics.

One first observes that all the connectives of intuitionistic linear logic are
either invertible, on the left of the turnstile, that is, their left sequent rule’s con-
clusion implies its premise(s), or else invertible on the right. The left-invertible
connectives are ⊗,⊕, 1, 0, and the right-invertible connectives are &, (,>.

To have a focusing discipline is to impose two sorts of requirements on proofs.
An inverting proof is one in which, when read bottom-up1 , invertible rules
are required to be applied eagerly, preferring right decompositions to left, and
performing left decompositions in order from right to left in the context.

A focusing proof, Andreoli’s key novelty, goes farther still and demands not
only that these invertible rules be applied eagerly, but also that the remaining
rules are used in uninterrupted sequences working on a single proposition until
they reach asynchronous decompositions again. In the context of focusing, these
invertible rules are also named asynchronous, and the noninvertible rules named
synchronous.

They key fact is that these restrictions are sound and complete. If a sequent
has a proof, it is a focused proof, but very probably it has many fewer proofs,

1In general, all descriptions herein of things happening in some temporal order are to be
understood relative to the bottom-up process of proof search.
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and therefore focusing is practically useful for automated reasoning, because it
eliminates many redundant and dead-end proofs.

The soundness of the focusing discipline is easy to see, since they amount to
restrictions of ordinary proof. However, the completeness of focusing is tradi-
tionally more difficult, depending on unpleasant per-connective lemmas about
how to permute their rules around inside larger derivations. In general, the
amount of effort is quadratic in the number of logical connectives in the system,
since one considers all ways one connective can permute past another.

Our present aim is to deliver a simple inductive proof of the completeness
of focusing whose ‘cognitive complexity’ is linear in the number of connectives.
More to the point, one which prescribes in a modular way what it is about
each given connective that allows it to fit well into the larger focusing picture.
We do this via a reduction of the language and proof theory of focusing to a
token-passing discipline expressible in an unfocused first-order intuitionistic lin-
ear logic, so that violations in the focusing discipline correspond to attempts
to consume linear tokens that are not yet available. The proof obligation for
each connective is a constant number of cases threaded through each of the var-
ious lemmas below, which show it appropriately commutes with token-passing
operations.

This work is more or less a sequel to [Ree08]. All of the intellectual debts
confessed to therein apply equally well here.

2 Focused Language

The source language has polarized linear logic propositions, including polarized
atoms:

Positive Propositions P ::= ↓N | P ⊗ P | P ⊕ P | 1 | 0 | a+

Negative Propositions N ::= ↑P | P ( N | N & N | > | a−
Contexts Γ ::= · | Γ, N | Γ, a+

Ordered Contexts Ω ::= · | Ω, P
Conclusions Q ::= P | a−

The operators ↑P and ↓N are polarity shifts, which include each polarity of
propositions in the other. Focus and inversion both stop when (and only when) a
shift is reached. The expressions a+, a− are positive and negative propositions,
while a+, a− are the stabilized judgmental forms of atoms, which are allowed
in contexts and conclusions, respectively. This slightly unorthodox treatment
of atoms has the benefit of making atoms as propositions behave more uni-
formly with respect to other propositions: every negative proposition, whether
atomic or not, performs some asynchronous decomposition on the right before
synchronously decomposing on the left, and vice-versa for positive propositions.

Ordinary contexts Γ are understood to be intrinsically unordered multisets
despite necessarily being linearized on the written page, but contexts Ω are
understood as ordered lists.
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Γ; Ω, P f̀ N
(R

Γ; Ω f̀ P ( N

Γ1 f̀ [P ] Γ2[N ] f̀ Q
(L

Γ1, Γ2[P ( N ] f̀ Q

Γ; Ω f̀ N1 Γ; Ω f̀ N2

&R
Γ; Ω f̀ N1 & N2

Γ[Ni] f̀ Q
&L

Γ[N1 & N2] f̀ Q

Γ1 f̀ [P1] Γ2 f̀ [P2]
⊗R

Γ1, Γ2 f̀ [P1 ⊗ P2]

