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Terms M ::= x · S | λx.S
Spines S ::= () | (M ; S)
Positive Types t ::= i → · · · → i → o
Negative Type Sets i ::= {j1, . . . , jn}
Negative Types j ::= t → · · · → t → o

1 Syntactic Operations

tp(M) computes the type of a (possibly open) term. It is a t.

tp(x · S) = o
tp(λx.M) = x ∈ M → tp(M)

tp(S) computes the type of the head to go with a spine. It is a j.

tp() = o
tp(M ; S) = tp(M) → tp(S)

x ∈ M computes the set of types of a variable in a term. It is an i.

x ∈ x · S = {tp(S)} ∪ x ∈ S
x ∈ y · S = x ∈ S

x ∈ λy.M = x ∈ M
x ∈ () = {}

x ∈ (M ; S) = x ∈ M ∪ x ∈ S

We define relations t ⊑ t and i ⊑ i and j ⊑ j, just to be very explicit about
the intended subterm relation:

{} ⊑ i

i ⊑ i′

i ∪ {j} ⊑ i′ ∪ {j}

i1 ⊑ i′
1

· · · in ⊑ i′
n

i1 → · · · → in → o ⊑ i′
1
→ · · · → i′

n
→ o
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t1 ⊑ t′
1

· · · tn ⊑ t′
n

t1 → · · · → tn → o ⊑ t′
1
→ · · · → t′

n
→ o

Substitution and reduction are as follows, abbreviating σ = [M/x]:

σ(λy.N) = λy.σN
σ(y · S) = y · σS
σ(x · S) = [M | σS]

σ() = ()
σ(N ; S) = (σN ; σS)

[λx.N | (M ; S)] = [[M/x]N | S]
[x · S | ()] = x · S

= fail

The critical thing is that [λx.M | ()] fails, for otherwise Lemma 1.1 part 2
below is certainly false. To say that [M/y]V or [M | S] ‘exists’ is to say that
the substitution/reduction algorithm terminates, and does not fail.

In the induction measures, + indicates a simultaneous ordering on two struc-
tures. That is, V and W are structures, then V + W is considered the same
size as W + V , and V ′ + W ′ ≤ V + W if both V ′ ≤ V and W ≤ W ′, and
V ′ + W ′ < V + W if at least one of the two individual inequalities is strict.
Naturally, the subterm ordering on types means that t < i → t and i < i → t.
We incorporate the ordering ⊑ into ≤, so that if i ⊑ i′, (resp. j ⊑ j′, t ⊑ t′)
then i ≤ i′ (resp. j ≤ j′, t ≤ t′).

1.1 Results

Lemma 1.1

1. If [M/y]V exists, then x ∈ [M/y]V ⊑ (x ∈ M) ∪ (x ∈ V ).

2. If [M/y]V exists, then tp([M/y]V ) ⊑ tp(V ).

3. If [M |S] exists, then x ∈ [M |S] ⊑ (x ∈ M) ∪ (x ∈ S).

Proof By lexicographic induction. The measure per case is

1. tp(M) + y ∈ V

2. tp(M) + y ∈ V

3. tp(M) + tp(S)

For equal values of this measure, case 3 is considered less than 1 and 2, and
ceteris paribus, we may proceed with smaller V .

1. Split cases on V .

Case: V = (). In this case, we must merely observe {} ⊑ (x ∈ M) ∪ {}.
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Case: V = (N ; S). Compute

x ∈ [M/y](N ; S)
= x ∈ ([M/y]N ; [M/y]S)
= (x ∈ [M/y]N) ∪ (x ∈ [M/y]S)
⊑ ((x ∈ M) ∪ (x ∈ N)) ∪ ((x ∈ M) ∪ (x ∈ S)) by i.h. 1 twice
= (x ∈ M) ∪ (x ∈ N) ∪ (x ∈ S) properties of ∪
= (x ∈ M) ∪ (x ∈ (N ; S))

Case: V = λz.N . Compute

x ∈ [M/y]λz.N
= x ∈ λz.[M/y]N
= x ∈ [M/y]N
⊑ (x ∈ M) ∪ (x ∈ N) by i.h. 1
= (x ∈ M) ∪ (x ∈ λz.N)

Case: V = z · S where z 6= x and z 6= y. Compute

x ∈ [M/y](z · S)
= x ∈ (z · [M/y]S)
= x ∈ [M/y]S
⊑ (x ∈ M) ∪ (x ∈ S) by i.h. 1
= (x ∈ M) ∪ (x ∈ (z · S))

Case: V = x · S. Compute

x ∈ [M/y](x · S)
= x ∈ (x · [M/y]S)
= tp([M/y]S) ∪ (x ∈ [M/y]S)
⊑ tp([M/y]S) ∪ ((x ∈ M) ∪ (x ∈ S)) by i.h. 1
⊑ tp(S) ∪ ((x ∈ M) ∪ (x ∈ S)) by i.h. 2
= (x ∈ M) ∪ (tp(S) ∪ (x ∈ S)) properties of ∪
= (x ∈ M) ∪ (x ∈ (x · S))

Case: V = y · S. First observe that

tp([M/y]S) ⊑ tp(S) by i.h. 2
tp(M) + tp([M/y]S) ≤ tp(M) + ({tp(S)} ∪ y ∈ S) (∗)

