Terminating Untyped Hereditary Substitution

Jason Reed

January 28, 2007

Terms	M	$::=$
$x \cdot S \mid \lambda x . S$		
Spines	S	$::=() \mid(M ; S)$
Positive Types	t	$::=$
$i \rightarrow \cdots \rightarrow i \rightarrow o$		
Negative Type Sets	i	$::=\left\{j_{1}, \cdots, j_{n}\right\}$
Negative Types	j	$::=t \rightarrow \cdots \rightarrow t \rightarrow o$

1 Syntactic Operations

$t p(M)$ computes the type of a (possibly open) term. It is a t.

$$
\begin{aligned}
t p(x \cdot S) & =o \\
\operatorname{tp}(\lambda x \cdot M) & =x \in M \rightarrow \operatorname{tp}(M)
\end{aligned}
$$

$t p(S)$ computes the type of the head to go with a spine. It is a j.

$$
\begin{aligned}
t p() & =o \\
t p(M ; S) & =t p(M) \rightarrow t p(S)
\end{aligned}
$$

$x \in M$ computes the set of types of a variable in a term. It is an i.

$$
\begin{aligned}
x \in x \cdot S & =\{t p(S)\} \cup x \in S \\
x \in y \cdot S & =x \in S \\
x \in \lambda y \cdot M & =x \in M \\
x \in() & =\{ \} \\
x \in(M ; S) & =x \in M \cup x \in S
\end{aligned}
$$

We define relations $t \sqsubseteq t$ and $i \sqsubseteq i$ and $j \sqsubseteq j$, just to be very explicit about the intended subterm relation:

$$
\begin{gathered}
\overline{\} \sqsubseteq i} \\
\frac{i \sqsubseteq i^{\prime}}{i \cup\{j\} \sqsubseteq i^{\prime} \cup\{j\}} \\
i_{1} \sqsubseteq i_{1}^{\prime} \quad \cdots \quad i_{n} \sqsubseteq i_{n}^{\prime} \\
\hline i_{1} \rightarrow \cdots \rightarrow i_{n} \rightarrow o \sqsubseteq i_{1}^{\prime} \rightarrow \cdots \rightarrow i_{n}^{\prime} \rightarrow o
\end{gathered}
$$

$$
\frac{t_{1} \sqsubseteq t_{1}^{\prime} \quad \cdots \quad t_{n} \sqsubseteq t_{n}^{\prime}}{t_{1} \rightarrow \cdots \rightarrow t_{n} \rightarrow o \sqsubseteq t_{1}^{\prime} \rightarrow \cdots \rightarrow t_{n}^{\prime} \rightarrow o}
$$

Substitution and reduction are as follows, abbreviating $\sigma=[M / x]$:

$$
\begin{aligned}
\sigma(\lambda y \cdot N) & =\lambda y \cdot \sigma N \\
\sigma(y \cdot S) & =y \cdot \sigma S \\
\sigma(x \cdot S) & =[M \mid \sigma S] \\
\sigma() & =() \\
\sigma(N ; S) & =(\sigma N ; \sigma S) \\
{[\lambda x \cdot N \mid(M ; S)] } & =[[M / x] N \mid S] \\
{[x \cdot S \mid()] } & =x \cdot S \\
- & =\text { fail }
\end{aligned}
$$

The critical thing is that $[\lambda x . M \mid()]$ fails, for otherwise Lemma 1.1 part 2 below is certainly false. To say that $[M / y] V$ or $[M \mid S]$ 'exists' is to say that the substitution/reduction algorithm terminates, and does not fail.

In the induction measures, + indicates a simultaneous ordering on two structures. That is, V and W are structures, then $V+W$ is considered the same size as $W+V$, and $V^{\prime}+W^{\prime} \leq V+W$ if both $V^{\prime} \leq V$ and $W \leq W^{\prime}$, and $V^{\prime}+W^{\prime}<V+W$ if at least one of the two individual inequalities is strict. Naturally, the subterm ordering on types means that $t<i \rightarrow t$ and $i<i \rightarrow t$. We incorporate the ordering \sqsubseteq into \leq, so that if $i \sqsubseteq i^{\prime}$, (resp. $j \sqsubseteq j^{\prime}, t \sqsubseteq t^{\prime}$) then $i \leq i^{\prime}$ (resp. $\left.j \leq j^{\prime}, t \leq t^{\prime}\right)$.