Γ; Ω, P1, P2 f̀ Q
⊗L

Γ; Ω, P1 ⊗ P2 f̀ Q

Γ f̀ [Pi]
⊕Ri

Γ f̀ [P1 ⊕ P2]

Γ; Ω, P1 f̀ Q Γ; Ω, P2 f̀ Q
⊕L

Γ; Ω, P1 ⊕ P2 f̀ Q

1R

f̀ [1]

Γ; Ω f̀ Q
1L

Γ; Ω, 1 f̀ Q

0L
Γ; Ω, 0 f̀ Q

Γ; · f̀ N
↓R

Γ f̀ [↓N ]

Γ, N ; Ω f̀ Q
↓L

Γ; Ω, ↓N f̀ Q

Γ; Ω f̀ P
↑R

Γ; Ω f̀ ↑P

Γ; P f̀ Q
↑L

Γ[↑P ] f̀ Q

a+R
a+ f̀ [a+]

Γ, a+; Ω f̀ Q
a+L

Γ; Ω, a+
f̀ Q

Γ; Ω f̀ a−
a−R

Γ; Ω f̀ a−
a−L

Γ[a−] f̀ a−

Γ f̀ [P ]
focR

Γ f̀ P

Γ[N ] f̀ P
focL

Γ, N f̀ P

Γ f̀ P
·L

Γ; · f̀ P

Figure 1: Focusing Proof Rules

The five judgments of the logic are

Stable Γ
f̀

Q
Right Inversion Γ; Ω

f̀
N

Left Inversion Γ; Ω
f̀

Q
Right Focus Γ

f̀
[P ]

Left Focus Γ[N ]
f̀

Q

and the proof rules for the focusing system are in Figure 1. The f decorating
the turnstile is merely to distinguish these judgments from the unfocused linear
logic below.

3 Unfocused Language

The unfocused language has syntax

Terms t ::= ? | x
Propositions A, B ::= A⊗A | A⊕A | 1 | 0 | FtA | ∃x.A(x) |

A ( A | A & A | > | UtA | ∀x.A(x) | p
Atomic Propositions p ::= a+ | a− | q(t)

Contexts ∆ ::= · | ∆, A

It is a straightforward first-order intuitionistic linear logic except for the
connectives Ft and Ut. The first-order term language consists only of a distin-
guished constant ?, and first-order variables x. Atomic propositions p include
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∆, A ` B
(R

∆ ` A ( B

∆1 ` A ∆2, B ` C
(L

∆1, ∆2, A ( B ` C

∆ ` A ∆ ` B
&R

∆ ` A & B

∆, Ai ` C
&L

∆, A & B ` C

∆1 ` A ∆2 ` B
⊗R

∆1, ∆2 ` A⊗B

∆, A, B ` C
⊗L

∆, A⊗B ` C

∆ ` Ai
⊕Ri

∆ ` A⊕B

∆, A ` C ∆, B ` C
⊕L

∆, A⊕B ` C

1R
` 1

∆ ` C
1L

∆, 1 ` C

0L
∆, 0 ` C

hyp
p ` p

∆, q(t) ` A
UR

∆ ` UtA

∆, A ` C
UL

∆, q(t), UtA ` C

∆ ` A
FR

∆, q(t) ` FtA

∆, q(t), A ` C
FL

∆, FtA ` C

∆ ` A(x)
∀R

∆ ` ∀x.A(x)

∆, A(t) ` C
∀L

∆, ∀x.A(x) ` C

∆ ` A(t)
∃R

∆ ` ∃x.A(x)

∆, A(x) ` C
∃L

∆,∃x.A(x) ` C

Figure 2: Linear Logic Proof Rules

atoms a+, a− of both polarities from the focused language, and a distinguished
atom q(t) that takes one first-order argument. This latter constitutes the tokens
in the token-passing mechanism. There is only one judgment, ∆ ` A, and its
rules are in Figure 2.

