Cyclic Dependent Types

Jason Reed

August 5, 2007

1 Introduction

There is no real obstacle to having dependent types where the dependency graph of a context (i.e. which types refer to which variables) has cycles. In order to make it sensible it seems necessary to require that everything we even mention is simply-typed, but this is likely good hygiene anyway, and simplifies many definitions and proofs.

2 Syntax

Define simple types and typed vectors of other things X by

$$
\begin{array}{rll}
\text { Simple Types } & \tau & ::=\left(\tau_{1}, \ldots, \tau_{n}\right) \\
\text { Typed Vectors } & \bar{X}_{\left(\tau_{1}, \ldots, \tau_{n}\right)} & ::=\left(X_{\tau_{1}}, \ldots, X_{\tau_{n}}\right)
\end{array}
$$

Assume variables x_{τ} are intrinsically simply typed. Other syntactic constructs are also intrinsically typed:

$$
\begin{array}{rlll}
\text { Normal Terms } & M_{\tau} & ::= & \lambda \bar{x}_{\tau} \cdot R \\
\text { Classifiers } & V_{\tau} & ::= & \Pi \Psi_{\tau} \cdot v \\
\text { Atomic Terms } & R & ::= & x_{\tau}\left[\bar{M}_{\tau}\right] \\
\text { Base Classifiers } & v & ::= & R \mid \text { type } \\
\text { Contexts } & \Psi_{\tau} & ::=\bar{x}_{\tau} \cdot \bar{V}_{\tau}
\end{array}
$$

The judgments are:

$$
\begin{array}{ll}
\Gamma \vdash M_{\tau} \Leftarrow V_{\tau} & M \text { checks at classifier } V \\
\Gamma \vdash \bar{M}_{\tau} \Leftarrow \Psi & \bar{M} \text { checks at context } \Psi \\
\Gamma \vdash V_{\tau} \Leftarrow \text { class } & V \text { is a well-formed classifier } \\
\Gamma \vdash \bar{V}_{\tau} \Leftarrow \overline{\text { class }} & \bar{V} \text { are well-formed classifiers } \\
\Gamma \vdash R \Rightarrow v & R \text { synthesizes classifier } v \\
\Gamma \vdash v \Rightarrow \text { class } & v \text { is a well-formed base classifier } \\
\Gamma \vdash \Psi_{\tau} \text { ctx } & \Psi \text { is a well-formed context }
\end{array}
$$

$\hat{\Psi}$ means just the variable vector from $\Psi . \Gamma, \Psi$ means concatenate the variable vectors and the type vectors of Γ and Ψ. The judgments are defined by:

$$
\begin{gather*}
(M) \quad \frac{\Gamma, \Psi \vdash R \Rightarrow v^{\prime} \quad v=v^{\prime}}{\Gamma \vdash \lambda \hat{\Psi} \cdot R \Leftarrow \Pi \Psi \cdot v} \quad(\bar{M}) \quad \frac{\Gamma \vdash M_{i} \Leftarrow V_{i}}{\Gamma \vdash \bar{M} \Leftarrow \bar{x} \cdot \bar{V}} \\
(V) \quad \frac{\Gamma \vdash \Psi \mathrm{ctx} \quad \Gamma, \Psi \vdash v \Rightarrow \mathrm{class}}{\Gamma \vdash \Pi \Psi \cdot v \Leftarrow \mathrm{class}} \quad(\bar{V}) \quad \frac{\Gamma \vdash V_{i} \Leftarrow \mathrm{class}}{\Gamma \vdash \bar{V} \Leftarrow \overline{\mathrm{class}}} \tag{V}\\
(R) \quad \frac{x: \Pi \Psi . v \in \Gamma \quad \Gamma \vdash \bar{M} \Leftarrow \Psi\{\bar{M} / \hat{\Psi}\}}{\Gamma \vdash x[\bar{M}] \Rightarrow v\{\bar{M} / \hat{\Psi}\}}
\end{gather*}
$$

(v) $\frac{\Gamma \vdash R \Rightarrow \text { type }}{\Gamma \vdash R \Rightarrow \text { class }}$

$$
\overline{\Gamma \vdash \text { type } \Rightarrow \text { class }}
$$

$$
(\Psi) \frac{\Gamma,(\bar{x} \cdot \bar{V}) \vdash \bar{V} \Leftarrow \overline{\mathrm{class}}}{\Gamma \vdash(\bar{x} \cdot \bar{V}) \mathrm{ctx}}
$$