1.1 Results

Lemma 1.1

1. If $[M / y] V$ exists, then $x \in[M / y] V \sqsubseteq(x \in M) \cup(x \in V)$.
2. If $[M / y] V$ exists, then $\operatorname{tp}([M / y] V) \sqsubseteq t p(V)$.
3. If $[M \mid S]$ exists, then $x \in[M \mid S] \sqsubseteq(x \in M) \cup(x \in S)$.

Proof By lexicographic induction. The measure per case is

1. $\operatorname{tp}(M)+y \in V$
2. $\operatorname{tp}(M)+y \in V$
3. $t p(M)+t p(S)$

For equal values of this measure, case 3 is considered less than 1 and 2 , and ceteris paribus, we may proceed with smaller V.

1. Split cases on V.

Case: $V=()$. In this case, we must merely observe $\} \sqsubseteq(x \in M) \cup\}$.

Case: $V=(N ; S)$. Compute
$x \in[M / y](N ; S)$
$=x \in([M / y] N ;[M / y] S)$
$=(x \in[M / y] N) \cup(x \in[M / y] S)$
$\sqsubseteq((x \in M) \cup(x \in N)) \cup((x \in M) \cup(x \in S)) \quad$ by i.h. 1 twice
$=(x \in M) \cup(x \in N) \cup(x \in S)$
$=(x \in M) \cup(x \in(N ; S))$
properties of \cup

Case: $V=\lambda z . N$. Compute

$$
\begin{aligned}
& x \in[M / y] \lambda z . N \\
& =x \in \lambda z[M / y] N \\
& =x \in[M / y] N \\
& \sqsubseteq(x \in M) \cup(x \in N) \\
& =(x \in M) \cup(x \in \lambda z . N)
\end{aligned}
$$

by i.h. 1

Case: $V=z \cdot S$ where $z \neq x$ and $z \neq y$. Compute

$$
\begin{aligned}
& x \in[M / y](z \cdot S) \\
& =x \in(z \cdot[M / y] S) \\
& =x \in[M / y] S \\
& \sqsubseteq(x \in M) \cup(x \in S) \\
& =(x \in M) \cup(x \in(z \cdot S))
\end{aligned}
$$

$$
\sqsubseteq(x \in M) \cup(x \in S) \quad \text { by i.h. } 1
$$

Case: $V=x \cdot S$. Compute

$$
\begin{aligned}
& x \in[M / y](x \cdot S) \\
& =x \in(x \cdot[M / y] S) \\
& =\operatorname{tp}([M / y] S) \cup(x \in[M / y] S) \\
& \sqsubseteq \operatorname{tp}([M / y] S) \cup((x \in M) \cup(x \in(x \in M) \cup(x \in S)) \\
& \sqsubseteq t p(S) \cup((x \in M) \\
& =(x \in M) \cup(t p(S) \cup(x \in S)) \\
& =(x \in M) \cup(x \in(x \cdot S))
\end{aligned}
$$

$$
\sqsubseteq t p([M / y] S) \cup((x \in M) \cup(x \in S)) \quad \text { by i.h. } 1
$$

by i.h. 2

Case: $V=y \cdot S$. First observe that

$$
\begin{align*}
& t p([M / y] S) \sqsubseteq t p(S) \\
& t p(M)+t p([M / y] S) \leq t p(M)+(\{t p(S)\} \cup y \in S) \tag{*}
\end{align*}
$$

$$
\text { by i.h. } 2
$$

Now compute

$$
\begin{aligned}
& x \in[M / y](y \cdot S) \\
& =x \in[M \mid[M / y] S] \\
& \sqsubseteq(x \in M) \cup(x \in[M / y] S) \\
& \sqsubseteq(x \in M) \cup(x \in M) \cup(x \in S) \\
& =(x \in M) \cup(x \in S) \\
& =(x \in M) \cup(x \in y \cdot S)
\end{aligned}
$$

$$
\sqsubseteq(x \in M) \cup(x \in[M / y] S) \quad \text { by i.h. 3, licensed by (*) }
$$

2. Split cases on V.

Case: $V=()$. Immediate.