It can be seen that the new connectives Ft and Ut are reducible to uses of
existing connectives in the sense that

FtA a` q(t)⊗A

UtA a` q(t) ( A

However, the left rule for UtA and the right rule for FtA requires that q(t)
be immediately present in the context. These connectives appear to embody
just a little bit of focusing reasoning, for example since FR effectively forces
the sequence of the two rules ⊗R and hyp to happen in one uninterrupted
sequence. One might fairly say that the moral of this work is exactly that these
two ‘microfocused’ connectives Ft and Ut are all that is necessary to explain
focusing globally.

We observe that the unfocused logic is internally sound and complete, in
the sense that identity and cut admissibility results hold. The proofs of these
results are thoroughly standard.

Lemma 3.1 The following rules are admissible, i.e. whenever their premises
are provable, the conclusion is provable.

id
A ` A

∆1 ` A ∆2, A ` B
cut

∆1, ∆2 ` B
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The fact of cut admissibility is used tacitly throughout many of the proofs
below, when known provable equivalences are cut into sequents to yield new
derivations.

4 Token-Passing Translation

The aim of this section is to specify the translation from the focused language
to the unfocused language that preserves proof search behavior.

Let us first try to sketch out an intuition for how the translation works. Com-
pared to ordinary sequent calculus derivations, focusing prohibits many proof
attempts; those that don’t eagerly decompose asynchronous connectives, and
those that begin working on synchronous connective and then switch attention
to something else. We will represent the ability of the prover to choose what
to do next by a linear token, a linear hypothesis of a propositional atom, say
q(?), being present in the context. So the translation of a typical stable sequent
Γ ` P (ignoring for now the possibility that the right-hand side is a judgmental
atom a+) in the focusing calculus will be something like

Γ•, q(?) ` P •

where Γ• and P • are some translated versions of Γ and P respectively.
But now to focus on a negative proposition in Γ or the positive conclusion

P is to give up our freedom to work on any proposition we like, so we should
have to spend the token q(?). We want therefore to prefix every proposition in
Γ with U? (for the UL rule read bottom-up consumes the token q(t)) and prefix
the proposition P with F? (for the FtR rule read bottom-up likewise consumes
a token). Therefore we instead now speculate that Γ ` P is interpreted by

U?Γ•, q(?) ` F?P
•

Imagine now simulating the right focus rule focR, by applying the inference
rule FR:

U?Γ• ` P •

U?Γ•, q(?) ` F?P
•

Even though we are working now in an unfocused logic, there is nothing we can
do except continue to decompose P •, for every other proposition is guarded by
a U? whose decomposition requires the immediate presence of a missing linear
token.

The entire translation is an elaboration of this basic idea, that proof search
can be finely controlled by the presence of linear tokens. When polarity shifts
that interrupt focus are reach, tokens are once again produced, simulating the
renewed freedom in the focusing system to choose another proposition to begin
working on. When asynchronous phases are begun, first-order quantifiers and
the term argument to the atom q are used to ensure that the context of asyn-
chronous positive hypotheses is decomposed in a unique order. One copy of the
token q(?) is available when the sequent is stable (i.e. there is no active focus,
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X Xt X• X.

P1 ⊗ P2 ∃x.UxP t
1 ⊗ P x

2 P •1 ⊗ P •2 P .
1 ⊗ P .

2

P ( N ∀x.UxP t ( Nx P • ( N• P . ( N.

P1 ⊕ P2 P t
1 ⊕ P t

2 P •1 ⊕ P •2 P .
1 ⊕ P .

2

N1 & N2 N t
1 & N t

2 N•1 & N•2 N.
1 & N.

2

1 q(t) 1 1
0 0 0 0
> > > >
↓N FtU?N

• N? U?N
.

↑P UtF?P
• P ? F?P

.

a+ Fta
+ a+ a+

a− Uta
− a− a−

Figure 3: Token-Passing Translation

and no available asynchronous decomposition to be done) and one copy of q(x)
for some variable x is available when we are in the middle of an asynchronous
phase. In the middle of a synchronous phase, no tokens are available.

