
Cyclic Dependent Types

Jason Reed

August 5, 2007

1 Introduction

There is no real obstacle to having dependent types where the dependency graph
of a context (i.e. which types refer to which variables) has cycles. In order to
make it sensible it seems necessary to require that everything we even mention
is simply-typed, but this is likely good hygiene anyway, and simplifies many
definitions and proofs.

2 Syntax

Define simple types and typed vectors of other things X by

Simple Types τ ::= (τ1, . . . , τn)
Typed Vectors X̄(τ1,...,τn) ::= (Xτ1 , . . . , Xτn)

Assume variables xτ are intrinsically simply typed. Other syntactic constructs
are also intrinsically typed:

Normal Terms Mτ ::= λx̄τ .R
Classifiers Vτ ::= ΠΨτ .v

Atomic Terms R ::= xτ [M̄τ ]
Base Classifiers v ::= R | type

Contexts Ψτ ::= x̄τ .V̄τ

The judgments are:

Γ ` Mτ ⇐ Vτ M checks at classifier V
Γ ` M̄τ ⇐ Ψ M̄ checks at context Ψ
Γ ` Vτ ⇐ class V is a well-formed classifier
Γ ` V̄τ ⇐ class V̄ are well-formed classifiers
Γ ` R ⇒ v R synthesizes classifier v
Γ ` v ⇒ class v is a well-formed base classifier
Γ ` Ψτ ctx Ψ is a well-formed context

Ψ̂ means just the variable vector from Ψ. Γ,Ψ means concatenate the vari-
able vectors and the type vectors of Γ and Ψ. The judgments are defined by:
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(M)
Γ,Ψ ` R ⇒ v′ v = v′

Γ ` λΨ̂.R ⇐ ΠΨ.v
(M̄)

Γ ` Mi ⇐ Vi

Γ ` M̄ ⇐ x̄.V̄

(V )
Γ ` Ψ ctx Γ,Ψ ` v ⇒ class

Γ ` ΠΨ.v ⇐ class
(V̄ )

Γ ` Vi ⇐ class

Γ ` V̄ ⇐ class

(R)
x : ΠΨ.v ∈ Γ Γ ` M̄ ⇐ Ψ{M̄/Ψ̂}

Γ ` x[M̄ ] ⇒ v{M̄/Ψ̂}

(v)
Γ ` R ⇒ type

Γ ` R ⇒ class Γ ` type ⇒ class (Ψ)
Γ, (x̄.V̄ ) ` V̄ ⇐ class

Γ ` (x̄.V̄ ) ctx

Substitution is written {M̄τ/x̄τ}. We write (M/x) ∈ {M̄/x̄} when, for some
n, we have M = Mn and x = xn. The behavior of substitution is all boring
congruences except for the variable case. Abbreviating θ = {M̄/x̄},

(x[N̄ ])θ =
{

R{N̄θ/ȳ} if (λȳ.R/x) ∈ θ;
x[N̄θ] otherwise.

3 Results

We prove the usual results; that substitution and identity properties hold. In
preparation for the substitution property, we show that substitutions commute
properly. In preparation for the identity property, we show that η-expansions
are two-sided units with respect to substitution.

3.1 Substitution

Lemma 3.1 If FV (X) ∩ x̄ = ∅, then X{M̄/x̄} = X.

Proof Straightforward induction.

Let J stand for an arbitrary judgment of the system.

Lemma 3.2 (Weakening) If Γ ` J , then Γ,Γ′ ` J .

Proof Straightforward induction.

Abbreviate θ = {M̄/x̄}.

Lemma 3.3 (Interchange) If FV (M̄)∩ ȳ = ∅, then X{N̄/ȳ}θ = Xθ{N̄θ/ȳ}

Proof By induction on first the undordered pair of the simple types of x̄, ȳ,
and subsequently X. For all the homomorphism cases, it’s just X that gets
smaller. This includes the case of X = z[P̄ ] where z is in neither x̄ nor ȳ. The
interesting cases are when X = z[P̄ ] and
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• z ∈ x̄ and (λw̄.R/z) ∈ {M̄/x̄}. In this case we reason that

z[P̄ ]{N̄/ȳ}θ
= z[P̄{N̄/ȳ}]θ
= R{P̄{N̄/ȳ}θ/w̄}
= R{P̄ θ{N̄θ/ȳ}/w̄} i.h. on P̄ < z[P̄ ]
= R{N̄θ/ȳ}{P̄ θ{N̄θ/ȳ}/w̄} Lemma 3.1
= R{P̄ θ/w̄}{N̄θ/ȳ} i.h. on (w̄, ȳ) < (ȳ, x̄)
= z[P̄ ]θ{N̄θ/ȳ}

To justify the second induction hypothesis appeal, we need FV (N̄θ)∩w̄ =
∅, but this is true because the variables w̄ are bound inside M̄ .

