Notes

Jason Reed

March 15, 2007 — March 14, 2008

2007.3.15

Sometimes we take some connective in a position where it is not invert-
ible and by judgmental brute force make it so. For example, taking

r-c I'tD
r-cvpb r-cvpo

to

'-cC,D,A
TFCvD,A
and modifying D F to be the modal
I,crD
T+-Co5D,A

Or for another example, introducing contextual non-modal logic to make
the implication sequent left rule be something like

T, [0, A|BFC
I,[VJAD BFC

and inventing a structural rule

' TIAYEC
I, [VJAT FC

Where AT is supposed have a positive connective on top, and I' = ¥
is not a classical sequent, but one where the right-hand side is interpreted
conjunctively, and the proof-term would be a substitution.

The other case I can think of is the continuation of the first example
above of ‘classicalization’ of disjunction by making implication invertible
again on the right, by inventing labels

I, Clpa] F Dipd]
I'FC > Dlp|,A

This seems even more exotic than the other two, for it doesn’t appear to
be simply unpacking the connective as a judgment and permitting whatever
derivations happen to be admissible underneath it. However, maybe it
could be put in that form, if one thinks of the world-paths as actually
being syntactic paths.

The other thought I had is that maybe all of these things are ‘fake’ or
at least unnecessary judgmental innovations if all they signal is a certain
kind of focussing discipline. The sequence of asynchronous decompositions
and finally application of a structural rule in the case of the contextual
left-asynchronous O may allow proofs to line up one-for-one with proofs in
a system where implication is left synchronous but consecutive synchronous
decompositions are required.

a

I would like to run machine learning algorithms on existing kerning
tables as a function of obvious features like smallest interspline distance
and area between right and left sidebearing splines.

An old idea: learn a mapping between letters and notes of two durations.
An octave from C to C gives me thirteen tones, and two durations gives
me twenty-six letters.
2007.3.16

A pursuit game where each player has a ‘seeker’ and a ‘target’ which
move around on a graph that the player builds during the course of the
round. The speed that either item travels along a graph edge is inversely
proportional to the edge’s length; so that investing a whole bunch of vertices
along a line make travel across it faster. Players score points when their
seeker is close to their opponent’s target.

2007.3.17

Thoughts on Baez’s “Categorification”

e “Looping” is a name for the process of getting a k + 1-tuply monoidal
n — l-category from a k-tuply monoidal n-category by choosing an
object of it and index-shifting, getting a new operation.

e The coherence laws for braided (and perhaps plain) monoidal cate-
gories don’t imply that every isomorphism is equal. (!?) This compels
me to ask: why are these called “coherence laws” then? Even if that
is answered, why do we know we have the right coherence laws?

e A possible answer is that the coherence laws for n-categories arise
naturally from thinking about coherence sensibly, and the looping
process trashes this property, but nonetheless canonically says what
the higher-order laws (whether we call them “coherent” or not) for
k-tuply monoidal n-categories should be.

On “Higher-Dimensional Algebra II1”:

e The “Microcosm Principle” has a formalization! It’s something like:
‘O-algebra objects can be defined in any 1-coherent O-algebra’. A
1-coherent O-algebra is something like a once-categorified O-algebra.

e Monoid object actions can be defined even for a monoidal category
acting on another category. They are referred to as ‘riding’ this action
functor. Say we have an action of a monoidal category M on a
category C. A : M x C — C. Write this as (m,c) — m ® c¢. So
suppose m actually is a monoid object in M. An action of m on
ceCisamap a:m® c — c such that

m®(m®c)@>m®c
o
(mem)®c «
pe1
mec > C

and similarly for identities.

e Operads are monoid objects in a certain monoidal category.

Define the SMCC fam(C) ‘families in C’ to have objects that are
sequences of objects from C, and morphisms

(x17"'7xn)_>(y17"')ym)

consist of specifying a bijection o : {1,...,n} — {1,...,m} and a
family of morphisms f; : ; — y,(;)- The monoidal structure is con-
catenation of object sequences. This is the free SMCC on C, I think?

Define the category prof(C) ‘profiles in C’ to be fam(C)°P x C.

Define the category sig(C) ‘signatures in C’ to be Sets/*m(C)""xC,

I don’t quite see the monoidal structure of sig(C), but it’s supposed
to have one. Similarly there’s allegedly an obvious action from sig(C)
to Sets®, called the ‘tautologous action’.

A C-operad is a monoid object in sig(C). An alebra of an operad O is
an action of O on some functor F' € Sets€ that rides the tautologous
action mentioned above.

2007.3.18

Liang and Nadathur’s “Tradeoffs in the Intensional Representation of
Lambda Terms”.

Good source of example higher-order logic programs

The penalty incurred in deBruijn form of having to renumber things
exists, but is not onerous.

Dependency annotations help with ‘eager’ implementations, but this
advantage is obliterated by moving to a lazy and sharing approach,
for which dependency annotations don’t seem to help any.

2007.3.19

Reynolds lecture on separation logic

Separation logic is basically a set of sound rules with respect to the
semantics of heaps. Completeness is an impossible goal, just as it is
with type systems with respect to program correctness.

Using stacks of variables is kind of crazy. Aren’t they just special bits
of heap that are guaranteed to be not addressable?

HOL guy (John Harrison) talk

Hilbert’s 17th problem: a polynomial is positive semidefinite if it’s a
sum of squares of rational functions.

We can drop the generalization to rational functions if the polynomial
is univariate or a quadratic form. (i.e. every term is exactly degree
two)

The Nullstellensatz: Over an ACF, polynomials p; have no common
solution iff there exist ‘cofactors’ ¢* such that ppg® = 1.

e The Realstellensatz: Over a real closed field, polynomials p; have
no common solution iff there exist ‘cofactors’ ¢® and s/ such that
pegt + s7s; = —1.

2007.3.20

Realization: trying to do proof irrelevance via focusing as if it were @
doesn’t work, because the ‘brackets’ type operator is bipolar. The elimina-
tion rule must blur, and so do a let-binding, and must therefore deal with
commuting conversions.

2007.3.21

Fix an injective notion of pairing (,) : N x N — N. Say a model of
computation is a partial function f: N — N. We require axiomatically:

Identity: There exists idy such that Vz.f(ids, z) = .

Composition: Given k7 and ko, there exists k such that

Va.flk,x) = f(ky, f ks, x))

Universality: There is u¢ : N such that f(us,z) = f « for all x.

Say f <, h iff IkVz.f © = h(g(k,z))

Say f =4 h iff <4 holds in both directions.

By Identity and Composition, this yields a bicategory for each g. The
1-cells are the ks that witness <;. 2-cells are extensional equivalence of
g-functions denoted by integers.

Conjecture If f =; g, then f =, g.

2007.3.22

Gustavo talked yesterday about the idea of informal proofs. He made
the claim that most published informal proofs are probably correct. I went
off on my usual ambiguity-of-measure rant, but there’s a separate issue that
even apart from that issue, if you look at a single claimed result, the issue of
what the claim is being made really is is subject to informal understanding.
Of course different formalizers will arrive at different proofs, but they will
also arrive at different formalizations of the claim.

2007.3.23

From the discussion at Passport last Wednesday, the usual bullshit came
out of a discussion on what Art is. For the time being I still cling happily
to the Wittgensteinian point of view that there is no essential answer to
the question — I have a tendency that I am not particularly proud of (em-
barrassed by its arrogance) to hope a priori that the course of my life might

follow W’s biography and leave me with still greater conceptual reorgani-
zations later in my life.

This point of view could be resummarized as saying, there does exist
data out in the world concerning what we do call art, though this data is
fuzzy, inconsistent, and hard to acquire. Under greater greatest scrutiny, it
resolves merely into every instance of something being called art, with no
necessary pattern binding it together, and under even greater reductionism,
we arrive at the level where it is ambiguous that a person has even uttered
the word “art” — for at some stage the slurred sequence of sound had to
have historically come from sounds that were decidedly of another language
than English, one of its ancestors. Even the word ‘art’ is not immortal, so
I am reluctant to believe that its denotation could be.

But apart from the data of what is called art, we are asking the question
of what should be called art. This ‘should” — in my most polemic moods,
I want to say that it’s a complete ghost, that it’s not real at all, that there
is mo ‘should’ to it. But I have to admit that one can get shoulds out of it
if one tries.

For example, there is a argument that says this objection could be ap-
plied to every word in the language, leaving us with no tools for conceptual
discrimination at alll This confuses the claim that ‘art’ should not mean
any particular thing with the straw-man that there is no reason that we
should have words to map out those things that we call ‘art’. I do find it
useful to be able to speak about people attempting to

e reproduce features of the visual appearance of objects in other forms
e evoke emotions

e express ideas

e create visual styles

e violate assumptions

and so forth. And indeed I think these are all interesting activities: but I
don’t feel worried about which of them is most especially associated with
a word whose meaning is intentionally undefined.

It’s like mathematicians arguing about whether groups are really com-
mutative or not. The answer is, there are groups that are, and groups that
aren’t.

The notion of ‘useful’ is pretty nebulous, though. I remember disqual-
ifying uses of it by Donna in reference to personality testing. The thing
is that I would like to measure whether one classification scheme is more
useful than another. It seems certain that having language is more useful

than not, but it seems devilishly difficult — and politically incorrect — to
make any comparisons past that point.

On that point I maintain my belief that all garden-variety human lan-
guages are in practice essentially equipotent, but in principle there are such
things as better- and worse-adapted languages for various communication
and cognition tasks. Memorizing words and facts about words (i.e. their
‘definitions’ as patterns of use) is not essentially different from memorizing
declarative facts, in that both can help solve real problems, and that some
such solutions are more effective than others.

Back to thinking about mathematical formalization: what would I ad-
vance as a minimalist notion of proof representation, to maximize clarity of
definition, if not of encoding? My first thought is to say: Give me a binary
string B and a finite set S of rewrite rules By — By. I have a certain sort
of strong understanding about the meaning of the question, “can you get
to B’ from B by using S?” Which is to say, I know what I would accept
as an affirmative witness to such a question. I could step-by-step examine
each transition, make sure that the antecedent of that step differs from its
conclusion only in one segment, and that that segment goes from B; to By
for some element of S.

However: this setup depends on the integrity of the symbols themselves,
and even my understanding of the word “two”. If my interlocutor can tell
the difference between red zeroes and green zeroes and I am colorblind, I
might accept some proofs that she would reject. Conversely, if she can’t
tell the difference between the symbols at all, she will interpret everything
in unary, and accept more proofs than I do.

Furthermore, the ‘adequacy proofs’ for this system are hard and un-
reliable. There is just as much opportunity for screwing up the encoding
as there is the claim of some theorem. But to speak of adequacy proofs
this way presumes there is some external notion of ‘what the mathemati-
cian really means’, which I find suspect. Here we come back to the idea
that maybe some languages are simply internally better work-places, more
effective loci in which to develop ideas in the first place.

The meaning of a word is just as disconnected from its sound as the
value of a dollar is from its physical representation — although it seems
to have inertia, anyway. The difference is that money has only one di-
mension to float in — inflation and deflation — while words float in a
tremendously high-dimensional space. Though maybe it’s locally not so
high-dimensional?

A Story:

After his wife died, her body received by the moist summer earth, Beu
Aiko fell in love with the moon. The moon brought him a gift: it was a
small cup, which fit easily in his hand. It felt warm there as he held it,
and he saw it was full of light the moon had collected and given to him.
She told him to drink it, but he refused, smiling. He put the cup on a
shelf in his home, near his oldest books, which he had inherited from his
father’s mother. The next day, she brought him a larger cup, just as full,
and told him to drink it, but he refused again. He hid the cup behind his
bed, behind the wool and linen blankets. The cups were made of fired clay,
and each bigger than the last: by the seventh day, they had become too
large for him to hold with one hand. By the fourteenth day, he struggled
to lift them off the ground.