That being said, we now formally specify the translation. Let X stand for
either a positive proposition P or a negative proposition N . The translation
consists of two functions, the asynchronous translation Xt of X with respect to
a first-order term t, and the synchronous translation X• of X. The idea is that
when translating a positive proposition on the right of the turnstile, i.e., where
it is synchronous, we use the synchronous translation, and on the left, we use
the asynchronous translation, and vice-versa for negative propositions. These
functions are defined in Figure 3.

The intuition behind P t on the left (resp. N t on the right) is that it will
do some asynchronous work and eventually yield the token q(t). The intuition
behind P • on the right (resp. N• on the left) is that it will do some synchronous
work, pass to an asynchronous phase, and at the end of that, yield the token q(?).
Note that the translation of a proposition appearing in the ‘wrong place’, for
instance an occurrence of P t on the right of the turnstile, is still, from the point
of view of the unfocused host logic, a completely meaningful proposition — it
will simply not have the tightly controlled proof search behavior we would expect
it it to have if it were on the other side. The ability to work in this expanded
language — which can smoothly express varying degrees of violation of focusing
discipline — will prove to be of central importance below in Lemma 4.4 and
its consequences. The translation X. appears as a convenient variant of X•

beginning with Lemma 4.5 below.
All three translations are lifted pointwise to contexts Γ. For an ordered

context Ω = (Pn, . . . , P1), make the following definitions, for fresh term variables
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x1, . . . , xn−1.

Ω? = Uxn−1P
?
n , Uxn−2P

xn−1
n−1 , . . . , Ux1P

x2
2 , P x1

1

UtΩ? = Uxn−1P
?
n , Uxn−2P

xn−1
n−1 , . . . , Ux1P

x2
2 , UtP

x1
1

Ω• = P •n , P •n−1, . . . , P •2 , P •1
Ω. = P .

n , P .
n−1, . . . , P .

2 , P .
1

The mechanism in the definition of Ω? effectively simulates an ordered context
in linear logic: only the rightmost proposition is initially available to decom-
pose, which eventually yields a token q(x1) to be spent to unlock the second-to-
rightmost proposition, which eventually yields a token q(x2) to unlock the next,
and so on, until the leftmost yields a token q(?).

The expression UtΩ? is an abuse of notation, but it becomes useful be-
low. The difference between it and Ω? is that we have here prefixed Ut on the
rightmost proposition P x1 . Abusing notation slightly further define F?(a−)• =
F?(a−). = a− and U?(a+)• = U?(a+). = a+.

We now show that this translation is a faithful simulation of focusing.

Theorem 4.1 Suppose x is a fresh term variable. The following isomorphisms
of proofs hold:

Γ
f̀

Q ∼= U?Γ•, q(?) ` F?Q
•

Γ
f̀

[P ] ∼= U?Γ• ` P •

Γ; [N ]
f̀

Q ∼= U?Γ•, N• ` F?Q
•

Γ; Ω
f̀

N ∼= U?Γ•, UxΩ? ` Nx

Γ; Ω
f̀

Q ∼= U?Γ•, Ω? ` F?Q
•

That is, for any Γ, Q, there is a bijection between the set of proofs of Γ
f̀

Q and
the set of proofs of U?Γ•, q(?) ` F?P

•, and so on.

Proof By defining the bijections inductively over the structure of the possible
derivations.

For instance, consider a focused proof ending in Γ
f̀

Q. It is either an
application of the focL rule, with a premise of the form Γ′[N ]

f̀
Q where

Γ′, N = Γ, or an application of focR, with the premise Γ
f̀

[P ] where Q =
P . Likewise, any linear logic proof ending in U?Γ•, q(?) ` F?Q

• is either an
application of UL that (read bottom-up) consumes the token q(?) and has a
premise of the form U?(Γ′)•, N• ` F?P

• where Γ′, N = Γ or else an application
of FR that consumes q(?) and has a premise U?Γ• ` P •. In either event, we
apply the induction hypothesis to get a bijection of the appropriate families of
subderivations. We can see that only possible derivations ending in U?Γ• ` P •

(resp. (U?Γ•, N• ` F?Q
•),(U?Γ•, UxΩ? ` Nx),(U?Γ•, Ω? ` F?Q

•)) are those
that decompose P • (resp. (N•),(Nx),(the rightmost proposition of Ω?)), and
that those decompositions correspond exactly to the focused decomposition rule.