Substitution is written $\left\{\bar{M}_{\tau} / \bar{x}_{\tau}\right\}$. We write $(M / x) \in\{\bar{M} / \bar{x}\}$ when, for some n, we have $M=M_{n}$ and $x=x_{n}$. The behavior of substitution is all boring congruences except for the variable case. Abbreviating $\theta=\{\bar{M} / \bar{x}\}$,

$$
(x[\bar{N}]) \theta= \begin{cases}R\{\bar{N} \theta / \bar{y}\} & \text { if }(\lambda \bar{y} \cdot R / x) \in \theta ; \\ x[\bar{N} \theta] & \text { otherwise }\end{cases}
$$

3 Results

We prove the usual results; that substitution and identity properties hold. In preparation for the substitution property, we show that substitutions commute properly. In preparation for the identity property, we show that η-expansions are two-sided units with respect to substitution.

3.1 Substitution

Lemma 3.1 If $F V(X) \cap \bar{x}=\emptyset$, then $X\{\bar{M} / \bar{x}\}=X$.
Proof Straightforward induction.
Let J stand for an arbitrary judgment of the system.
Lemma 3.2 (Weakening) If $\Gamma \vdash J$, then $\Gamma, \Gamma^{\prime} \vdash J$.
Proof Straightforward induction.
Abbreviate $\theta=\{\bar{M} / \bar{x}\}$.
Lemma 3.3 (Interchange) If $F V(\bar{M}) \cap \bar{y}=\emptyset$, then $X\{\bar{N} / \bar{y}\} \theta=X \theta\{\bar{N} \theta / \bar{y}\}$
Proof By induction on first the undordered pair of the simple types of \bar{x}, \bar{y}, and subsequently X. For all the homomorphism cases, it's just X that gets smaller. This includes the case of $X=z[\bar{P}]$ where z is in neither \bar{x} nor \bar{y}. The interesting cases are when $X=z[\bar{P}]$ and

- $z \in \bar{x}$ and $(\lambda \bar{w} \cdot R / z) \in\{\bar{M} / \bar{x}\}$. In this case we reason that

$$
\begin{aligned}
& z[\bar{P}]\{\bar{N} / \bar{y}\} \theta \\
& =z[\bar{P}\{\bar{N} / \bar{y}\}] \theta \\
& =R\{\bar{P}\{\bar{N} / \bar{y}\} \theta / \bar{w}\} \\
& =R\{\bar{P} \theta\{\bar{N} \theta / \bar{y}\} / \bar{w}\} \\
& =R\{\bar{N} \theta / \bar{y}\}\{\bar{P} \theta\{\bar{N} \theta / \bar{y}\} / \bar{w}\} \\
& =R\{\bar{P} \theta / \bar{w}\}\{\bar{N} \theta / \bar{y}\} \\
& =z[\bar{P}] \theta\{\bar{N} \theta / \bar{y}\}
\end{aligned}
$$

$$
\text { i.h. on } \bar{P}<z[\bar{P}]
$$

$$
\text { Lemma } 3.1
$$

$$
\text { i.h. on }(\bar{w}, \bar{y})<(\bar{y}, \bar{x})
$$

i.h. on $(\bar{w}, \bar{y})<(\bar{y}, \bar{x})$

To justify the second induction hypothesis appeal, we need $F V(\bar{N} \theta) \cap \bar{w}=$ \emptyset, but this is true because the variables \bar{w} are bound inside \bar{M}.

- $z \in \bar{y}$ and $(\lambda \bar{w} \cdot R / z) \in\{\bar{N} / \bar{y}\}$. In this case we reason that

$$
\begin{aligned}
& z[\bar{P}]\{\bar{N} / \bar{y}\} \theta \\
& =R\{\bar{P}\{\bar{N} / \bar{y}\} / \bar{w}\} \theta \\
& =R \theta\{\bar{P}\{\bar{N} / \bar{y}\} \theta / \bar{w}\} \\
& =R \theta\{\bar{P} \theta\{\bar{N} \theta / \bar{y}\} / \bar{w}\} \\
& =R\{\bar{P} \theta\{\bar{N} \theta / \bar{y}\} / \bar{w}\} \\
& =z[\bar{P} \theta]\{\bar{N} \theta / \bar{y}\} \\
& =z[\bar{P}] \theta\{\bar{N} \theta / \bar{y}\}
\end{aligned}
$$

i.h. on $(\bar{w}, \bar{x})<(\bar{y}, \bar{x})$
i.h. on $\bar{P}<z[\bar{P}]$

Lemma 3.1

To justify the first induction hypothesis appeal, we need $F V(\bar{M}) \cap \bar{w}=\emptyset$, but this is true because the variables \bar{w} are bound inside \bar{N}.