The moon became angry at Beu Aiko, and ceased to love him, but he
smiled all the while she screamed at him, and threw at him grass and mud.
She left him for several days. When she returned, there appeared another
gift from her, next to the house of Beu Aiko. It was a lake, full of the
same moonlight she had offered to him before, ripples and whorls writhing
almost silently across its surface with each passing breeze.

Beu Aiko ran eagerly to the shore of the lake and splashed toward its
center, and there he drowned.

2007.3.24

The feeling of a heavy person sitting next to you on a bus.
The delicate porousness of a banana peel, viewed edge-on; the snap of
it as you break the stem.

A culture that has a notion of gend, a quality that competes in the same
niche as truth. Some people abandon truth as a criterion to be sought out
in things and theories and beliefs; they maximize gend instead. Gend is an
internal quality, and is a notion of internal conformity to principles, just
as truth is external. Just because it is internal does not mean it is not
amenable to direct observation. But just because it is amenable to direct
observation does not mean that observing it is easy without training —
just as artists and writers require training to see with precision the truths
of the external world.

A breakaway sect that views truth with just as much indifference, but
seeks to minimize gend instead of maximizing it.

I remember Tobin Coziahr complaining about people who say “I think”
and “In my opinion” a lot in their writing, the idea being: you are writing

what you write — of course you think so, and of course it is your opin-
ion. I think the truth is that these are perfectly serviceable markers of
reduced confidence, but a person must choose judiciously how often to use
them. Used almost incessantly, they theoretically lend infinite confidence
to sentences that lack them.

2007.3.25

Ronald Brown, “From Groups to Groupoids”: Things get simpler with
the Siefert-Van Kampen Theorem if you use groupoids instead of groups.
I think it basically claims that 7 preserves pushouts or something.

2007.3.26

Define A — B, pronounced ‘B is a finite version of A’ by

A= 1L ALARA) & &(AR - ® A)

p=A

pl—)A
A A B— B A xB =C
AxBw— C

Conjecture I' - A in ordinary propositional logic iff there exist finite
versions of I' and A such that I' F A in linear logic, translating A freely to
® or &.

(x € {—=,A,V,ete.})

It seems like I ought to be able to generalize tiling 2n-gons with rhom-
buses to something like tiling arbitrary polygons with other arbitrary poly-
gons as long as the total collection of absolute orientations of edges is ‘ra-
tional” in a suitable sense.

Jared Diamond talk: ugh. Dry, uninteresting, repetitive, bland.
2007.3.27

K. Culik II, “An aperiodic set of 13 Wang tiles” (1996) in Discrete
Mathematics 160, pp. 245-251.

Nice, clear paper. Idea: represent a positive real number r € RT as a
‘balanced sequence’, a map f:7Z — N via

f(n) = [(n+1r| - |nr]

Given this, it is possible to make FSMs decorated with input and output
symbols along the transitions that multiply balanced sequences by rational

numbers. Executions of these FSMs (which are bi-infinite) form rows of a
Wang tiling. The whole tiling consists of an iterated sequence of executions.
The machines he use multiply by 3 and 1/2, and so no sequencing of them
can ever lead to the identity, yielding a non-periodic set of Wang tiles.

Robert Berger, “The Undecidability of the Domino Problem” (1966) in
Memoirs of the AMS 66.

The original settling of the decidability question of Wang tiling.

The argument that Wang and Moore made, contingent on Wang’s (re-
futed) conjecture that any tile set that admits a tiling admits a periodic
one, is peculiar. It works like this:

Suppose the plane is not periodically tilable. By conjecture, it is not
tilable. Hence there is some finite region (wlog a square) that cannot be
tiled.

Suppose the plane is periodically tilable, say with frequency (a, b). Then
there is an (ab, ab)-sized torus that serves as a unit cell for tiling the plane.

Start two threads in parallel, checking for each N-square whether it can
be tiled as a torus and whether it can not be tiled at all. We are guaranteed
evidence either way.

Peter Cho talk: Pretty decent. I guess I confused him with another
dynamic typography guy?

2007.3.28
Notes from LF meeting. Topic: Unification

(AT U = U V]

The A is implicit in the implementation, represented by ref cells. The
V' is also implicit; the I" is not. We’re able to maintain I' because As have
type labels. Frank says it would have been better to be more bidirectional
and keep V, but it’s hard to change now.

We would like to maintain the invariants

I'cU:.Vv
r-uv:v

but actually these will fail, because HOU is undecidable. We actually keep
track of constraints on the side, and the invariant is, for every substitu-
tion that satisfies the constraints, U and U’ have the same type after the
substitution is applied.

Most the cases are easy, if we mumble about the order of composition
of effects or substitutions or what-have-you. Like for instance,

L-U=U':type LUFV =V':type
TFIU.V = UV : type

10

The hard/interesting case is flex on the left. Faced with T' - X[o] =
U:V,withTHFU:VandTTko:Pand X : (TPFV)and '+ V'[o] =
V : type, then we want to compute a partial inverse substitution o' and
apply it to U. This is the assignment to X:

X —Ulo™]
Example:
urav:aw:aFXovu=fu(fwe):a

This should fail right away because X has no way talking about w. After
elaboration and lowering we get

X ([u:]a,[v:]aka)e A
and the problem is
a,a,a b X[32. 1% = f-(3; f- (1;¢))

Note that the spine gets reversed during lowering! The inverse of [3.2. T3]
is [.2.1. 1%]. This breaks on the 1. The one-sided substitution inverse is
just matrix transpose, isn’t it?

gets mapped to

and AB = I, (think of matrices acting on row vectors on their left) though
BA#1.

11

Now if we find during application of an inverse substitution ¢~ to an
evar closure like Y[M.N. 1] that =1V doesn’t exist, we need to prune Y.

Now, consider non-pattern equations. We only ever postpone equations
like X[o] = U, so these are bundled up with the evar X itself. Pro: when-
ever we instantiate an X, we know what constraints are associated with
it! Con: when unification returns ‘true’, it doesn’t necessarily mean that
unification worked — we have to dig through the term to find the variables
that might still have constraints left.

Lie: if constraints are left, they cannot be solved by pattern unification.
But sometimes things cannot be solved by pattern reconstruction, and
nonetheless their constraints are eliminated, specifically in the case of like
X M = X M — there is a special hack to solve this.

The difficult part is this: suppose at the source level we have

Xu=fulY (Y uw))

Do we prune the second argument of Y’, or the first argument of Y'? If we
just suspend, we lose the information that X starts with f. So what we do
is

X —du.fu(Zu)
Zu=Y (Y uw)

But what type does Z have? On a bad day, its type could involve X, even.
Here is where we would have loved to keep track of V.

2007.3.29

A game where you have to arrange an org chart for a company to max-
imize something. Imagine there are hidden variables like “personality” of
employees such that any collection of tree-siblings that contains an opposing
pair results in ‘conflict’ and they don’t get any work done.

‘Idea’ tokens (maybe good ideas, maybe bad ideas?) are emitted from
the leaves and filter up through the hierarchy. Some people are good idea
generators, some people are good idea filters.

‘Managers’ may reject good ideas, reject bad ideas, turn bad ideas into
good ideas.

2007.3.30

Reading a paper by Thomas Erhard and Laurent Regnier, titled ‘The
Differential Lambda-Calculus’ (2003)

Since they deal with R-linear combinations of terms, there is a term 0
that is like Girard’s daemon. The basic idea I think is that if we had ®
pairs, then

0 oM ON
%(M®N)-u:(8—x~u)®N+M®(%-u)

12

Their typing rules say coalescingly that
I'trs: Ay —---— A, — B I'tu:A;
'-Djs-u:Ay —---— A, — B

But I would have expected maybe something like
I'ks:A— B
'rDs:A— A—B

In the other extreme, making things as judgmental as possible, I might have
expected

Tx:A; A Fs: B -+t A A Fu: A
;A1 Ay - (Dz.s) - (t,u) : B

where A is a collection of linear hypotheses. Is this rule conservative? Can
I prove (A — B) — (A — A —o B) ordinarily?

XXX

AFHIA B+ B

A— B A;AFB

No! I would need something like AR!A F!A. Does this affect my LLF
encoding? Are there terms of type (A — B) —» (A — A — B)?

f:A—=Bz:Aa:wy: AQat fy: Bla]

No! f would only accept an argument at e.
2007.3.31

Regarding the translation from the refinement calculus to proof irrel-
evance: Do you really need to allow dependently-sorted ‘classifiers’” when
declaring refinement sorts of type families?

2007.4.1

So each base refinement s :: L C K translates to a predicate on things
of type a- S for some S. We need to kind of code up s, but also to code up
proof irrelevance on the right. The thing we ought to be able to do is just
yield proofs of the type ‘for real’, and only ever require them irrelevantly.

2007.4.2
Reading http://worrydream.com/MagicInk/.

Command-line systems are criticized for forcing the user to
learn the computer’s language. Modern GUIs may be easier

13

to use, but they are not much different in that respect. The
GUI language consists of a grammar of menus, buttons, and
checkboxes, each labeled with a vocabulary of generally decon-
textualized short phrases. The user ‘speaks’ by selecting from
a tiny, discrete vocabulary within an entirely fixed grammatical
structurea bizarre pidgin unlike any human language, unexpres-
sive and unnatural.

This is a peculiar perspective: why is the set of interactions with a
computer considered a horribly broken, cobbled ‘language’, and the set of
interactions with other machines (say, a car) considered just that, a set of
ways that one can interact with it?

Tangible Functional Programming, Conal Elliott, is pretty interesting.
2007.4.3
More from “Magic Ink”:

Prominent usability pundits have claimed that the public is
becoming more discriminating, but since this claim underlies
their consultancies’ sales pitch, it is far from an unbiased ob-
servation. I see the oppositeas technology races ahead, people
are tolerating increasingly worse design just to use it. The most
beautifully-designed DVD player will go unsold if the competi-
tion costs the same and has S-Video output, or plays MP3s from
memory sticks. Good design makes people happy, but feature
count makes people pay.

This sounds like a unit confusion similar to nature versus nurture. Pretti-
ness of design and number of features are basically incommensurable things;
when we ask a question like “if T pump $X into the design department, or
into the feature-making department, will I get better results?” we have
asked something meaningful, but we are no nearer to an answer to that
question if we just sit and navel-gaze about whether features or design are
intrinsically more important.

Some eariler thoughts: It is important to keep in mind that this guy’s
claims are not likely valid for software that is not so-called ‘information
software’. Some of the difficulties of designing this sort of software arise
because our expectations are higher for software — we want to believe that
adding context or interactivity or something actually makes the system
better than paper. We could simply make with software what we made with
hand, on paper, and that would be no more difficult to achieve than the
results we achieved by hand, on paper. But it would also be no better.

14

I like the attention to what questions the user probably wants answered
— but his guesses are not always the same as mine! In his Amazon redesign,
the price of a book is still rather small, but it’s a piece of information that
is still rather important to me.

The unobtrusive hyper-link anchor sharps are fantastic. Mostly invisi-
ble, quiet and gray when they appear, appearing whenever you mouse-over
the paragraph not just the region where the sharp itself is, thereby indicat-
ing what it’s attached to, and having a text suggestive of their purpose if
you know HTML. The only problems I have detected are that the sharp
disappears between the paragraph and the sharp, and that the paragraph
numbers seem to skip around occasionally.