The remaining cases we must consider are therefore divided up according to
the inference rules of the focusing system. We show some representative cases.

Case:
Γ; Ω

f̀
P
↑R

Γ; Ω
f̀
↑P
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Its conclusion translates to

U?Γ•, UxΩ? ` UxF?P
•

which can, and can only (by reasoning about availability of tokens) be
proved by a derivation ending with

U?Γ•, Ω? ` F?P
•

UL
U?Γ•, UxΩ?, q(x) ` F?P

•

UR
U?Γ•, UxΩ? ` UxF?P

•

but the top line of this partial derivation is exactly the translation of the
premise Γ; Ω ` P of the focusing rule.

Case:
Γ; Ω, P1, P2 f̀

Q
⊗L

Γ; Ω, P1 ⊗ P2 f̀
Q

Its conclusion translates to

U?Γ•, UyΩ?,∃y.UyP x
1 ⊗ P y

2 ` F?Q
•

which can, and can only (by reasoning about availability of tokens) be
proved by a derivation ending with

U?Γ•, UxΩ?, UyP x
1 , P y

2 ` F?Q
•

⊗L
U?Γ•, UxΩ?, UyP x

1 ⊗ P y
2 ` F?Q

•

∃L
U?Γ•, UxΩ?,∃y.UyP x

1 ⊗ P y
2 ` F?Q

•

but the top line of this partial derivation is exactly the translation of
the premise Γ; Ω, P1, P2 ` Q of the focusing rule up to renaming of term
variables, for note that UxΩ?, UyP x

1 , P y
2 = (Ω, P1, P2)?.

We observe several useful identities among the various linear logic operators.
Lemma 4.2 are related to the triangle equalities of adjunctions in category theory
(for Ft is a left adjoint to Ut) and Lemma 4.3 exhibit how the various positive
and negative connectives commute with Ft and Ut.

Lemma 4.2

1. FtA a` FtUtFtA

2. UtA a` UtFtUtA

3. FtA a` ∃x.FxUxFtA
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4. UtA a` ∀x.UxFxUtA

Lemma 4.3

1. Ft(A1 ⊗A2) a` FtA1 ⊗A2 a` A1 ⊗ FtA2

2. Ut(A ( B) a` FtA ( B a` A ( UtB

3. Ft(A1 ⊕A2) a` FtA1 ⊕ FtA2

4. Ut(B1 & B2) a` UtB1 & UtB2

5. Ft0 a` 0

6. Ut> a` >

Next we state a central fact about the translation that shows that the asyn-
chronous and synchronous translations of each connective are compatible. Given
the prior intuitions that the asynchronous translation Xt of a proposition serves
as a promise to eventually yield the token q(t), this result says that we can al-
ternatively, without risking provability, ask to receive the token now, before
asynchronous decomposition of X. Conversely, where a translated context con-
tained hypotheses such as U?N

• that require a token be spent immediately, the
lemma says that we can equivalently allow the token to be spent later, by hy-
pothesizing N?. In other words, we are showing that certain small violations of
the token-passing protocol — small relaxations of focusing discipline — do not
change provability of a sequent. It is by connecting together these small steps
that we see further below that full focusing is sound and complete.

Lemma 4.4
P t a` FtP

•

N t a` UtN
•

Proof By straightforward induction on P,N , constructing small derivations in
linear logic for each connective.

For example, consider P = P1 ⊗ P2. We reason that

(P1 ⊗ P2)t = ∃x.UxP t
1 ⊗ P x

2

a` ∃x.UxP t
1 ⊗ FxP •2 i.h.

a` ∃x.UxFtP
•
1 ⊗ FxP •2 i.h.

a` ∃x.FxUxFtP
•
1 ⊗ P •2 Lemma 4.3

a` (∃x.FxUxFtP
•
1 )⊗ P •2

a` FtP
•
1 ⊗ P •2 Lemma 4.2

a` Ft(P •1 ⊗ P •2 ) Lemma 4.3
a` Ft(P1 ⊗ P2)•
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It will become useful to switch over to thinking about simple token-passing
translation X., which only ever uses the token q(?). It is now easy to see that
it is provably equivalent to the existing translation.