Abbreviate $\theta=\{\bar{M} / \hat{\Gamma}\}$.
Lemma 3.4 If $\Delta, \Gamma \vdash J$ and $\Delta \theta \vdash \bar{M} \Leftarrow \Gamma \theta$, then $\Delta \theta \vdash J \theta$.
Proof By induction on first the simple type of Γ and subsequently the derivation of J. The interesting case is:

Case:

$$
\mathcal{D}=\frac{x: \Pi \Psi . v \in \Gamma \quad \Delta, \Gamma \vdash \bar{N} \Leftarrow \Psi\{\bar{N} / \hat{\Psi}\}}{\Delta, \Gamma \vdash x[\bar{N}] \Rightarrow v\{\bar{N} / \hat{\Psi}\}}
$$

Use the induction hypothesis on \mathcal{D}^{\prime} to see $\Delta \theta \vdash \bar{N} \theta \Leftarrow \Psi\{\bar{N} / \hat{\Psi}\} \theta$. By simple types we must have some $\lambda \hat{\Psi} . R / x \in \theta$, and by picking apart the typing of \bar{M} we must have had $\Delta \theta \vdash \lambda \hat{\Psi} . R \Leftarrow \Pi \Psi \theta \cdot v \theta$, so by inversion $\Delta \theta, \Psi \theta \vdash R \Rightarrow v \theta$.
We claim we're in a position to apply the induction hypothesis. Why? The substitution is $\{\bar{N} \theta / \hat{\Psi}\}$, which substitutes for a smaller simple type
than θ. None of $\hat{\Psi}$ were bound in Δ so we don't need to worry about the substitution in the second premise's context left of the turnstile. On the right of the second premise the context must be $\Psi \theta\{\bar{N} \theta / \hat{\Psi}\}$, which is equal to what we have, $\Psi\{\bar{N} / \hat{\Psi}\} \theta$, by lemma, noting that Ψ were too recently bound to occur in \bar{M}.
So out of the induction hypothesis comes $\Delta \theta \vdash R\{\bar{N} \theta / \hat{\Psi}\} \Rightarrow v \theta\{\bar{N} \theta / \hat{\Psi}\}$. After one more application of the above lemma, we have

$$
\Delta \theta \vdash R\{\bar{N} \theta / \hat{\Psi}\} \Rightarrow v\{\bar{N} / \hat{\Psi}\} \theta
$$

as required.

3.2 Identity

Eta-expansion is defined on variables and variable vectors (yielding terms and term vectors) by

$$
\begin{gathered}
\eta\left(x_{\tau}\right)=\lambda \bar{y}_{\tau} \cdot x\left[\eta\left(\bar{y}_{\tau}\right)\right] \\
\eta\left(x_{1}, \ldots, x_{n}\right)=\eta\left(x_{1}\right), \ldots, \eta\left(x_{n}\right)
\end{gathered}
$$

Lemma 3.5 (Unit Laws for η-expansion)

1. $X\left\{\eta\left(\bar{x}_{\tau}\right) / \bar{x}_{\tau}\right\}=X$
2. $\eta\left(\bar{x}_{\tau}\right)\left\{\bar{M}_{\tau} / \bar{x}_{\tau}\right\}=\bar{M}_{\tau}$

Proof By induction on τ and X or \bar{M}.

Lemma 3.6 (Identity)

1. If $x: V \in \Gamma$, then $\Gamma \vdash \eta(x) \Leftarrow V$.
2. If $\bar{x}: \bar{V} \subseteq \Gamma$, then $\Gamma \vdash \eta(\bar{x}) \Leftarrow \bar{V}$.

Proof By induction. In the first part, form the derivation

$$
\frac{x: \Pi \Psi . v \in \Gamma \quad \frac{\mathcal{D}^{\prime}}{\Gamma, \Psi \vdash \eta(\bar{y}) \Leftarrow \Psi}}{\frac{\Gamma \vdash \eta(\bar{y}) \Leftarrow \Psi\{\eta(\bar{y}) / \hat{\Psi}\}}{\Gamma \vdash \lambda \bar{y} \cdot x[\eta(\bar{y})] \Rightarrow \Pi \Psi \cdot v\{\eta(\bar{y}) / \hat{\Psi}\}}} \overline{\Gamma \vdash \lambda \bar{y} \cdot x[\eta(\bar{y})] \Rightarrow \Pi \Psi . v} \eta \mathrm{id}
$$

from \mathcal{D}^{\prime} obtained from the induction hypothesis, using the above lemma at steps marked η id.