In paragraph 10 he gets pretty ballsy asserting that all HCI textbooks
on the market are crap. Myself I feel pretty reluctant when it comes to
related work sections saying definitively that nobody has successfully done
a particular thing.

Paragraph 18 contains (at least the beginnings of) a pleasingly enlight-
ened understanding of the continuum of data and programs — but I don’t
agree with pl9 necessarily.

At about paragraph 265 now.

Reading William’s notes on LF plus refinements. Quite pretty. The
main question that occurs to me is that in the specification of atomic re-
finements of type families, why is it that II-elimination takes an argument,
and &-elimination produces no term part?

2007.4.4

Ok, so some notes on proof irrelevance.

e Example of composite numbers.

e Example of strict lambda terms.

We have a failure to express the types we really mean. It’s true that
there are workarounds, but so too there are workarounds for a system that
doesn’t have, say, higher-order abstract syntax. So let’s explore a type-
theory that lets us make more intrinsic encodings of these sort of phenom-
ena.

What we want to do is make some arrows and applications ‘proof-
irrelevant’ like

comp/ : IIN : nat. dis-comp N -:> comp.

so that these two guys are in fact considered equal:

six-compl : comp = comp/ six o (is-comp/ two-by-three).
six-comp2 : comp = comp/ six o (is-comp/ three-by-two).

15

So let’s think intuitively about what this function type is supposed to
mean, before sketching out the formalism.

A —™ B is a function that requires evidence that A is inhabited, but
the B it produces is guaranteed not to depend on which A is provided.
This is the contract we expect to be satisfied when we declare constants
with irrelevant function types. We’ll cook up the notion of equivalence of
canonical forms so that these are really equal.

But let’s make sure this type live in our theory as a first-class function
type: we’ll be able to write our own irrelevant lambda expressions, too.
This means we’ll have a new sort of hypothetical judgment x = A. It is
an assumption that A is inhabited, but we are prohibited, when we build
terms from z, of depending on the identity of x.

And so we’ll need a new substitution principle for these hypotheses.
What terms M can we safely substitute for z + A? Since z exists in some
environment where its ‘client’ promises not to care about its identity, we
can be more reckless in building a term to substitute for z — in particular
we can use irrelevant hypotheses in building up M. Let I'® mean I' with all
~+ switched to :. Then the new substitution principle is if ', x -+ A+ N : B
and T® = M : A, then '+ [M/z]|N : B.

Ok, formalism.

Syntax
Normal Terms M ::= Az.M | R
Atomic Terms R == R N | Ro N
Atomic Types P i=a | P M
Types A := P |Tlz x A.B
Equality
R=FR R=R N=N
RoN=RoN’ RN=R N
Judgments ...
Typing

I'axA+-M:B
I'FXxe. M :1I1xA.B: type
' M :Ilz:A.B 'EN:A
' MN :[N/xz|B
'tM:1lz+ A.B I'FN:A
'MoN:[N/x|B

16

A : type I'xx A+ B : type
I'F1Ilz x A.B : type

2007.4.5

Sean talked about decision procedures for the first-order theory of reals.
Cohen’s algorithm works by building up sign matrices, which are somehow
computed recursively in terms of the derivatives of polynomials. It’s some-
what amazing to me that everything reduces to polynomials in the first
place.

2007.4.6

Il n’y a qu’un cas ol une ceuvre ne vaut rien: c’est quand
elle correspond aux intentions de I'auteur.

(In only one case is a work worth nothing: when it corre-
sponds to the intentions of the author.)

J. L. Borges, as quoted in Esthétique de L’Oulipo

On préféra dans cet essai adopter une définition pragma-
tique, empruntée & Umberto Eco. Elle a ’avantage de clarté et
de la simplicité: « La littérature, c’est la littérature. » L’idée
semble tautologique, elle ne l'est pas tant que ca. Se placant
résolument du coté du lecteur (aprés tout, il n’est pas de lit-
térature sans lecteur), évoquant la « tradition littéraire », Eco
y place I’ensemble des textes « produits & des fins non pratiques
(comme le serait tenir des registres, citer des lois et des for-
mules scientifiques, enregistrer des procés-verbaux de séances ou
fournir des horaires de chemins defer) mais plutot gratia sui, par
amour d’eux-mémes — et que ’on lit pour le plaisir, I’élévation
des connaissances, voire comme pass-temps, sans que personne
ne nous y contraigne (exception fait des obligations scolaires) ».

Que voild une vision latine et réjouissante, qui s’oppose
hardiment au pragmatisme commercial de certain libraries
anglo-saxonnes! Celles-ci divisent la littérature en deux rayons
distinct: Fiction, pour ce qui est jugé divertissant, Litterature
pour le reste. Les lecteurs ne risquent pas ainsi ’erreur tragique
d’acheter un Calvino ou un Borges pour se distraire.

Esthétique de L’Oulipo p.45

2007.4.7

Still having a hard time breaking through some invisible conceptual
barrier thinking about the foundations of mathematics.

17

It has some relationship to a lesson I am trying to take away from
Wittgenstein: the most general lesson is that there is such a thing as a bad
question. The more specific versions involve certain forms of questions. A
common one is “What is X, really?” It’s somehow the most anti-E-prime
thing you could ask.

Here I’'m reminded of positivism: because I want to say that in order to
make a question definitely a good question, you should have some notion of
what counts as evidence for or against it ahead of time. This is some kind
of condition on definiteness of the question.

There’s a background assumption about words that they may be “spe-
cific” or “vague”, and that something like monosemy actually exists. T am
reluctant to accept this. I think words’ denotations are best thought of as
probabilistic smears of situations in which they are used, and so there is no
such thing as a word that means one thing, because there is no good notion
atoms in this space of contexts — a word that is only usable in precisely
one situation seems like a useless corner case.

However, denotations can be more or less crisp at their edges, and this
something about is what I mean by definiteness. There is the (apparently!)
separate issue of reliability in transmitting such a concept to another person,
but I think there’s something deeply similar about transmitting a concept
to another person to transmitting it to your own future self — I need to
go back and look at Wittgenstein on private languages, because I think the
knot might get untied there.

2007.4.8

Sean McLaughlin explained to me more about resistor networks. They
seem pretty neat. The underlying connection between them and random
walks is that they both satisfy what I feel tempted to call a ‘balance’ con-
straint, even though I am not sure it is the same thing as the notion of
‘detailed balance’ I remember from the Metropolis algorithm. In the un-
labelled undirected graph case it’s just that every (non-boundary) vertex’s
value is the average of its neighbors. That this follows from Kirchoff’s and
Ohm’s laws in the case of voltages is pretty easy to see, and in the random
walk case it’s about as trivial.

I made an error, though, thinking that the resistance of an edge should
correspond to the number of parallel edges that should represent it in an
unlabelled (but multi-edge-having) graph: obviously it should be a series
of consecutive edges to model a high resistance.

2007.4.9
Reading the current episode of Baez’s “Weekly Finds”, week249.

Lemma 0.1 Suppose G acts transitively on X. Pick x € X. There is a

18

bijection f : X =2 G/Stab(x) given by f(g9x) = [g]~.

Proof First of all, having y € X uniquely determines a g such that gz = vy,
and we have existence of g because the action is transitive. The map is
obviously surjective, because for any [g]~, the element gz € X maps to it.
Now to show injectivity. Suppose we have [g].. = [h]~, that is, f(gz) =
f(hx). We're to show gx = hx. Because g ~ h, there is k € Stab(z) such
that gk = h. Thus hx =gkx =gx. m

2007.4.10
A ‘syzygy’ is a kind of 2-cellish relation between relations?

2007.4.11

Is it really true that any well-typed set of clauses for a refinement of
a type family that happens to be, say, an intersection can adequately be
erased to clauses for the maximal refinment of it?

2007.4.12

Can unification be done the hybrid system in a well-moded way involv-
ing worlds?
2007.4.13

e One reason why moral judgments are difficult. In principle it is easy
to persuade well-meaning people to do arbitrarily atrocious things:
you need only make them not believe that they are doing so. People
play video games and honestly have no qualms about ‘killing’ their
opponents, because they equally honestly believe that they are not
causing any actual death or (significant) suffering.

I don’t believe that I am harming a rock when I kick it. Indeed, if
I were to believe that a rock had moral rights, I would have to de-
termine which things the rock ‘wanted’! Our recognition of things
around us as having agency and deserving protection goes hand in
hand with our beliefs about which states they want to be in, or oth-
erwise normatively should be in, on what counts as external evidence
of suffering or happiness and so on.

e There is nothing that I have ‘always’ done. There are things that
perhaps I have done each of the finite times I made a certain choice,
but I should not underestimate the finiteness of this sample. I have
not always liked or always disliked anything — I have done so over
a certain period. However, there are things that I have never done,
meaning that without quantificational care, always and never are not
complementary.

19

e Here is a certain facet of the idea of trust: I might feel very comfort-
able sharing my arbitrariest thoughts with another person, mention-
ing them to her with the same candor as [might ruminate by myself
— except, clearly, there are some thoughts that meet with resistance
even in the space of my own brain. In these situations, I am acting
less than whole, being reluctant to loose a confession from one part
of my self to my inner critic.

But, really, what cause do I have to be ashamed of myself, apart from
the pragmatic end of antireinforcing bad behavior? To move forward
I have to achieve some level of dispassion, and draw some circle within
which I can assess what has happened to me and what I have done
without internal censorship.

2007.4.14

Read some of Kirby, Dowman and Griffiths’s “Innateness and culture in
the evolution of language”. I am disappointed that their model depends on
a mapping from ‘meanings’ to symbols, and not just on the behavioral use
of symbols.

2007.4.15

It is amazing how the tiniest quantities of silence can have linguistic
meaning — that a statement comes slightly later than expected, makes it
seem dishonest in the right context. Bounded rationality in a linguistic set-
ting should account for this, that communicating agents know that evidence
of the other agents using extra computational resources means something.

2007.4.16

Consider the problem of unification with labels. The basic query is

A;THM =N < Alp

But this will kick out residual constraints of basically the same form. The
role of the labels is to ensure compatibility with the interpretation of linear
logic. I want to be able to detect which clauses can actually generate terms
that are not only well-typed, but well-labelled.

A;Tyz: AR M = N < Blp
A;TH A M = x.N < Tx:A.B[p]
X:(YFBlg])eA ATHo: W

AT H X[o] = M < Ap)

20

2007.4.17

Here is the units problem with the nature vs. nurture argument. The
most apt clarification I can think of right now of the idea “nature” is the
space of possible genomes an organism might have, together with a metric
of similarity between them. Similarly, “nurture” might as well refer to the
possible environments an organism might be born into and live in. The
question “which is a more important determiner of some observable trait,
nature or nurture?” then translates into a question something like “is the
derivative of this function bigger in one variable, or another?” but the
problem with asking this question is that the two variables concerned have
different units. I do not know a priori whether one base-pair change ‘counts
as’ the same as, less than, or more different than being raised by a family
that makes, say, $10k more per year.

And this objection is only made after assuming that these spaces are
easily quantifiable! It is not at all clear that every base pair is equally
significant, and the space of different environments does not in fact present
itself as any clear one-dimensional quantitatively indexed structure.

Words are pagan gods, and sentences their mythology: we engage in
syncretism every time we translate. When we say English word is French
mot, we do the same thing as when we say Greek Zeus is Roman Jupiter.

Habits are important. Learning is slow, but eventually effective. Writing
things down is importnat.

2007.4.18

In the proposed LF module system, it is uncertain whether one should
allow mixing-in of ELF-like constructs like %solve. On the one hand, they
seem useful to allow logic programming over abstract signatures, and yet
they are ‘effectful’ in that they might not terminate, and are peculiarly
‘early-binding’ in contrast to the intended behavior of the other metatheory
checks.

