Cyclic Dependent Types

Jason Reed

August 5, 2007

1 Introduction

There is no real obstacle to having dependent types where the dependency graph of a context (i.e. which types refer to which variables) has cycles. In order to make it sensible it seems necessary to require that everything we even mention is simply-typed, but this is likely good hygiene anyway, and simplifies many definitions and proofs.

2 Syntax

Define simple types and typed vectors of other things X by

Simple Types	au	::=	(au_1,\ldots, au_n)
Typed Vectors	$\bar{X}_{(\tau_1,\ldots,\tau_n)}$::=	$(X_{\tau_1},\ldots,X_{\tau_n})$

Assume variables x_{τ} are intrinsically simply typed. Other syntactic constructs are also intrinsically typed:

Normal Terms	M_{τ}	::=	$\lambda \bar{x}_{\tau}.R$
Classifiers	V_{τ}	::=	$\Pi \Psi_{\tau}.v$
Atomic Terms	R		$x_{\tau}[\bar{M}_{\tau}]$
Base Classifiers	v	::=	$R \mid type$
Contexts	Ψ_{τ}	::=	$\bar{x}_{\tau}.\bar{V}_{\tau}$

The judgments are:

M checks at classifier V
\bar{M} checks at context Ψ
V is a well-formed classifier
\overline{V} are well-formed classifiers
R synthesizes classifier v
v is a well-formed base classifier
Ψ is a well-formed context

 $\hat{\Psi}$ means just the variable vector from Ψ . Γ, Ψ means concatenate the variable vectors and the type vectors of Γ and Ψ . The judgments are defined by:

(v)
$$\frac{\Gamma + R \Rightarrow \text{class}}{\Gamma \vdash R \Rightarrow \text{class}} = \frac{\Gamma \vdash \text{type} \Rightarrow \text{class}}{\Gamma \vdash (\bar{x}, \bar{V}) \text{ ctx}}$$
 (Ψ) $\frac{\Gamma + (\bar{x}, \bar{V}) + V + (\bar{x}, \bar{V})}{\Gamma \vdash (\bar{x}, \bar{V}) \text{ ctx}}$

Substitution is written $\{\overline{M}_{\tau}/\overline{x}_{\tau}\}$. We write $(M/x) \in \{\overline{M}/\overline{x}\}$ when, for some n, we have $M = M_n$ and $x = x_n$. The behavior of substitution is all boring congruences except for the variable case. Abbreviating $\theta = \{\overline{M}/\overline{x}\}$,

$$(x[\bar{N}])\theta = \begin{cases} R\{\bar{N}\theta/\bar{y}\} & \text{if } (\lambda\bar{y}.R/x) \in \theta; \\ x[\bar{N}\theta] & \text{otherwise.} \end{cases}$$

3 Results

We prove the usual results; that substitution and identity properties hold. In preparation for the substitution property, we show that substitutions commute properly. In preparation for the identity property, we show that η -expansions are two-sided units with respect to substitution.

3.1 Substitution

Lemma 3.1 If $FV(X) \cap \bar{x} = \emptyset$, then $X\{\bar{M}/\bar{x}\} = X$.

Proof Straightforward induction.

Let J stand for an arbitrary judgment of the system.

Lemma 3.2 (Weakening) If $\Gamma \vdash J$, then $\Gamma, \Gamma' \vdash J$.

Proof Straightforward induction.

Abbreviate $\theta = \{\overline{M}/\overline{x}\}.$

Lemma 3.3 (Interchange) If $FV(\bar{M}) \cap \bar{y} = \emptyset$, then $X\{\bar{N}/\bar{y}\}\theta = X\theta\{\bar{N}\theta/\bar{y}\}$

Proof By induction on first the undordered pair of the simple types of \bar{x}, \bar{y} , and subsequently X. For all the homomorphism cases, it's just X that gets smaller. This includes the case of $X = z[\bar{P}]$ where z is in neither \bar{x} nor \bar{y} . The interesting cases are when $X = z[\bar{P}]$ and

• $z \in \bar{x}$ and $(\lambda \bar{w} \cdot R/z) \in \{\bar{M}/\bar{x}\}$. In this case we reason that

$$\begin{split} & z[\bar{P}]\{\bar{N}/\bar{y}\}\theta \\ &= z[\bar{P}\{\bar{N}/\bar{y}\}]\theta \\ &= R\{\bar{P}\{\bar{N}/\bar{y}\}\theta/\bar{w}\} \\ &= R\{\bar{P}\theta\{\bar{N}\theta/\bar{y}\}/\bar{w}\} \\ &= R\{\bar{N}\theta/\bar{y}\}\{\bar{P}\theta\{\bar{N}\theta/\bar{y}\}/\bar{w}\} \\ &= R\{\bar{N}\theta/\bar{y}\}\{\bar{P}\theta\{\bar{N}\theta/\bar{y}\}/\bar{w}\} \\ &= R\{\bar{P}\theta/\bar{w}\}\{\bar{N}\theta/\bar{y}\} \\ &= z[\bar{P}]\theta\{\bar{N}\theta/\bar{y}\} \\ \end{split}$$
i.h. on $(\bar{w},\bar{y}) < (\bar{y},\bar{x}) \\ &= z[\bar{P}]\theta\{\bar{N}\theta/\bar{y}\} \\ \end{split}$

To justify the second induction hypothesis appeal, we need $FV(\bar{N}\theta) \cap \bar{w} = \emptyset$, but this is true because the variables \bar{w} are bound inside \bar{M} .