Lemma 4.5
P • a` P .

N• a` N.

Proof By induction on P,N , applying Lemma 4.4 at the shift operators.

Notice how this lemma provides an interpretation of ↓ as U? and of ↑ as F?.

5 Focused Cut-Elimination and Identity

This section establishes the internal soundness and completeness of the focusing
logic as a corollary of the translation above. It is not necessary to understand
these results to understand Section 6 below.

First, we can see how all of these five stages of a focused proof in Theorem 4.1
correspond to unfocused sequents using only the simplified translation.

Corollary 5.1

U?Γ•, q(?) ` F?Q
• ⇔ U?Γ., q(?) ` F?Q

.

U?Γ• ` P • ⇔ U?Γ. ` P .

U?Γ•, N• ` F?Q
• ⇔ U?Γ., N. ` F?Q

.

U?Γ•, UxΩ? ` Nx ⇔ U?Γ., q(?), Ω. ` N.

U?Γ•, Ω? ` F?Q
• ⇔ U?Γ., q(?), Ω. ` F?Q

.

Proof For the first three cases, by repeated application of Lemma 4.5.
For the first of the two remaining cases, we must show (after using the fact

that Nx a` UxN. and therefore yields q(x) into the context)

UxΩ?, q(x) q(?), Ω.

are equivalent, assuming x is a fresh term variable. This can be accomplished
inductively by showing that the contexts

UxP t, q(x) q(t), P .

are equivalent, or in other words

∃x.UxP t ⊗ q(x) a` q(t)⊗ P .

which amounts, by appealing to Lemma 4.4 and Lemma 4.5, to

∃x.FxUxFtP
. a` FtP

.

which directly follows from Lemma 4.2.
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For the second case, we must show that the contexts Ω? and q(?), Ω. are
equivalent. The reasoning is largely the same. The rightmost proposition of Ω?,
call it P x1

1 , is equivalent to the proposition FxP . by Lemma 4.4 and Lemma 4.5,
so it can create a token to transform the second-to-rightmost proposition Ux1P

x2
2

into Fx1Ux1P
x2
2 , which since x1 is fresh is equivalent to ∃x1.Fx1Ux1P

x2
2 which

is equivalent to P x2
2 and we repeat until the last token yielded is q(?), and Ω?

is progressively transformed into Ω..

This then means that we can read off identity and cut admissibility results for
the focusing logic, for they translate directly to invocations of cut and identity
in the underlying unfocused logic.

Corollary 5.2

↑P
f̀

P N
f̀
↓N

Γ1 f̀
[P ] Γ2; Ω, P

f̀
Q

Γ1, Γ2; Ω
f̀

Q

Γ1; Ω
f̀

N Γ2[N ]
f̀

Q

Γ1, Γ2; Ω
f̀

Q

Proof Use Theorem 4.1 and Corollary 5.1, and the admissibility of identity and
cut, on the following derivations.

id
F?P

. ` F?P
.

UL
U?F?P

., q(?) ` F?P
.

id
U?N

. ` U?N
.

UL
U?N

., q(?) ` F?U?N
.

U?Γ.
1 ` P . U?Γ.

2, q(?), Ω., P . ` F?Q.

cut
U?Γ.

1, U?Γ.
2, q(?), Ω. ` Q.

U?Γ.
1, q(?), Ω.`N. U?Γ.

2, N. ` F?Q.

cut
U?Γ.

1, U?Γ.
2, q(?), Ω. ` Q.