2007.4.19

What is important is not how data is represented, but what interface it
satisfies.

What interface is provided by weak n-categories? In a set, I can ask
whether elements are equal. In a category, I can ask for the hom-set that
exists between them. This gives me a new set of answers; the hom-set could
be empty, or it could be populated (but not contain an isomorphism), or it
could contain an isomorphism.

21

Is some doctrine of w-groupoids with structure enough to describe w-
categories?

2007.4.20

The problem of words and rules that Wittgenstein raises and which
Kripke focusses on is quite difficult to even nail down as a problem. I want
to ask, what is the difference between rote memorization and rule learning?
I must instead apparently ask, is there a discernible difference between rote
memorization and rule learning? For even to be able to respond with the
same response at identical stimuli, I must have some notion of equality of
responses and stimuli. This is unavoidable, for I can conceive of a notion
of equality that is so discriminatory as to be useless, one that says any two
responses (or stimuli) at different times are necessarily disequal. One must
have a notion of “transport’ of behaviors across time at a minimum (and
very probably across agents, and across space) to make anything sensible
come out of a theory.

2007.4.21

Dependent types seem to be just as much a notion of refinement as
anything else: the intrinsic structure of LF terms, sufficient to compare
them for equality and carry out substitution, seems totally determined by
positing one base type, and the type constructor —. This is not, the case,
however, for proof irrelevant terms or singleton types. In the case of proof
irrelevance, instead of speaking of type-directed equality, I just demand
that the syntax reflect the types in certain ways: irrelevant arrow is treated
as a genuinely different type, because it has different equality behavior.

But does this refute my earlier claim that I never need to think of
dependent types as anything but refinements? I think it might. For if an
irrelevant arrow allows any term at type o to occupy its argument, and
considers all of them equal, then isn’t a term well-typed provided there is
an inhabitant of o (which there very well might be, in context) even if there
is not a term of the appropriate refinement? (since I can’t equationally
distinguish them?)

No, I don’t think this refutational argument really works. I'm treating
irrelevant equality as a supervenient equivalence relation anyhow, so that
I can formulate a type-checking algorithm that can inspect irrelevant ar-
guments in order to be decidable. Nonetheless the type structure requires
the terms to be at least marked with irrelevant applications so that this
definition of irrelevant equality can get a foothold.

What about singleton types? Do they have terms with nice canonical
forms? Or is the point that interpreting a term at different types gives
different supervenient equivalence relations on terms, and canonical forms
remain the way they are?

22

I perceive some duality between refinements as ‘after-the-fact’ superve-
nient subsets of existing types (think: equalizers) and proof irrelevance and
singleton types as ‘after-the-fact’ supervenient quotients of existing types
(think: coequalizers).

Here is a recurring idea: one should not ask what a word means, but
what meanings are available, and which observable things happen.

Worse: “What does art mean?” Better: “People have made images using
paint, and pencils, and computers. It is a hard but learnable skill to make
these images in various styles. There are mappings from the human visual
system’s inputs, and to such images, such that it forms a sort of one-sided
inverse.

People have made objects by sculpting clay and marble. People have
made objects by gluing together objects, welding, soldering, arrangement.

Some of the above creations seem pleasing in various ways to various
people: they cause calm, laughter, excitement, curiosity.”

2007.4.22
1000 Blank White Cards is a very ‘flat’ game. Cards occasionally in-

teract with one another, but rather rarely. What sort of cultural or game-
regulatory phenomena would change this to make it ‘deeper’?

2007.4.23

Can HOU be done effectively without maintaining types (or labels) for
anything but unification variables? I think it would only be during actual
inversion of pattern substitutions that one would need to schlep around
types.

2007.4.24

Nicola Gambino had a talk about the connection between identity types
in Martin-Lof type theory on the one hand, and the theory of weak n-
categories on the other.

Apparently one can interpret a type theory into the 2-category Grp of
groupoids, functors, and natural transformations to refute the admissibility
of the uniqueness of identity proofs (UIP) rule

'-M,N:A 'EP,Q:1dsa(M,N)
't new(M,N,P,Q) : Idra, (P,Q)

and maybe also groupoid semantics can be used to refute the admissi-
bility of the ‘reflection’ rule

T P:Ids(M,N)
I'FM=N:A

23

though I wasn’t entirely clear on that point.
2007.4.25

Todd Wilson showed that it is sometimes useful to use Church encoded
types as indices for other types; you can get finite types that a more full
range of functions.

2007.4.26

Hypocrisy is fundamental, and the golden rule a social construction,
which can only arise after we recognize some subsets of the universe as not
I but morally equivalent to 1.

2007.4.27
Listening to a talk by Benjamin Pierce.

>

get : A
>C->¢C

C -
put : A -
put (get c) c
get (put a c)

]
[V RG]

He says if you add an extra rule that says two puts in sequence are
equivalent to the second, then in fact C must be isomorphic to some product
A X B.

Well-behavedness of get and put with respect to list data can be phrased
in terms of equivariance up to some equivalence relation, such as reorder-
ability of lines.

2007.4.28

I am unsure whether this termination problem is related to the one
Frank mentioned.
Start with the unification equations

(X[= e-Y[Z[2)) A (Y[1] = X[Z[2]))

in the context I' = 0, 0. The types of the existential variables are all o |- o,
and the type of ¢ is 0 — o.

Focus on the first conjunct. Though we know at least one of Y, Z
projects out its argument, we don’t know which of them does. However,
we do know X’s instantiation must start with a ¢, though. So make up a
new variable X’ : o - o, instantiate X « c¢- X'[id], and add the constraint
X'[1] = Y[Z]2]] to obtain

(X' =Y [Z[2])) A (Y[1] = e~ X'[Z]2]])

24

which is just an a-variant of the original problem.

2007.4.29

Thinking about inverse substitution.
Judgment M[o]~! = N.

Tm—&-n”n}—l _ T’rn
Tn[o_]—l _ T?

1"[m.o] ! = 1"+

This seems to be unable to compute id[1.1]~! however. Is this actually a
problem?

2007.4.30

Sapir-Whorf says the things we can think are in part determined by what
linguistic structure is available — but this seems almost like a tautology
if we consider both ‘the things we can think’ and ‘what is available’ to be
essentially linguistic (and ultimately behavioral) habits.

I appreciate more and more how critical the idea of ‘following rules’ is
to Wittgenstein’s linguistic claims.

Doug Hofstadter started writing GEB when he was just a little older
than me.

Suppose I want to set up a variable X : A where A mentions X some-
where. Say A is forced to be - Fa - (c- X).

o : type.

a : o —> type.

c:aM->o.

d: {X: aMa (cX) —-> type.
- :dXX.

25

2007.5.1

At the discussion about Girard, Lafont, Taylor’s book (which I keep
thinking of as essentially Girard’s book, given the eccentricity of the writ-
ing) William asked some question about what essential role equality plays
in ‘canonical forms’ LF. Somehow I had the notion that what really matters
is how many equivalence classes there are (and how they behave) not how
many elements each equivalence class is supposed to have — however, as an
implementation detail, the how ‘many elements’ question may be of some
importance.

A simple formal question: is the category of coherence spaces equivalent
(isomorphic?) to the category of graphs?

2007.5.2

On labelled unification:

I need to work out how much typing (and labelling) information needs
to be around. There are probably contextual label variables as well as
term variables. Given that term contextual variables almost certainly need
labels, they must have contexts with label variables as well. Are label
evars introduced any more freely than other variables? Does this only arise
during inversion?

I think the termination argument is that all such equations can be post-
poned until the end, but perhaps one does not want to in practice.

Is there a set of good rewrites that is nonetheless terminating? Elimi-
nating a variable is progress. The counterexample for regular LF unification
shows that ‘almost eliminating’ a variable by inferring that it must contain
some part is not actually a simplification, in that it neither reduces the
variable count nor the dependency count of some variable.

William successfully convinced me that the following ‘semantic’ notion
of subtyping is at least worth paying attention to:

(81 <Syu7)i=(x:: S Fn(x)::Sy)

because it makes proving completeness of some axiomatization of sub-
typing feasible. Something still sits ill with me with the idea of saying that
subtyping is ‘essentially about’ such an identity theorem, though, since it
seems too tied up with eta expansion, a process that by itself, apart from
subtyping, has a notion of correctness. Value inclusion

I'tEM:S =TFM:5S,

26

still feels like what I mean by subtyping.
2007.5.3

Two fundamental, recurrent conflicts: One, language does not afford
precision, but mathematics seems to attain it. Two, language is conven-
tional and arbitrary, and yet our success in inferring rule-following behavior
in other agents is deeply dependent on the assumption that their cognitive
machinery is like ours.

2007.5.4

Contextual modal type theory seems to be splittable into contextual
types, and modal types. Contextual types are just iterated function spaces
associated (and perhaps commuted) another way round. Likewise single-
step function spaces where the domain is a big sigma.

2007.5.5
Thinking about base-type polymorphism in LF.

Heads H == cla
Base Classifiers v = H-S|base
Classifiers V == TMz:Vi.Vs|w
Terms M == Me.M|H-S
Spines S == ()| (M;S)
H:VielT'uXx res:vi>W
TFH-S=V,

e ViEFM<V,
LF Az M < Ha:V,. Vs
TFM«<V, TFS: M2V, >V

rEQ:v>v TF(M;S): ViV > Vs
I'-M=v v="1
'-M <

I'FH-S= base

T H-.S < ok T' F base <= ok

'V <ok Iz:ViEVy <=0k
' IIx:V;.Vo < ok

Conjecture { ' M <V and ',z : V,TV J, then I, ocI" - oJ, where
o=[M/x]".

27

2007.5.6

Heads H := ¢l
Base Classifiers v = H-S|base
Classifiers V = Ye:V.Vo | Ha:Vi.Va v
Terms M == (M,N)|XxeM|H-S
Spines S = (w3 S) | (M;S) | ()
Dox:VikM<V, TFM<V, TFS: [M/z]""'V, >V
'k Xe. M <= z:V,.V, ' (M;S): V.V > Vs
Te:ViEFM<V, 'ES:Vi>V;

I'F e M <z V1.V, Ik (m;5) : B V. Vo > V3
I'R= Xx:V1.V5
I'FmR = [mR/z]"1V,
H:VieTux r=s:vi>wv,
'-H-S=1V,

FrE():V>V

I'EM=wv v="1

'M<
I'H-S = base

T'FH.S <ok I' F base < ok
I'FVy <ok T'x: Vi F Vo <=0k
' Ix:V7.Vo < ok

Here’s a try not in spine form:

Base Classifiers v = base| R
Classifiers V = HxeWV.Va|w
Terms M == XMe.M|R
Atomic R == z|RM

Well-Formedness (I' -V < ok)

' R = base 'V, <ok F,JE:Vl'—V2<:Ok
I' F base <= ok T'FR < ok I'F Iz V1. Ve <= ok

28

Checking (I'F M < V)

Lx:ViEM<V, 'FR=4v v=1
' \e. M <= Ha:V, .V, I'R<w

Synthesis (TF R= V)

z:Vel TFR=IuW.V, TrFM<eV, [M/aVa=V]
Irz=V I'-RM =V

Substitution ([M/z]X = X’)

MAN =N M=V [M/alVa =V
[M/z](\y.N) = \y.N’ [M/x](Ty:V1.Va) = 1y: V] . V3

[M/z]sR =R [M/z],R=R
[M/x]base = base [M/2]R = R’ [M/2]R = R’
Atomic Substitution ([M/x],R = R)

[M/2),R=R' [M/a]N =N’
[M/xlay =y [M/2].(R N) = R' N’
Reduction ([M/z]gR = M)

[M]/z]gzx = M
[M/x]sR = \y.M' [M/x]N = N’ [N Jy|M' = M"
[M/z]s(R N) = M"

Conjecture There is a category whose objects are V such that - V' < ok,
and whose arrows V; — V5 are terms M such that z : V3 H M < V5, where
composition of arrows is given by substitution.

