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1 Introduction

There is no real obstacle to having dependent types where the dependency graph
of a context (i.e. which types refer to which variables) has cycles. In order to
make it sensible it seems necessary to require that everything we even mention
is simply-typed, but this is likely good hygiene anyway, and simplifies many
definitions and proofs.

2 Syntax
Define simple types and typed vectors of other things X by
Simple Types 7 s= (T1,...,Th)
Typed Vectors X, .y == (Xq,...,X:)

Assume variables ., are intrinsically simply typed. Other syntactic constructs
are also intrinsically typed:

Normal Terms M, := Mi,..R
Classifiers V; = IV, v
Atomic Terms R = a,[M;]
Base Classifiers v w= R|type
Contexts ¥, == Z..V,

The judgments are:

't-M, <V, M checks at classifier V
I'FM, <0 M checks at context U
'V, <class V is a well-formed classifier
'V, <class V are well-formed classifiers

''FR=wv R synthesizes classifier v
I' v = class v is a well-formed base classifier
I'HW, ctx ¥ is a well-formed context

U means just the variable vector from W. I, ¥ means concatenate the vari-
able vectors and the type vectors of I' and W. The judgments are defined by:



LVER= v=1' (81) 'eM; <V,
T'FA.R < V. '-M<zV

I'F W ctx ' v = class _ I'+V;, < class
I'FIIV.v < class 'V < class

z:MPwel TFM«<U{M/V}

(R) - ——
'k 2[M] = v{M/V}

I' - R = type [, (2.V)FV < class
(v I' F type = class (%) — T
'+ R = class yp ' (z.V) ctx

Substitution is written { M, /Z,}. We write (M/x) € {M/Z} when, for some
n, we have M = M,, and x = x,. The behavior of substitution is all boring
congruences except for the variable case. Abbreviating § = {M/z},

wiNo = { RO/ O o) <0

3 Results

We prove the usual results; that substitution and identity properties hold. In
preparation for the substitution property, we show that substitutions commute
properly. In preparation for the identity property, we show that n-expansions
are two-sided units with respect to substitution.

3.1 Substitution
Lemma 3.1 If FV(X)Nz =0, then X{M/z} = X.
Proof Straightforward induction. m
Let J stand for an arbitrary judgment of the system.
Lemma 3.2 (Weakening) IfT'+ J, then T, TV - J.
Proof Straightforward induction. m
Abbreviate § = {M /z}.
Lemma 3.3 (Interchange) If FV(M)Ny =0, then X{N/y}0 = X0{N0/y}

Proof By induction on first the undordered pair of the simple types of Z, 7,
and subsequently X. For all the homomorphism cases, it’s just X that gets

smaller. This includes the case of X = z[P] where z is in neither Z nor . The

interesting cases are when X = z[P] and



e z €7 and (A\w.R/z) € {M/z}. In this case we reason that

z[P{N/y}0

= z[P{N/y}]0

= R{P{N/y}0/w} B B
= R{PO{NO/y}/w} ih. on P < z[P]
= R{NO/g}{PO{NO/y}/w} Lemma 3.1
= R{PO/w}{NO/y} ih. on (w,7) < (§,%)
= z[Plo{N6/y}

To justify the second induction hypothesis appeal, we need FY{(N OHNwo =
(0, but this is true because the variables w are bound inside M.

e zcjand (\w.R/z) € {N/y}. In this case we reason that

z[PI{N/y}0

= R{PiN_/gj}/w}e

= RQ{]?{N[Q}H/@} ih. on (w,z) < (7, :)
= RO{PO{NO/y}/w} i.h. on P < z[P]
= R{PO{NO/y}/w} Lemma 3.1
= z[PO]{N0/y}

= z[P]0{NO/y}

To justify the first induction hypothesis appeal, we need F V(M YN = (),
but this is true because the variables @ are bound inside N.

Abbreviate 6 = {M/T'}.
Lemma 3.4 If A\T+J and AOF M < T80, then A8+ J6.

Proof By induction on first the simple type of I' and subsequently the deriva-
tion of J. The interesting case is:

Case: D
D=z:MVwel ATHN < U{N/¥}
AT+ z[N] = v{N/¥}
Use the induction hypothesis on D’ to see A - N§ < W{N/¥}4. By
simple types we must have some AU, R/x € 0, and by picking apart the

typing of M we must have had Af AR < IIUH.00, so by inversion
A, V0 - R = 0.

We claim we're in a position to apply the induction hypothesis. Why?
The substitution is {N/W¥}, which substitutes for a smaller simple type




than 6. None of U were bound in A so we don’t need to worry about
the substitution in the second premise’s context left of the turnstile. On
the right of the second premise the context must be WO{N§/¥}, which
is equal to what we have, \II{N/\i/}G, by lemma, noting that ¥ were too
recently bound to occur in M.

So out of the induction hypothesis comes A@ - R{NO/¥} = v0{N6/¥}.
After one more application of the above lemma, we have

A+ R{NO/U} = v{N/¥}0

as required.

3.2 Identity

Eta-expansion is defined on variables and variable vectors (yielding terms and
term vectors) by

n(z-) = Ajr.2[n(y-)]
(X1, ..y Tn) =n(x1), ..., n(Tn)

Lemma 3.5 (Unit Laws for n-expansion)

1. X{n(z.)/7,} = X

2. n(z){M,/Z.} = M,
Proof By induction on 7 and X or M. m
Lemma 3.6 (Identity)

1. Ifx:VeT, thenT Fn(x) < V.

2. Ifz:VCT, thenT Fn(z) < V.
Proof By induction. In the first part, form the derivation

D
DU Enpy) <V ]
z:MPwel L, Fp(g) < U{n(y)/ ¥} e
D, W Fa[M] = v{n(y)/ ¥}

' Ag.an(y)] = O0.u{n(y)/ T} y
' Mjzn(y)] = 0¥

from D’ obtained from the induction hypothesis, using the above lemma at steps
marked nid. =