Case: $V=(N ; S)$.

$$
\begin{aligned}
& \operatorname{tp}([M / y](N ; S)) \\
& =\operatorname{tp}(([M / y] N ;[M / y] S)) \\
& =(\operatorname{tp}([M / y] N), \operatorname{tp}([M / y] S)) \\
& \sqsubseteq(\operatorname{tp}(N), \operatorname{tp}(S)) \\
& =\operatorname{tp}(N ; S)
\end{aligned}
$$

i.h. 2 twice

Case: $V=\lambda x . N$. Compute

$$
\begin{aligned}
& \operatorname{tp}([M / y] \lambda x . N) \\
& =\operatorname{tp}(\lambda x \cdot[M / y] N) \\
& =(x \in[M / y] N) \rightarrow \operatorname{tp}([M / y] N) \\
& \sqsubseteq(x \in[M / y] N) \rightarrow \operatorname{tp}(N) \\
& \sqsubseteq(x \in N) \rightarrow \operatorname{tp}(N) \\
& =\operatorname{tp}(\lambda x . N)
\end{aligned}
$$

$$
\sqsubseteq(x \in[M / y] N) \rightarrow \operatorname{tp}(N) \quad \text { i.h. } 2
$$

$$
\text { i.h. } 1
$$

Case: $V=x \cdot S$. Immediate: $o \sqsubseteq o$.
3. Split cases on $t p(M)$.

Case: $\operatorname{tp}(M)=o$. Then M is of the form $y \cdot S^{\prime}$ for some variable y (which may in fact be x) and S must be () for $[M \mid S]$ to be defined. All that remains to show is that
$x \in[M \mid S]$
$=x \in\left[y \cdot S^{\prime} \mid()\right]$
$=x \in\left(y \cdot S^{\prime}\right)$
$=x \in\left(y \cdot S^{\prime}\right) \cup\{ \}$
$=x \in\left(y \cdot S^{\prime}\right) \cup x \in()$
$=(x \in M) \cup(x \in S)$

Case: $\operatorname{tp}(M)=\tau_{1} \rightarrow \tau_{2}$. Then M is of the form $\lambda y . N$ such that $y \in N=\tau_{1}$ and $\operatorname{tp}(N)=\tau_{2}$. Moreoever S must be of the form $\left(M_{0} ; S_{0}\right)$ for $[M \mid S]$ to be defined. Observe that

$$
\begin{align*}
& \operatorname{tp}\left(\left[M_{0} / y\right] N\right) \sqsubseteq \operatorname{tp}(N) \\
& \operatorname{tp}\left(\left[M_{0} / y\right] N\right)+\operatorname{tp}\left(S_{0}\right)<\operatorname{tp}(N)+\operatorname{tp}\left(S_{0}\right) \\
& <(y \in N) \rightarrow \operatorname{tp}(N)+\operatorname{tp}\left(M_{0}\right) \rightarrow \operatorname{tp}\left(S_{0}\right) \\
& =\operatorname{tp}(\lambda y \cdot N)+\operatorname{tp}\left(M_{0} ; S_{0}\right) \\
& \therefore \operatorname{tp}\left(\left[M_{0} / y\right] N\right)+\operatorname{tp}\left(S_{0}\right)<\operatorname{tp}(\lambda y \cdot N)+\operatorname{tp}\left(M_{0} ; S_{0}\right) \tag{*}
\end{align*}
$$

$$
\text { by i.h. } 2
$$

and also
$(y \in N)+\operatorname{tp}\left(M_{0}\right)$
$<(y \in N) \rightarrow t p(N)+t p\left(M_{0}\right) \rightarrow t p\left(S_{0}\right)$
$=\operatorname{tp}(\lambda y \cdot N)+t p\left(M_{0} ; S_{0}\right)$
$\therefore t p\left(M_{0}\right)+y \in N<t p(\lambda y . N)+t p\left(M_{0} ; S_{0}\right)$
Now compute