2007.5.7
It seems that

list : base -> base.
bool : base.
true : bool.
false : bool.

29

nil : list T.

cons : T -> 1list T -> 1list T.

snoc : list T -> T -> 1list T -> base.

snoc/nil : snoc nil M (cons M nil).

snoc/cons : snoc (cons N S) M (cons N S’)
<- snoc S M S’.

%query 1 1 snoc (cons true (cons false nil)) true X.
affords an easy embedding into plain LF like

base : type.
obj : base -> type.

list : base -> base.
bool : base.

true : obj bool.
false : obj bool.

nil : obj (list T).
cons : obj T -> obj (list T) -> obj (list T).
snoc : obj (list T) -> obj T -> obj (list T) -> base.
snoc/nil : obj (snoc nil M (cons M nil)).
snoc/cons : obj (snoc (cons N S) M (cons N S’))
<- obj (snoc S M S’).

%query 1 1 obj (snoc (cons true (cons false nil)) true X).

2007.5.8

Let terms be defined like degenerate S-expressions by

Su=(S,5)|e

It’s not really essential what grammar is taken I think. The type S —o S of
expressions with exactly one hole is evident. Say a model of computation
M is a partial function S — B. A model M is said to simulate another
model N at cost n, written M >, N, if there is some s: S — § of ‘size’ n
(by which is meant a count of leaves e in s) such that

VEM (s°t)= Nt

Lemma 0.2 If My >, My and My >, Mg, then My >41p Ms.

30

Proof Let s witness M; >, M, and s’ witness My >, Ms. Clearly the
composition of linear functions s o s’ has size a + b by linearity. This is the
witness of M7 >, M3, for

V.M ((sos') t)=M; (s"(s°t)) =My (s'"t)=M;s t

2007.5.9

Looking back on 2007.3.16: This mechanism could make a fine one-
player optimization game of a sort of Railroad Tycoon feel.
Looking back on 2007.3.30: So we have new primitives

Dyp:(A—B)—(A— A—B)

plusy : A&A—o A
OA:T—OA

Typical rewrites would be
Dy p,(Ax.(M z)" (N z)) =

/\x.j\u.plus<(M z) " (Da,g, N) " u),(Da,B,—oB, M) " u)" (N x))
(Here M : A — (By — By) and N : A — By)

Da,BigB,(Ax(M) ® (N z)) =
Az u.plus((M x) ® (Dag, N) 2 u),(Dap, M)z u)® (N x))

DB, —op, (A 0.M 2" v) =
;\U-DA,BQ(/\Qf.M z°v)

Da(A\z.plus(M z,N z) = Az Au.plus(DsM " u, DAN 2" u)

Da(\z.x) = Az u.u
Da(Az.M) = Az.du.0,

cog:1A—o0A—olA
Dia(Az (M z)) = Az du.co (M z) (M’ 2" u)

31

coa = \u,v. letly = uinDy 4 (Az.1z) y vend
Dia(Az /(M x)) = Az u.Daga(elz) (M)" (M z"u)

Hm, this looks like I am just using the chain rule, though.
What if I take co as primitive? Instead with type

cog:A—A—o!lA

Then R
Dyp=A:(A— B)Az:Alu: A

let!ly =cos 2z uin f yend
The tensor rule becomes
Az Au.letly = coq z " uin(M y) @ (N y))end =
Az Au.letly = coq z winplus((M z) @ (N y), (M y) @ (N z))end

Here is a possible source of resolution to the Wittgensteinian confusion
about rule-following: although there is no canonical notion of Kolmogorov
complexity that would enable us to apply Occam’s razor to determine the
“simplest” extension of a set of function values to find the “most natural”
output corresponding to a new input, in fact the algorithms employed by
actual embodied brains employ related learning algorithms, and so have
correlated output hypotheses.

The probability that answers to new questions posed to a pair of agents
will coincide is no better than chance if we suppose those agents to have
arbitrary hypothesis spaces. For better or worse, our brains have an intrin-
sic notion of simplicity, one perhaps induced by the Kolmogorov measure
determined by the physical world. Different brains could have a differ-
ent measure (and probably they do!) but the signal of similarity is strong
enough amidst the noise to make practical the assumption that if another
human agrees on many data points, she will probably agree on one more.

2007.5.10

Talked to rob simmons about a probabilistic programming language.
I had a bit of a struggle understanding what would merit inclusion in a
language spec: it seems like you could get a lot of mileage out of just having
a data structure for distributions, a function for sampling from them, and
a semantics that described distributions over values.

32

2007.5.11

Suppose there is some underlying security S that takes values over a
branching set of possible worlds {¢, 0, 1,00, 01, 10,11}. Suppose further that
O has values O;; at the very end, somehow dependent on S’s price.

Can we compute O’s value at world i by replication? S will be worth
S0 or S;1 at the next step, and O will be worth O;9 or O;;. We want pg

and pp so that
Sio 1] |ps| _ |Oio
Sa 1| |pe| |Oa

] =[5 1] (5

And so the actual value O; is
-1
. Ps | _) Sz 1 OiO
soulp]=tsonfg 1] (o)

o] # 1 -1 O;0
=[5 1]5) - Sin |:Si1 Si0:| |:Oi1]

1 Oio — On
L9 1] Sio — S; |:Oi15i0 - Oi05i1:|
_ Si(0i0 — Oi1) + 01180 — OinSin
B Sio — S;
Now for the case that S;g = S; + h and S;1 = S; — h:

~ Si(Oio — Oi1) + 041 (Si + h) — Oi(S; — h)
B 2h
. O;1h + Oxh
B 2h
~ 0i1+ 0
B 2
This seems really counterintuitive, because the value of a call option would
then increase without bound as the approximation time increment goes to
Zero.

Wait, no: the number of possible worlds in which the stock price goes
off to infinity still gets dwarfed by the worlds where it doesn’t. The model
simply seems to impose analysis in terms of a normal distribution. You
just want to take a dot product of some normal centered at the current

SO

33

underlying price against the derivative’s payoff function. How does one
figure out the right variance for the normal, though?

2007.5.12

Working on revising that paper about non-type-indexed hereditary sub-
stitution. Turns out I neglected to be careful about a few basic lemmas
involving the interaction of C and U.

2007.5.13

The induction measure for untyped hereditary substitution associativity
is significantly subtle than I expected.

2007.5.14
The stochastic integral

/ £(t) W,

is kind of like a dot product of f against the derivative of the Weiner process
— which is peculiar, since the latter a.c. doesn’t exist.

2007.5.15

1. Labelled linear unification might be best accomplished by explicit
typing constraints mixed in with equality constraints. Something like

X : T+ Alp].P
might be translated to
AX:THAT.PA(TFX = Alp])
Then you might have transitions like (assuming c¢: B € X))
(TR < Alp)) — (T'+ R= Alp))
(Tkec-S= Afp])— (I'FS: Ble] > Alp])

CEQ:Apl > A= (A=A A (p=D)

and
(T'F(M;S) : Ix:A.Bp] > Clq]) —

(DFM < Ale]) A (T F S : [M/2]2B[p] > C[q])

and
(T'H S :Va.Bp] > Clg]) —

36 : (' w).(T = S[[Bidr]/ap] - B > Clq))

34

2. Consider the LF self-embedding
Y += (base : type,obj : base — type)

type — base
a- S objla-S)

There are valid LF' expressions not in the image of this translation,
such as base — base, and, if we consider LLF, things such as A —o
base. I especially wonder whether the latter could make sense.

3. Perhaps the argument for mere termination of substitution should
be reworked to involve set notation to match that necessary for the
substitution associativity argument.

Do I need to be careful about contextual status during typechecking
even?

Harland & Pym.

Non-well-moded examples?
2007.5.16

Degenerate typing in spineless form:

(re€ RN). = (ze RPN=Iy(zeN),

(weafi={t} (weyi-
(x € R), = (z € R)
(x € A\y.N)p = (z € N),
tp(R) = o
tp(Ax.N) = (x € N) — tp(N)

2007.5.17

Kaustuv was trying to explain to me a focussing system where you focus
on multiple things at once.

2007.5.18

Read some lexical semantics notes linked to by Noah Smith that Rob
Simmons told me about. Awfully frustrating to see several vaguely FOLish
schemata described as possible targets for representing propositional utter-
ances and queries, but to not have any sense of what would make any of
them more suitable than the others.

35

2007.5.19

Meeting with Kaustuv and Frank: Kaustuv described a system he was
working on that combined a hybrid-style temporal logic with linear logic, for
expressing systems that changed state consumptively but also with specific
delays. I found it troublingly difficult to see how to squeeze in the notion
that a reaction will take place if it can, but there is an intuitionistically
one-sided way of looking at it that still works: a reaction can take place
with a certain timing (where all delays act like lower bounds) iff the system
proves some corresponding sequent.

Another interesting thing was the fact that expressing a temporal box
modality begged for the same trick that tom7 needed to get accessibility
facts intrinsically mobile.

2007.5.20

A thought about polymorphism in LF. With general predicative poly-
morphism, subordination is instantly shot to hell, even with relatively well-
meaning types. Like if T say

list : type -> type.
nil : list T.
cons : T -> 1list T -> list T.

Then I can instantiate T with any function type A — B and A is sub-
ordinate to B. Calculating subordination with base-type polymorphism
might still be difficult — a naive point of view might have it that every
type subordinates the coalesced type operator 1ist, whereas a more clever
definition might notice that only 1list T and T subordinate the individual
type 1list T — but it seems sane, at least.

Adapting regular unification to contextual unification seems easy for
ACU — just split equations along the different parameters, and set to e
any variables that aren’t allowed to depend — but I don’t know what to
do for AU.

2007.5.21

The boolean variable approach of Harland and Pym looks a lot like the
reduction of contextual ACU unification to solving equations over N (or the
finite subset of it, 2) which makes be pessimistic about it extending well to
ordered logic.

2007.5.22

Why is ® left asynchronous but not obviously a left adjoint to anything?
I suppose ‘half’ of it is left adjoint to —o, but this answer doesn’t seem

36

satisfying somehow.
2007.5.23

If T wanted to imagine a collection of abstracted, modifiable names ex-
isting at the beginning of, say, a twelf file, I would want each one of them
to be defined exactly one place. However, each would be used many times
in the bodies of definitions or declarations or what-have-you, and certainly
possibly zero times in a particular declaration, so a straightforward use of
linearity would not work.

Tt seems the zero-ary (but not proof-irrelevant) arrow is exactly what’s
needed: a condec would take a name linearly, but take the defining (or
classifying) right-hand side “zeroarily”.

2007.5.24

Sitting in on a meeting with some NLP people. It strikes me again
how incredibly difficult natural languages are to deal with — but I keep
hoping that by solving harder (more general) problems the specific case of
‘understanding’ parsed sentences might be made easer. For it’s not merely
declarative things that we learn, and not merely the semantic maps in
language, but we also learn to parse, and learn to distinguish nouns from
verbs, and learn even to segment words out of continuous speech. Since all
of these tasks are learned, the linguistic behaviors we habitually engage in
are sloppy and noisy: and so they are hard for carefully engineered systems
to treat.

2007.5.25

If descending into children of a tree node preferentially chooses the most
recently accessed child, then you get a sort of local inverse relationship
between “most recent child of” and “parent of”. Clearly however, they can’t
be real inverses if you account for all of the state involved, because arriving
at a child clobbers the former information of the child accessed before that.