6 Completeness of Focusing

Finally, we wish to show that focusing is complete relative to unfocused proofs.
Let Ξ stand for a context of propositions X of either polarity. Three fur-

ther translations are defined in Figure 4. The covariant defocusing translation
X || takes positive propositions to positive, and negative to negative. The con-
travariant defocusing translation X∼ takes positive to negative, and negative to
positive. The erasure function X◦ takes polarized propositions of either polar-
ity to unpolarized propositions A by simply erasing all shift operators. Further
define

X
←−
X

−→
X

P P∼ P ||

N N || N∼
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X X∼ X || X◦

P1 ⊗ P2 ↑(↓P∼1 ⊗ ↓P∼2 ) ↓↑P ||1 ⊗ ↓↑P
||
2 P ◦1 ⊗ P ◦2

P ( N ↓(↓P∼ ( ↑N∼) ↓↑P || ( ↑↓N || P ◦ ( N◦

P1 ⊕ P2 ↑(↓P∼1 ⊕ ↓P∼2 ) ↓↑P ||1 ⊕ ↓↑P
||
2 P ◦1 ⊕ P ◦2

N1 & N2 ↓(↑N∼1 & ↑N∼2 ) ↑↓N ||1 & ↑↓N ||2 N◦1 & N◦2
1 ↑1 1 1
0 ↓0 0 0
> ↓> > >
↓N N || N∼ N◦

↑P P || P∼ P ◦

a+ ↑a+ a+ a+

a− ↓a− a− a−

Figure 4: Pause and Erasure Translations

and lift these translations pointwise to Ξ. The function ←−X always outputs
negative propositions, and −→X always outputs positive.

The point of the defocusing translations is to insert so many shifts that
focused proof on the result of translating a sequent is the same as unfocused
proof of the polarization-erasure of that sequent. This fact is captured by the
following result.

Lemma 6.1 There is an isomorphism of proofs Ξ◦ ` X◦ ∼=←−Ξ f̀

−→
X .

Proof By straightforward induction, paying attention to how focusing disci-
pline constrains proofs of ←−Ξ

f̀

−→
X .

Here is the key lemma, which says that any polarized proposition is essen-
tially equivalent to the unfocused version of it.

Lemma 6.2

1. F?P
. a` F?P

||.

2. U?N
. a` U?N

||.

3. F?U?N
. a` F?N

∼.

4. U?F?P
. a` U?P

∼.

Proof By straightforward induction, building small linear logic derivations. For
example, consider case 1 with P = P1⊗P2. Then we must show F?(P1⊗P2). a`
F?(P1 ⊗ P2)||.. But this follows by reasoning
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F?(P1 ⊗ P2). a` F?(P .
1 ⊗ P .

2 ) Def’n of X.

a` (F?P
.
1 ⊗ P .

2 ) Lemma 4.3
a` (F?P

||.
1 ⊗ P .

2 ) i.h.
a` (F?U?F?P

||.
1 ⊗ P .

2 ) Lemma 4.3
a` (U?F?P

||.
1 ⊗ F?P

.
2 ) Lemma 4.3

a` (U?F?P
||.
1 ⊗ F?P

||.
2 ) i.h.

a` (U?F?P
||.
1 ⊗ F?U?F?P

||.
2 ) Lemma 4.3

a` F?(U?F?P
||.
1 ⊗ U?F?P

||.
2 ) Lemma 4.3

a` F?(↓↑P ||1 ⊗ ↓↑P
||
2 ). Def’n of X.

a` F?(P1 ⊗ P2)||. Def’n of X ||

Now we can state and prove the completeness of focusing for an entire stable
sequent: if the sequent’s erasure has an unfocused proof, then the sequent has
a focused proof.

Theorem 6.3 If Γ◦ ` P ◦, then Γ
f̀

P .

Proof Suppose Γ◦ ` P ◦. By Lemma 6.1, we have Γ||
f̀

P ||. By Theorem 4.1
and Lemma 4.5, we get U?Γ||., q(?) ` F?P

||.. By repeated application of
Lemma 6.2, we get U?Γ., q(?) ` F?P

.. Going back in the opposite direction
with Theorem 4.1 and Lemma 4.5 we arrive at Γ `f P as required.
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