Now compute

x ∈ [M/y](y · S)
= x ∈ [M | [M/y]S]
⊑ (x ∈ M) ∪ (x ∈ [M/y]S) by i.h. 3, licensed by (∗)
⊑ (x ∈ M) ∪ (x ∈ M) ∪ (x ∈ S) by i.h. 1
= (x ∈ M) ∪ (x ∈ S) properties of ∪
= (x ∈ M) ∪ (x ∈ y · S)

2. Split cases on V .

Case: V = (). Immediate.
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Case: V = (N ; S).

tp([M/y](N ; S))
= tp(([M/y]N ; [M/y]S))
= (tp([M/y]N), tp([M/y]S))
⊑ (tp(N), tp(S)) i.h. 2 twice
= tp(N ; S)

Case: V = λx.N . Compute

tp([M/y]λx.N)
= tp(λx.[M/y]N)
= (x ∈ [M/y]N) → tp([M/y]N)
⊑ (x ∈ [M/y]N) → tp(N) i.h. 2
⊑ (x ∈ N) → tp(N) i.h. 1
= tp(λx.N)

Case: V = x · S. Immediate: o ⊑ o.

3. Split cases on tp(M).

Case: tp(M) = o. Then M is of the form y · S′ for some variable y (which
may in fact be x) and S must be () for [M |S] to be defined. All that
remains to show is that

x ∈ [M |S]
= x ∈ [y · S′ | ()]
= x ∈ (y · S′)
= x ∈ (y · S′) ∪ {}
= x ∈ (y · S′) ∪ x ∈ ()
= (x ∈ M) ∪ (x ∈ S)

Case: tp(M) = τ1 → τ2. Then M is of the form λy.N such that y ∈ N = τ1

and tp(N) = τ2. Moreoever S must be of the form (M0; S0) for [M |S]
to be defined. Observe that

tp([M0/y]N) ⊑ tp(N) by i.h. 2
tp([M0/y]N) + tp(S0) < tp(N) + tp(S0)
< (y ∈ N) → tp(N) + tp(M0) → tp(S0)
= tp(λy.N) + tp(M0; S0)
∴ tp([M0/y]N) + tp(S0) < tp(λy.N) + tp(M0; S0) (∗)

and also

(y ∈ N) + tp(M0)
< (y ∈ N) → tp(N) + tp(M0) → tp(S0)
= tp(λy.N) + tp(M0; S0)
∴ tp(M0) + y ∈ N < tp(λy.N) + tp(M0; S0) (∗∗)

Now compute
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x ∈ [M |S]
= x ∈ [λy.N | (M0; S0)]
= x ∈ [[M0/y]N | S0]
⊑ (x ∈ [M0/y]N) ∪ (x ∈ S0) i.h. 3, licensed by (∗)
⊑ ((x ∈ M0) ∪ (x ∈ N)) ∪ (x ∈ S0) i.h. 1, licensed by (∗∗)
= (x ∈ N) ∪ ((x ∈ M0) ∪ (x ∈ S0)) properties of ∪
= (x ∈ M) ∪ (x ∈ S)

Theorem 1.2

1. [M/x]V either exists, or finitely fails.

2. [M |S] either exists, or finitely fails.

Proof By induction on the measure

1. tp(M) + y ∈ V

2. tp(M) + tp(S)

Where case 2 is considered less for equal measure, and ceteris paribus, we may
proceed with smaller V .

1. Split cases on V .

Case: V = (). Immediate.

Case: V = (N ; S). Apply induction hypothesis to N and S, at the same
(or possibly smaller) measure but smaller terms.

Case: V = λy.N . Apply induction hypothesis to N , at the same measure
but a smaller term.

Case: V = y · S. Apply induction hypothesis to S, at the same measure
but a smaller expression.

Case: V = x · S. Apply induction hypothesis part 1 to S, at the same
(or possibly smaller) measure but a smaller expression. From this
we find that [M/x]S either exists or finitely fails. If it fails, we are
already done, for [M/x](x · S) = [M | [M/x]S] has already failed.
Otherwise, use Lemma 1.1 to see that tp([M/x]S) ⊑ tp(S), which
implies that tp(M) + tp([M/x]S) ≤ tp(M) + tp(S) ≤ tp(M) + {x ∈
S} ∪ tp(S) = tp(M) + tp(x ∈ (x · S)). Thus we may appeal to the
induction hypothesis part 2 to see that [M | [M/x]S] either exists or
finitely fails.

2. Split cases on tp(M).

Case: tp(M) = o. Then M is of the form y ·S′. If S = (), then [M | S] = M .
Otherwise, reduction immediately fails.
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Case: tp(M) = i → t. Then M is of the form λy.N . Consider whether S is
of the form (M0; S0). If it is not, then reduction immediately fails.
If it is, note that the induction measure coming in was tp(λy.N) +
tp(M0; S0) = (y ∈ N) → tp(N) + tp(M0) → tp(S0), and we can show
both of

tp([M0/y]N) + tp(S0) < (y ∈ N) → tp(N) + tp(M0) → tp(S0) (∗)

tp(y ∈ N) + tp(M0) < (y ∈ N) → tp(N) + tp(M0) → tp(S0) (∗∗)

using Lemma 1.1 in (∗) to get that tp([M0/y]N) ⊑ tp(N). By (∗∗),
we can use the induction hypothesis part 1 to see that [M0/y]N either
exists or finitely fails. If it fails, we are already done. If it succeeds,
then (∗) licenses using the induction hypothesis part 2 to conclude
that [[M0/y]N | S] either exists or finitely fails.
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