2007.5.26

Incremental bidirectional preorder traversal is not that hard to imple-
ment, but it still feels ugly.

2007.5.27

In linear logic, have a multiconclusion calculus with the right side in-
terpreted tensorially. There is another judgment besides ordinary linear
truth which admits a superscript which signifies tensorial ‘number of copies’.
Structural rules:

LA™ A"FA TFA™A"A
LA™ A TRA™ A

37

ILAFA I'HA
ILALFA TrEA

I'FA I'FA
AFA THAYA
A T/'EA

IV FA,A i
Connectives:
'k [a/z]A T, [n/z]AF A
I'FVz.A I''Vz.AF A
[k A" [A" A

THF"A I''@"AF A

Question: how much like !4 is Va. ®* A? Is this the ‘other polarity’ version
of 17 (asynch-then-synch instead of synch-then-asynch)

Better yet; the only judgments (on the left or right) are A™ where
nu=1|a|z

where a is a parameter. The judgment A' is identified with A. We write v
for a sequence of ns. A" -"™N means A™ ..., A"N. Structural rules:

A T/FA
0,7 FA A -

I'-A
Ik A

Connectives:
Tk [a/z]A I, [v/z]AF A

I'kVa. A Ve AFA
'k AY, A A+ A
'-@"A,A T,Q"AFA
Abbreviate !A = Vax.@% A. Tt seems 1 (correctly) still can’t prove

A B, A"+ B°
A — B,1AF B°
A — B,IAHB

38

How about Vz.(A ® B) = (Vx.A) ® B? No,
Vr.(A(z) ® B) F (Vz.A(x)) @ B
fails.
Dang, I can’t seem to prove
AFIA
IAFNA
Need multiplication or something. Like:
r=A"" A LA™ = A
- (@A"A T,(@A)"FA

Where ns are now multiplicative lists of parameters. I would then get
AFA
Aab - Aab
A A%
IAF (14)°
IAFNA

2007.5.28

To prove cut-freeness for the system from yesterday I seem to need to
generalize to the admissibility of something like

TFU Ty O ATWEQ
IAFQ

Where — indicates that ¥ - ¥’ can be proved by introduction rules for
Q.

The case analysis here would grind away on I' = ¥ until it uncovered
an instance of a synchronous ‘mix’ rule like

T, - A" (Vi)
Ty,..., Iy F AP AT

to match the synchronous decomposition of ® that has already taken
place on the left in A, ¥’ |- Q splitting up ¥’.

39

What’s going on with Vs in my thesis’s logic seems to be an indexed
version of the phenomenon of something like
a:o— type
k:o
51,82,83 C a : 0 — type
c:81 kNsy kNAs3sk
One might think as the limit as being something like
a:o— type
k:o
s C a:: Iliiw.o — type
c:Visik
I feel this means the right interpretation of kind-level refinements is that
I'F A:type
I'Fref(A) : kind

And the usual
sC a:: x2Sy ... x2S, type

should be
s: x2Sy .. xSy ref(a- (x1;- -5 20))

But then < might get undecidable depending on how you do things. I think
this interpretation makes the translation clearer, though.

2007.5.29

James Cheney made an LJ post about the combinatorics problem of
counting closed lambda terms. I wonder what the generating function is?

Say ¢mn is the number of lambda terms of depth at most m over n free
variables. We know:

COn:()

Clm+1)n =N + Cmn * Cmn + Cm(n+1)

So f(z,y) =
oo oo oo oo
Z Z 2™y Cmn = Z Z(” + Cnetyn T+ Cm—1)(nt1))T"Y"
m=0n=0 m=1n=0

40

(S5) (S5)+

m=1n=0 m=1n=0

urg, I'll probably never get rid of that c2.
How about lambda terms of size m over n free variables?

Con = 0
C(m+1)n =n++ (Z Cin * c(mz)n) + Cm(n+1)
=0
Here f(z,y) =
22wy e =0 > (n+ (Z Cmconi)“) + Cm-1)(n41))2"Y"
m=0n=0 m=1n=0 i=0
—A+B+C
where o o
A= 3 Sy
m=1n=0
n=1 m=0n=1
B = ugh
2007.5.30

It seems that something like parsing can be done just in terms of dis-
played traversal of tree nodes and possible insertion of auxiliary ‘parenthe-
sis’ nodes.

2007.5.31

I just remembered why e” actually converges:

(1+5) =) (})

-y

i=0

T\" Ool‘i

. oy

Jm (147) =25
1=

And we can see the latter thing converges absolutely for any = because
as soon as i > 2||z|| each successive term has norm less than half of the
previous one. Formally,

So

i i X
s H(z) >
i=0 i=0 i=[2z|l]
<

[2]|«[1 2 o
—1
> |+l Y2

< 0

2007.6.1

Remembering this type derivative stuff. Suppose we want to figure out
the derivative of a . Say S(8) = pa.T(«, 3). Compute

S'(8) = #55(8)

— Lua (o, B)

— & [ua.T(a, B)/a]T (e, B)
— A T(uaT(a, B), B)

= LT(5(8). 5)

= SIS0 0+ TS0 0)

2()
) = Ti(S(8), B) + T2(S(B), B)
Ti(S(B), B) + T2(S(B), B))
B) * (T1(S(8), B) list)

S'(B) = S5'(8
()ua(a
S'(B) = T(S(B),

2007.6.2

A story, expanded from a dream:

42

It started with the elevator. I pushed eight, but it passed it on the
way up and went to nine. The doors were always locked on nine, and
the nine-button never worked. Surely it was where spare pipes were kept,
spare plugs and miscellaneous tools and control panels for the building.
But no: (as I stepped out, the two ladies beamed shame at me; duchesses
condemning a violation of etiquette) I found only a corridor with an uneven
floor, not merely cobblestoned but of gross irregularity, rolling like seasick
waves, vertiginous and unstable yet maddeningly unmoving.

The windows were narrow, and twice my height. Through them I saw
a wall of graffiti, a policeman conceiving a plan to erase all of it in one
afternoon. The tags’ letters I thought beautiful, sunk in shadows both
painted and cast.

I found the stairs, returned to the eighth floor. I was late for class.

Seated, doors open to my left now (noisily, ominously) shut, I found two
sheets of paper each lined on one side. A sealed envelope of instructions.
A girl next to me, (blonde, not my type) her attention only on the front of
the room. We were told it was time to open the envelopes.

A role-playing exercise. The instructions contradicted themselves fre-
quently, made us feel (they must have intended) inhabitants of an uncom-
fortable future, where cold reasoning was socially acceptable only in doses
of under 50 milligrams at a time, ask a doctor for children under twelve, get
a refill on your prescription. Warmth was equally discouraged. No kissing
in public, (bus-water on bus-water) no hand-holding, no short pants, fill
both sides of both sheets of paper with writing on the provided theme, ig-
nore the instructions, ignore the instructions, ignore the theme, ignore the
provided story, do not analyze it, do not answer formal questions about it
in the argumentative structure with which you are by now familiar.

What a shallow mindfuck — T thought it cheap, juvenile. Still, T won
the game, such as it was, the winning move being, first, a note passed to my
right, the paper lined on one side. I confess I found their (partly) staged
fury satisfying, but not more so than the essential and internal feeling
of transgression itself. I had broken one rule, and followed another, the
latter being silent and (being, some say, our only device against mortality)
immortal. From what I heard the following day, she enjoyed it, too, but
still she never spoke directly to me during classes, or in the hallways, or
under the wide eaves (the only shaded place at midday) spreading from the
top of the ninth floor.

It’s been fourteen years. This morning, her letter arrived.

2007.6.3

Here’s an attempt to encode Yablo’s paradox in hybrid logic. Let
X =Vt.AQt & Vn > 1.-(AQ(t +n)). T aim to prove —X.

43

Suppose A@Qn. Then by X, we have -AQ(n + 1). But we can also
specialize Vn.—(AQ(t 4+ n)) to Vn.=(AQ(t + n + 1)), but X tells us this is
equivalent to AQ(n+1). So we have a contradition. Therefore ~AQn. But
n is arbitrary, so we have shown Vt.—AQt. But this is AQ0Q. We have a
contradiction from only the assumption X.

X 3k ok ok ok X

I think I can do this with the monoid domain too. Consider I' = « :
w, f 1 T¢, g : Tqg where

T = Vt.(AQt — Vp.(AQ(t x p x o) — C))

and
7y = Vt.((Vp.(AQ(t x p x o) — C)) — AQt)

Tmagine some 3 : w, and x : AQS. Then we can see [x : Vp.(AQ(S *
pxa) — C), and so also (plugging in € for p) we get f x: AQ(Bxa) — C.
Now we’re going to try to use g to try to make something to plug into this
function. Instantiate t = 8% o to get

g: (Vp.(AQ(Bxpxaxa) — () — AQ(f x a)
We should also see that
fax:Vp.(AQ(Bxpxaxa) — C)

So g (f z) : AQ(B *) hence also f x (g (f x)) : C. Abstracting over what
we’ve build up,

Xe.f @ (g (f @) : VA.(AG — C) (+)

so too
Me.f x (g (f x):VB.(AQ(B x) — C)

which fits into g as long as we choose t = e.

9 Az.fx (g (f x))): AQe

but I can plug this into « in (), obtaining a closed term of type C, namely

FlgQufal(g(fz)) (g(f(gQAefzlg(f))))))

To n-expand this:
f

(g (A\z.fz (g Ny-fzy)))
(g Az.f (g Az.fa (g Oy-fry)))) 2)

44

Note that f and g look kind of like app and lam. If we interpret them that
way, we get the object language term

Mz.x (Ay.x y))
Mz.(Az.z (Ay.x y)) 2)
Defining Q) = Az.x x, this is the usual Q Q up to n-expansion.

Listening to talks at a formal epistemology workshop (‘FEW 2007’),
which is going on here at CMU.

The ‘equal epistemic competence’ assumption in Tomoji Shogenji’s talk
is interesting — they seem to be saying there is one (scalar!) notion of
competence, erasing the necessity to talk about some isomorphism between
the epistemic model of one agent and another. Kevin Kelly asked a question
about what becomes of an ultra-Bayesian point of view where one has
simply a huge model of other agents’ cognition as parts of the world, and
in that case, there is a definite nontrivial isomorphism between my huge
model, and yours, for you are reduced to a ball of priors and conditional
probabilities in my model, and I am so reduced in yours.

There are some agent-indexical propositions (‘my feelings are norma-
tively important’, ‘my perceptions are not illusory’) that survive transport
across these isomorphisms in an interesting and non-identical way!

K 3k ok ok ok X

One thing that keeps striking me about this notion of averaging the
opinions of experts is a worry about scaling properties. There was some
axiom in Alon Altman’s work on axiomatizations of ranking systems, I
think, that cloning agents shouldn’t affect ranking.

2007.6.4

Deepak told me some neat things about (), namely that ()A is equiva-
lent to (A — p) —o p for some fresh atom p. I'm surprised this isn’t in the
Frank/Evan/Kaustuv paper on JILL.

2007.6.5

Neel considered the following principle mentioning proof irrelevance,
which seems somewhat classical but weaker than Markov’s principle:

(Vz.P(z) V —P(z)) = [3z.P(x)] = Jz.P(z)

2007.6.6

Have mostly succeeded in construing infix, prefix, postfix, and n-ary
circumfix operators (e.g. list literals) as all special cases of the same thing,
also including constructs like A-binding, and if-then-else.

45

2007.6.7

Turns out getting a relatively uniform method for unparsing is still
tricky. I may resort to something more concrete, i.e. a more flexible macro-
ish system with output in a typical formatting combinator language.