$$
\begin{aligned}
& x \in[M \mid S] \\
& =x \in\left[\lambda y \cdot N \mid\left(M_{0} ; S_{0}\right)\right] \\
& \left.=x \in\left[M_{0} / y\right] N \mid S_{0}\right] \\
& \sqsubseteq\left(x \in\left[M_{0} / y\right] N\right) \cup\left(x \in S_{0}\right) \\
& \sqsubseteq\left(\left(x \in M_{0}\right) \cup(x \in N)\right) \cup\left(x \in S_{0}\right) \\
& =(x \in N) \cup\left(\left(x \in M_{0}\right) \cup\left(x \in S_{0}\right)\right) \\
& =(x \in M) \cup(x \in S) \\
& \text { i.h. } 1, \text {, licensed by }(* *) \\
& =(*)
\end{aligned}
$$

Theorem 1.2

1. $[M / x] V$ either exists, or finitely fails.
2. $[M \mid S]$ either exists, or finitely fails.

Proof By induction on the measure

1. $\operatorname{tp}(M)+y \in V$
2. $\operatorname{tp}(M)+\operatorname{tp}(S)$

Where case 2 is considered less for equal measure, and ceteris paribus, we may proceed with smaller V.

1. Split cases on V.

Case: $V=()$. Immediate.
Case: $V=(N ; S)$. Apply induction hypothesis to N and S, at the same (or possibly smaller) measure but smaller terms.
Case: $V=\lambda y \cdot N$. Apply induction hypothesis to N, at the same measure but a smaller term.
Case: $V=y \cdot S$. Apply induction hypothesis to S, at the same measure but a smaller expression.
Case: $V=x \cdot S$. Apply induction hypothesis part 1 to S, at the same (or possibly smaller) measure but a smaller expression. From this we find that $[M / x] S$ either exists or finitely fails. If it fails, we are already done, for $[M / x](x \cdot S)=[M \mid[M / x] S]$ has already failed. Otherwise, use Lemma 1.1 to see that $t p([M / x] S) \sqsubseteq t p(S)$, which implies that $t p(M)+t p([M / x] S) \leq t p(M)+t p(S) \leq t p(M)+\{x \in$ $S\} \cup t p(S)=t p(M)+t p(x \in(x \cdot S))$. Thus we may appeal to the induction hypothesis part 2 to see that $[M \mid[M / x] S]$ either exists or finitely fails.
2. Split cases on $t p(M)$.

Case: $\operatorname{tp}(M)=o$. Then M is of the form $y \cdot S^{\prime}$. If $S=()$, then $[M \mid S]=M$. Otherwise, reduction immediately fails.

Case: $\operatorname{tp}(M)=i \rightarrow t$. Then M is of the form $\lambda y . N$. Consider whether S is of the form $\left(M_{0} ; S_{0}\right)$. If it is not, then reduction immediately fails. If it is, note that the induction measure coming in was $t p(\lambda y \cdot N)+$ $\operatorname{tp}\left(M_{0} ; S_{0}\right)=(y \in N) \rightarrow \operatorname{tp}(N)+t p\left(M_{0}\right) \rightarrow t p\left(S_{0}\right)$, and we can show both of

$$
\begin{align*}
& \operatorname{tp}\left(\left[M_{0} / y\right] N\right)+\operatorname{tp}\left(S_{0}\right)<(y \in N) \rightarrow \operatorname{tp}(N)+\operatorname{tp}\left(M_{0}\right) \rightarrow \operatorname{tp}\left(S_{0}\right) \tag{*}\\
& \operatorname{tp}(y \in N)+\operatorname{tp}\left(M_{0}\right)<(y \in N) \rightarrow \operatorname{tp}(N)+\operatorname{tp}\left(M_{0}\right) \rightarrow \operatorname{tp}\left(S_{0}\right) \tag{**}
\end{align*}
$$

using Lemma 1.1 in $(*)$ to get that $\operatorname{tp}\left(\left[M_{0} / y\right] N\right) \sqsubseteq t p(N)$. By $(* *)$, we can use the induction hypothesis part 1 to see that $\left[M_{0} / y\right] N$ either exists or finitely fails. If it fails, we are already done. If it succeeds, then $(*)$ licenses using the induction hypothesis part 2 to conclude that $\left[\left[M_{0} / y\right] N \mid S\right]$ either exists or finitely fails.