• $z \in \bar{y}$ and $(\lambda \bar{w}.R/z) \in \{\bar{N}/\bar{y}\}$. In this case we reason that

$$\begin{split} &z[\bar{P}]\{\bar{N}/\bar{y}\}\theta\\ &= R\{\bar{P}\{\bar{N}/\bar{y}\}/\bar{w}\}\theta\\ &= R\theta\{\bar{P}\{\bar{N}/\bar{y}\}\theta/\bar{w}\}\\ &= R\theta\{\bar{P}\theta\{\bar{N}\theta/\bar{y}\}/\bar{w}\}\\ &= R\{\bar{P}\theta\{\bar{N}\theta/\bar{y}\}/\bar{w}\}\\ &= z[\bar{P}\theta]\{\bar{N}\theta/\bar{y}\}\\ &= z[\bar{P}]\theta\{\bar{N}\theta/\bar{y}\} \end{split}$$

i.h. on $(\bar{w}, \bar{x}) < (\bar{y}, \bar{x})$ i.h. on $\bar{P} < z[\bar{P}]$ Lemma 3.1

To justify the first induction hypothesis appeal, we need $FV(\bar{M}) \cap \bar{w} = \emptyset$, but this is true because the variables \bar{w} are bound inside \bar{N} .

Abbreviate $\theta = \{\overline{M}/\widehat{\Gamma}\}.$

Lemma 3.4 If $\Delta, \Gamma \vdash J$ and $\Delta \theta \vdash \overline{M} \leftarrow \Gamma \theta$, then $\Delta \theta \vdash J \theta$.

Proof By induction on first the simple type of Γ and subsequently the derivation of J. The interesting case is:

Case:

$$\mathcal{D} = \frac{x : \Pi \Psi . v \in \Gamma}{\Delta, \Gamma \vdash \bar{N} \Leftarrow \Psi\{\bar{N}/\hat{\Psi}\}}$$
$$\frac{\mathcal{D}}{\Delta, \Gamma \vdash x[\bar{N}] \Rightarrow v\{\bar{N}/\hat{\Psi}\}}$$

 \mathcal{D}'

Use the induction hypothesis on \mathcal{D}' to see $\Delta \theta \vdash \bar{N}\theta \leftarrow \Psi\{\bar{N}/\hat{\Psi}\}\theta$. By simple types we must have some $\lambda \hat{\Psi}.R/x \in \theta$, and by picking apart the typing of \bar{M} we must have had $\Delta \theta \vdash \lambda \hat{\Psi}.R \leftarrow \Pi \Psi \theta. v\theta$, so by inversion $\Delta \theta, \Psi \theta \vdash R \Rightarrow v\theta$.

We claim we're in a position to apply the induction hypothesis. Why? The substitution is $\{\bar{N}\theta/\hat{\Psi}\}$, which substitutes for a smaller simple type than θ . None of $\hat{\Psi}$ were bound in Δ so we don't need to worry about the substitution in the second premise's context left of the turnstile. On the right of the second premise the context must be $\Psi\theta\{\bar{N}\theta/\hat{\Psi}\}$, which is equal to what we have, $\Psi\{\bar{N}/\hat{\Psi}\}\theta$, by lemma, noting that Ψ were too recently bound to occur in \bar{M} .

So out of the induction hypothesis comes $\Delta \theta \vdash R\{\bar{N}\theta/\hat{\Psi}\} \Rightarrow v\theta\{\bar{N}\theta/\hat{\Psi}\}$. After one more application of the above lemma, we have

$$\Delta\theta \vdash R\{\bar{N}\theta/\hat{\Psi}\} \Rightarrow v\{\bar{N}/\hat{\Psi}\}\theta$$

as required.

3.2 Identity

Eta-expansion is defined on variables and variable vectors (yielding terms and term vectors) by

$$\eta(x_{\tau}) = \lambda \bar{y}_{\tau} . x[\eta(\bar{y}_{\tau})]$$

$$\eta(x_1,\ldots,x_n) = \eta(x_1),\ldots,\eta(x_n)$$

Lemma 3.5 (Unit Laws for η -expansion)

1. $X\{\eta(\bar{x}_{\tau})/\bar{x}_{\tau}\} = X$

2. $\eta(\bar{x}_{\tau})\{\bar{M}_{\tau}/\bar{x}_{\tau}\}=\bar{M}_{\tau}$

Proof By induction on τ and X or \overline{M} .

Lemma 3.6 (Identity)

- 1. If $x : V \in \Gamma$, then $\Gamma \vdash \eta(x) \Leftarrow V$.
- 2. If $\bar{x}: \bar{V} \subseteq \Gamma$, then $\Gamma \vdash \eta(\bar{x}) \Leftarrow \bar{V}$.

Proof By induction. In the first part, form the derivation

$$\begin{split} \mathcal{D}' \\ \frac{\Gamma, \Psi \vdash \eta(\bar{y}) \Leftarrow \Psi}{\Gamma, \Psi \vdash \eta(\bar{y}) \Leftarrow \Psi\{\eta(\bar{y})/\hat{\Psi}\}} \eta \text{id} \\ \frac{x: \Pi \Psi. v \in \Gamma}{\frac{\Gamma, \Psi \vdash x[\bar{M}] \Rightarrow v\{\eta(\bar{y})/\hat{\Psi}\}}{\frac{\Gamma, \Psi \vdash x[\bar{M}] \Rightarrow v\{\eta(\bar{y})/\hat{\Psi}\}}{\frac{\Gamma \vdash \lambda \bar{y}. x[\eta(\bar{y})] \Rightarrow \Pi \Psi. v\{\eta(\bar{y})/\hat{\Psi}\}}{\Gamma \vdash \lambda \bar{y}. x[\eta(\bar{y})] \Rightarrow \Pi \Psi. v} \eta \text{id}} \end{split}$$

from \mathcal{D}' obtained from the induction hypothesis, using the above lemma at steps marked $\eta \mathsf{id}.$