2007.6.8

Using curses, erase is much better than clear; the latter actually re-
paints everything, whereas the former does what is expected of curses,
namely conservative repainting of only what is required.

2007.6.9

I should ask neel about his thoughts on arranging intuitionistic proofs
to have explicit comonadic eliminations and duplications of ‘resources’ —
I think something like that would be necessary to compile uses of zippers
into imperative functions that statefully update data in the same way as
some given functional zipper-transformer. Moreover this would make a nice
application for linear metareasoning if my thesis were closer to done.

Perhaps the right way to think about the irrelevance in world-choices
in the labelled system is to push all the irrelevance off to the side; a well-
typed term in the labelled calculus is first well-typed as an ordinary term,
and then there must be a separate (irrelevant) proof that it belongs to the
suitable refinement.

Does dependency thwart this? I can’t tell right away; worlds don’t
appear in the ‘proper’ terms, so perhaps not.

2007.6.10

Maybe substitution inversion is the right locus for kicking off label uni-
fication also.

2007.6.11
Like, say u :: T'y, - A[p] is in A somewhere. Faced with

ulo] =M
we would try to figure that
uw— M[o™!]

but we’d need to check that M[o 1] uses resources p. Now ' - o : T,
for the ambient context T, right, so I';, - ¢! : I'. Meanwhile we check that
'+ M : Blg] and if we hit everything with 0~! we get something like

Ly = Mo : Blo[q[o™"]]

46

2007.6.12

Imagine U is a kind of some constructors that only exist as variables,
and that elm(u) is a type whenever u : U. There are some other things
called ‘paths’ 7 that are classified by expressions u ~ v.

We can only typecheck pairs consisting of an atomic thing of type elm
together with a coercion path, which is meant to be interpreted as proof-
irrelevant.

I'F R = elm(u) FFr:iu~w
(R, m) < elm(v)

Coercion paths are built up like

z:u~verl TFr:iu~w T'kFn':v~w

'Fz:u~v LHid:u~u FEma’ tu~w
2007.6.13

Or perhaps:

'FR=a-S PFP:S~ 8 :A>type
(R,P)<=a-S

with coercions

z:u~v:Ael T'Friu~wv: A TFa'tv~w: A

I'Fz:u~wv:A 'Fma tu~w:A

IEQ:0~ () :type > type

F'Fr:M~M:A TFP:S~8:[M/z]*B> type
'k (mP): (M;S)~ (M';S") : Iz:A.B > type

I would hope for the lemma

Lemma 0.3 IfT' - M ~ M': Aand T - N : [M/z]*B, thenT + N :
[M'/z)B.

This would justify the asymmetric substitution of M’ in the spine cons
rule immediately above. However, since x might occur negatively, I might
need ~~ to actually be equality.

47

2007.6.14

Alice and Bob agree that the sun has always risen in the past, and that
it is likely to rise again tomorrow morning. But the next morning arrives,
and Bob is alarmed to find that the sun does not rise, but instead a strange,
yellowish orb that he decides to call a ‘smun’. Alice, however, says that
this object #s the sun, and it has risen as usual.

Obvious moral: inductive and abductive reasoning depends on our no-
tions of identity of objects and phenomena across time.

I am suspicious of the possibility of monosemy, that a word could in any
sense have one meaning, but we would certainly like to constrain our use of
language to words (or morphemes, or sentences) that have clear and stable
denotations.

A big problem is assessing what I am trying to get at by saying ‘stable’.
Bob claims that his definition of ‘sun’ is stable, and that the yellowish orb
in the sky is not included in it; and yet Alice claims her definition of ‘sun’
is stable too.

This whole business is scarcely different from the classical ‘grue’ argu-
ment, maybe not at all. T thought at first that it was, but 'm increasingly
doubting that I can find any difference.

It is a profound and empirical fact that our notions of stability coincide
so often!

2007.6.15
Another try:

o= o |u- Pl | T
P:=()]| (mP)
Ru=H-S

N:Xx.N|ReP
a:KeX 'rR=a-S I'FP:S~8:K > type
ReP<=aqa -5

with coercions typed by

Tka:M~M:A TFP:S~S:[M/z]"V>W
Tk (mP): (M;S)~ (M';8"): lxz:AV > W

L'E():()~():type > type

48

'br:M~N:A 'kn:M~N:A F'Fa":N~P: A
'C7r:N~M:A I'Fma :M~P:A
u:M~N:Ael rP:S~8:4>C
Tku-P:[M|S]* ~[N|ST":C
'rH=A rEP:S~8:4>C
''H-P:H-S~H-S8:C
Tz:Arn:M~N:B
T'FXenw: de.M ~ Ax.N : Tlx:A.B

But I shouldn’t really bother about canonical forms at the proof level.
Something more like:
muo=dew |uw | H |7 mo | myme |7 id
u:M~N:Ael 'FH=A

'tru:M~N:A ''rH-H~H:A
I'bmy: dxe. My ~ Az Ny : 1Ix:A.B mog i My~ Noy: A

I " T T & [MQ/:C}AMl ~ [Ng/l‘]ANl : [Ml/l‘]AB

I'tid: M~M:A

2007.6.16

Consider the relationship between ‘s’ and ‘seems’. The latter empha-
sizes that some attribution is not certain. Imagine a (meditative) verb X
that emphasizes the attribution is not important. E.g. “I X upset” means
“I am upset, but it does not matter; this is merely a transient state which
does not merit lasting attention, and which I am capable of ignoring”.

2007.6.17

I think I have some better understanding of why the unification problems
that arise from pure LLF (or OLF) are easily decidable.

Let C(T;p) be the set of unification problems that can arise from a
query like T' = M < p and R(T;p) the set of r that can arise from T I
S : Alp] > C[r], and S(T';p) the set of unification problems that arise from
same.

Based on

Dia:w,z: AQa + M < Blp * d]
'FXxM«<=A—B

49

We can see C(T', o, z;p * o) C C(T'; p). Based on
I'z: A+ M < Blp)
'k Az.M < Ix:A.B[p]

We get only the trivial C(T', z;p) C C(T; p).
From

(v:w,z:AQa) €T I'ES:Ala] > Clr] r=p
'kz-S<Clp

we see that {e Ar =plee€ S(T;a),r € R(T;a)} C C(T;p). From
z:Ael 'k S: Aleg > Clq] r=gq
kx-S < C[r]

we see that {e Ar =p|e € S(Te),r € R(I;€)} C C(T;p).

From the & and T introduction rules we see C(I';p) is closed under
conjunction and contains the trivial unification problem T. Consider now
the —o elimination rule:

' M : Alq] 'k S: Blp*q] > Clr]
'+ (M;S): A— Blp] > C|[r]
Therefore we make up a new evar (Q and see that
ferNealer € O, Q;Q),e2 € S(T,QpxQ)} € S(I'5p)
and R(T, Q; p*Q) C R(T; p). From the unrestricted application we get only
I'FM:Af TFS:Bp>Cll
Tk (M;S): Iz:A.B[p] > CIr]

and see only trivial things like S(T';p) C S(T;p). At the nil case

TE(): Alp] > Alp]

we get the base case p € R(I';p) and T € S(T';p).
2007.6.20

I need to make up my mind whether world terms are present in modal
substitutions.
2007.6.24

It seems not at all feasible to maintain well-labelledness as an invariant
during unification, because of the spine cons case — there we don’t know

50

what world to plug into the tail, even though in principle there is an answer
that would work if we knew what equation to demand on the labels.

2007.6.25

The idea of a folding editor leaving actual comments (i.e. fold marks)
in the file seems peculiar, but maybe it’s unavoidable.

2007.6.26

I want to say: all a word’s meaning is, is its use. But what 1 would
better say is: a word’s use is at least a somewhat clear notion. Let us begin
by thinking about that, and avoid prematurely supposing that we should
be hunting around for its “true meaning”.

2007.6.27

I should be able to get nice modular nesting of motion commands with
zippers if they raise exceptions (or otherwise live in some exception monad)
when they can’t move any farther, allowing a handler a level up to move
to the next higher-level container.

I wonder what differential operator covers the idea of multiple (ordered?
nonordered?) ‘non-overlapping’ holes? The idea is that when looking at the
second derivative, the hole taken of the already hole-having datastructure
cannot rip out the subtree that has a hole in it.

For a tree whose leaves carry the data, I suppose this is a moot difference.
What I'm thinking of is only pertinent for the ‘recursive derivative’ of a u-
type, which results in the type of lists of the derivative of the body of the
1 with respect to its variable.

Is there a way of discovering the power series in D of a linear operator?
Assuming it’s appropriately ‘analytic’? 1 feel like this thought occurred to
me a couple weeks ago. I mean, suppose F' =5, ¢;D'. Then we can probe
F by applying it to monomials:

Fa" = E ¢ D'z™
i

n .
= Zcﬂ!(,)x”l
-)
1
in particular
F1= Co
Fr=cyx+c1
Fa? = cogn2 + 2c1x + 2¢9

Fa? = cox® + 3c122 + 6co + 63

o1

SO

cp=Fr—2zF1
Fz? —2zFz + 22F1
Cy =
2
Fa® — 3zFz? 4 32%Fz — 23F1
C3 —
6

and I would conjecture that

Lo ()ene

Let’s see if that works out algebraically:

(e (o))
: 2 ¢ @%'f!@")””"“)

Sure does!

* %k %k Xk k X

I should also be able to get the converse, that Fz™ is equal to

5 (15w (e) ()

i J

52

E[Er () 0
EE()() e
m=i—j,j=i—m

zrrgr)

il n! —m
=> Fa™ Z [Fpn T e T

m

mTL(E - i—m 1
=) T
= ZFx

2 ()
D i) S (Y
Z”’"MZ“V(”Z”)

—ZFx m' (= m)] _

nm

nlg™ "
= F |
v nl(n —n)!
= Fa"

Conclusion: If F is representable as a power series >, ¢; D" in D, then

53

-3 H'Z ()

xJ+k

-

(m=j+kk=m-j)

B ™ (=1)m~
7Z(i—m)!;j'(m—

m

71’L

S e (1)

m ']
™
; ml(i —m)!

1
7!

So this is of course the multiset-of-holes operator e”.

2007.6.28

Here’s a second attempt at a notion of relativistic CA; the first was
sketched in TL from yesterday and also on livejournal. I think it’s pretty
much nonsense, actually.

Let S be a set of states. For each n € N*, let B,, be a map S — S".
E.g., for n = 3, think of it as a way of translating states that looks like

]
0o o0ogde-2>gd
]

Also suppose there is an involution I : § — S.

The ‘laws of physics’ are represented by a function f: S xS — S. A
spacetime tableau T : Z? — S is valid at (z,y) : Z2 if T'(x,y) = f(T(z —
L,y),T(z,y — 1)), and valid (full stop) if it is valid over all Z2.

The B,,’s behavior can be extended to tableaux as follows, for 0 < i < n.

(Bn(T))(x,ny +4) = m;Bp(T(nx,y), T(nz + 1,y),...,T(nz+ (n—1),y))

Let ~ be the twist map A(z,y).(y,z). We can define an operation
T ! = ToTo~. We require that nT = B,T constitutes an action of
the multiplicative monoid N on the set of tableaux, and that (p/q)T =

54

B, ((By(T71))~1) constitutes an action of the multiplicative group Q\) on
the set of tableaux, and that it preserves validity in the sense that

T valid & T~ valid

T valid & B, (T) valid

2007.6.29

A third attempt: consider cells as transforming one-dimensional data
along their bottom and left edges into similarly typed data along their top
and right edges. Suppose that we can locally boost space by interchanging a
row with a column, ‘rewiring’ things as appropriate, allowing for operators
on these bits of one-dimensional data that smoosh (and splice) and stretch
(and separate) them as appropriate.