• z ∈ ȳ and (λw̄.R/z) ∈ {N̄/ȳ}. In this case we reason that

z[P̄ ]{N̄/ȳ}θ
= R{P̄{N̄/ȳ}/w̄}θ
= Rθ{P̄{N̄/ȳ}θ/w̄} i.h. on (w̄, x̄) < (ȳ, x̄)
= Rθ{P̄ θ{N̄θ/ȳ}/w̄} i.h. on P̄ < z[P̄ ]
= R{P̄ θ{N̄θ/ȳ}/w̄} Lemma 3.1
= z[P̄ θ]{N̄θ/ȳ}
= z[P̄ ]θ{N̄θ/ȳ}

To justify the first induction hypothesis appeal, we need FV (M̄)∩ w̄ = ∅,
but this is true because the variables w̄ are bound inside N̄ .

Abbreviate θ = {M̄/Γ̂}.

Lemma 3.4 If ∆,Γ ` J and ∆θ ` M̄ ⇐ Γθ, then ∆θ ` Jθ.

Proof By induction on first the simple type of Γ and subsequently the deriva-
tion of J . The interesting case is:

Case:

D = x : ΠΨ.v ∈ Γ

D′

∆,Γ ` N̄ ⇐ Ψ{N̄/Ψ̂}

∆,Γ ` x[N̄ ] ⇒ v{N̄/Ψ̂}

Use the induction hypothesis on D′ to see ∆θ ` N̄θ ⇐ Ψ{N̄/Ψ̂}θ. By
simple types we must have some λΨ̂.R/x ∈ θ, and by picking apart the
typing of M̄ we must have had ∆θ ` λΨ̂.R ⇐ ΠΨθ.vθ, so by inversion
∆θ, Ψθ ` R ⇒ vθ.

We claim we’re in a position to apply the induction hypothesis. Why?
The substitution is {N̄θ/Ψ̂}, which substitutes for a smaller simple type
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than θ. None of Ψ̂ were bound in ∆ so we don’t need to worry about
the substitution in the second premise’s context left of the turnstile. On
the right of the second premise the context must be Ψθ{N̄θ/Ψ̂}, which
is equal to what we have, Ψ{N̄/Ψ̂}θ, by lemma, noting that Ψ were too
recently bound to occur in M̄ .

So out of the induction hypothesis comes ∆θ ` R{N̄θ/Ψ̂} ⇒ vθ{N̄θ/Ψ̂}.
After one more application of the above lemma, we have

∆θ ` R{N̄θ/Ψ̂} ⇒ v{N̄/Ψ̂}θ

as required.

3.2 Identity

Eta-expansion is defined on variables and variable vectors (yielding terms and
term vectors) by

η(xτ ) = λȳτ .x[η(ȳτ )]

η(x1, . . . , xn) = η(x1), . . . , η(xn)

Lemma 3.5 (Unit Laws for η-expansion)

1. X{η(x̄τ )/x̄τ} = X

2. η(x̄τ ){M̄τ/x̄τ} = M̄τ

Proof By induction on τ and X or M̄ .

Lemma 3.6 (Identity)

1. If x : V ∈ Γ, then Γ ` η(x) ⇐ V .

2. If x̄ : V̄ ⊆ Γ, then Γ ` η(x̄) ⇐ V̄ .

Proof By induction. In the first part, form the derivation

x : ΠΨ.v ∈ Γ

D′

Γ,Ψ ` η(ȳ) ⇐ Ψ
ηid

Γ,Ψ ` η(ȳ) ⇐ Ψ{η(ȳ)/Ψ̂}

Γ,Ψ ` x[M̄ ] ⇒ v{η(ȳ)/Ψ̂}

Γ ` λȳ.x[η(ȳ)] ⇒ ΠΨ.v{η(ȳ)/Ψ̂}
ηid

Γ ` λȳ.x[η(ȳ)] ⇒ ΠΨ.v

from D′ obtained from the induction hypothesis, using the above lemma at steps
marked ηid.
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