I had a flash of coherent thinking about the completeness of focussing,
as pertains to the ‘inside-out’ induction that I think I tried and failed to
apply once upon a time. It should go something like this:

We want to prove a series of theorems, one for each connective, (although
I bet strongly that I can make the argument uniform in them but for the
important case) like for ®

If (T J)[d"r/zT][r/y] then (T + J)[d*p @ dTq/zT][dTp® dtq/y]

where 27 is a positive propositional variable, ¥ is a neutral propositional
variable, and p, ¢, are (neutral) propositional atoms not appearing in T"
J. By virtue of the duplicate substitution on the right, the cases for the d*
rules are trivial! The only interesting case is the neutral init rule, in which
case we merely need to cough up an O(1)-sized proof of completeness of
the particular connective.

We should be able to then build up proofs of the identity property for
any compound connective by growing it at the leaves.

2007.6.30

The focussing completeness idea from yesterday is bunk after all; I made
a mistake in the ‘trivial’ case passing from an active judgment to a truth
judgment. The only other novel idea I'’ve had lately is replacing already
asynchronously decomposed signed atoms p1 with ‘super-active’ judgments
that have even higher priority than the usual ones. This is of course rather
sketchy, though.

In HLF:

55

Recall that the synth-checking boundary requires base types, and so
sensibly requires exact equality of the synthed and checked type (since
they have no worlds in them) but allows slack in the judgmental world.

F'ER=(a-S)p] S=9 p=acu P
'R« (a-S)p

For the sake of unification I want to add contextual modal variables u[o]
to the production for atomic terms R. Thus I should be synthesizing them.

u: (UPha-Sp)eA Fto;o™: 0
I'Fufo] = (a- S[o])[po™]]

Here o is just a substitution for term variables, and o% is a substitution for
world variables.

'k M < (Alo;0%))[e] koo : T
TF[M/z]* 00" : W, z: A
F'Fp<ew T'ko;o": U

Tko;lp/al,o : ¥, a:w

I'kid;id: -
Alternatively T might think of o as being one big subsitution and being
able to pull out ot its term part and oV its world part.

s (Tha-Sp))eA 'ko: W
'+ ufo'] = (a- Sle'])[plo™]]

' M < (Alo])[e] F'o: V¥
IH[M/z) o:V,z:A
T'Fpew I'o: W

L'k p/a),oc: ¥, a:w

I would want to show then that if

Lemma 0.4 All of the following:
o IfU+M<a-SplandT o : ¥, thenT + M[o'] < (a-S[o'])[p[c"]].

e [fU F S : Ap] > (a-9)[¢ and T + o : U, then T' - S[o'] :
Alo][plo*]] > (a - S[o"])[glo"]].

56

e fUFR=a-Sp| andT+ o :T, thenT + R[o*] = (a-S[c])[p[c"]].
Proof By induction on the derivation.
Case: R =1 -8 for z such that ¥ = ¥,z : A and o = [N/z]4, 0.
x:AeV Ut Sp: Ale] > a - S[p]
Uta-Sy=a-Sp

By induction hypothesis we get (starting to be sloppy about ¢*, o%)
'+ So[o] : (Alo])[e] > a - (So)lplo]]

But by construction of the substitution we know N < (A[oy])[e] and
Alop] is the same as A[o] since = can’t occur free in A. so we can
form a reduction T' - [N|Sy[o]]* = a - (S[o])[plo]]. And this is what
(x - So)[o] is equal to anyhow!

* %k %k Xk k X%

Some important things to show:

1. The effect of a simultaneous substitution is the same as unravelling
it into sequential substitutions for individual variables.

2. (subsequently) that simultaneous substitutions commute with ordi-
nary substitutions.

3. f [N/z]* € 0, where T' - o : ¥, then T' - N <« gA. This requires
‘weakening’ the substitution that applies to the variables actually in
the type A, up to the whole substitution ¢ — of course we’re only
adding things that don’t affect A, which is exactly why the lemma
holds.

4. The following two expressions are equal:
Az Awy M ju)T A0 (e (M- 5 M)

(M Ju)n A A (u[M, [, M f4])

A meditation on sequences of arguments.
Ordinary application:

(- (f My)-+ My)

57

Spine application:

[zq:Aq. .. Iz, Ay .0 S :Ixq:Aq. ... Ilx,:A0 > 0

o (My; (- M ()--0))

B = (3z1:A;. ... X2, A, T) f:B—o (My,{-+-M,,())--): B
fAMy, (- My, () -
Substitutions:
U=_(-(21:A1),...),Zn: Ay fa (ko) M,..... M;.id : ¥
f[My....Myid] : 0
LF in substitution-form:
K =TIV type
A :=TIV.alo]
M := \V.H|[o]
H:=c|z
ocu=id| (M/z),o
o= |T,z: A
U= |0z
Yu=-|Xa:K|X,c: A
z:Ael c:AeX
l'Fx= A 'Fe= A
'+ H = IIV.d[p] 't0:9¥ a=a o = p{0}

I AU.H[f] < TV.a[o]

T'FWecetx a: ITA type € & Vhko: A

I'FIIP.a[o] : type

58

' Wetx
I' F ITW.type : kind
'tM < A{o} FFo: W
Ikid:- LH(M/z) 0 : (U, 2: A)
F T ctx I'E A: type
- ctx FT,x: Actx

(My/zy, ..., M, /xn)o = (My{o}/x1,... Mp{o}/xn)

- _ [AU H[p{c}] if H ¢ dom(o);
(A-Hlpl)o = { A@.R{Z{a}} if H =2 and NMA.R/z € o

(I1¥.a[p])o = IV.alp{c}]

Recall that the risk of comparing substitutions for equality is that we
might sometimes want to allow noncanonical substitutions to detect pat-
terns and so on. Here, however, it looks okay.

I wonder if I can incorporate base-type polymorphism?

Base Classifiers v == R base
Classifiers V' = IIVw
Atomic Terms R = z|o]
Terms M == MU.R
Substitutions o = id|(M/z)V,o
Contexts T = - |Tx:V

z: Vv el T'Fo: U
'k zlo] = v{o}
ILLWFR= v="1
I'FAV.R < T
I'EWetx I', U+ R = base
I'FTIV.R < ok
' Wctx
I' F IT¥.base < ok
'-M«<V{c} 'to: VU
Fkid:- - (M/z)V,o: (W,z:V)

59

F T ctx TEV <ok
B FT,z:V ctx
(My/xy, ..., My/an){o} = (Mi{o}/21,... Mn{o}/xn)
(zlp){o} = {R{p{o}} if (\D.R) z € o

z[p{c}] otherwise.

(IT.R){o} = I¥.(R{c})
(AU.R){c} = \U.(R{0})

base{c} = base

2007.7.1

In DeBruijn form: (still highly incomplete)

Base Classifiers v m= R |Dbase
Classifiers V = IIPuw
Atomic Terms R = nlo]
Terms M = MN'R
Substitutions o w= id| Mo
Contexts I, ¢ == .|,V

(deBruijn indices are 0-based)

") =T0w Trkp: T
I'nlp] = v{p}
ILLUER=V v=1
T AR <o
'FUctx ¥ - R = base
I'+-IIV.R < ok
' Wetx
I' - ITW.base < ok
'tM <V{c} 'Fo: W

Fkid:- L' (Mo): (9,V)
PHWetx T, FV <ok
IE-etx I'FU,V ctx
{o} ={o}o

60

(T, V)H{otn = (T{o}n), V{otnin
(M.p){o}n = (M{c}n.p{o}n)
(n —lol)p{o}m] ifn—m>]o]

(nlo){o}m = { (X B){p{otm} i o(n—m)=\'R;

n[p{o}m] ifn—m <0.
(1. R){or}y = T(W{o},). (i o))
(V" R) {0} = ™ (R{or)
base{c},, = base

Lemma 0.5 Ifo(n) =M, and ¥(n) =V, and T+ o : U, thenT F M <
(1"V){o}.

Proof By induction.
Case: n = 0. Immediate.

Case: n = m + 1. Then o has the form (M’.0q), and o¢(m) = M. ¥ has
the form Wq, V', and ¥o(m) =V.

FFM’@V’{O’}O I'kog: ¥y
'+ (M/.O'o) : (\IJO7V/)

By induction hypothesis, T' - M < (1™V){oo}. To show: ' M <
(T HV){M’.00}, but this follows.

Lemma 0.6 If
LA T, ¥ kv <ok T’ =m

AT Fp: ¥ Tho:A
then v{pH{o}m = v{o}tmip{p{o}m}

Lemma 0.7 (Substitution) Suppose I,AT"F J and T+ o : A. Then
P,F/{O'}() = J{O’}‘F/l.

"N () =T0w Thp: ¥
't nlp] = v{p}

(n —loP)[p{o}tm] ifn—m=|o]

(nle){o}tm = { (X R){p{otmbo if o(n—m)=\R;

n[p{o}m] ifn—m<0.

61

consider the variable case of this theorem:
(A T)(n) =000 DA Fp: U
I AT nfp] = v{p}

I have already by the induction hypothesis that (with m = |TV])
I, 1o} b pfotm - U{otm
and I want to show
0, 1o} Enlpl{o}m = v{pHo}m

in the first case, n > m + |o], so (I, A,I')(n) = T(n —m — |o|) =
(T, T"{o})(n — |o|). Rule application yields

e (e o) (n — o) =W W' T,T{c}F plo}tm : ¥’
(T, T{o})(n = lo))p{o}m] = v'{p{o}m}
We know that 1171110/ /) = ITW 0?72

(T T {o}o)(n— o) =TTAw T, {0} F p{o} : Afohy
[A T Fonfp] = v{p}

in the second case, (I, ¥,IV)(n) = ¥(n —m) = [IAw. Here k = |A|. 1
also know that o(n —m) = A*R. By the previous lemma, I' - *R «
(1"~ A.v){c}. In other words I' - *R < (TIIA.1"~™,v{c};). By inver-
sion

DAFR= """ v{o}k

we seem to be able to shift to get
O, o}, AR R = 1" v{o}k
now substitute:
[, {o}, AR R= 1" v{c}k
(T, T"{o}o)(n — |o|) = TAw [T {o}oF p{o}m : A{o}m
I T {o}to b (17 R){p{otmbo = (T3 0){p}o{o}ir

in the third case, n < m, so (I, ¥,I")(n) = I''(n). Rule application
yields

(0.0 {o}o)(n) = AW {o}onor DT'{o}o - potm : Ao}
(0.0 }o) F nlp{otm] = (175 {0 mn-11a) {0} m o

62

Base Classifiers v == R/|type
Classifiers V o= IIVw
Atomic Terms R = zo]
Terms M == MU.R
Substitutions o = id| Mo
Contexts I' == -|[z:V

z:[IVwel I'Fo: W
'k z[o] = v{o/¥}
ILUFR= v=1
TFAD.R < 0.0
I'FWctx I, ¥+ R = type

I' - II¥.R <« ok
' cetx

I' F IIV.type < ok
'EM<V{c/¥} 'ko: W

I'Fid:- PF-Mo: (V,z:V)
T'FWctx 'OV <ok
IF-ctx DHW,2:V ctx

(My.... My.id){o/U} = (M{o/¥}.... M,{o/T}.id)
Vi, oo, Va){o/ 9} = (Vi{o ¥}, ..., Vo {o/¥})

(o)) {o/ W} = {f[f)?;{jo/gli]}/A} i)fﬂ\fe(r@is:e.x :IA.V and o(n) = AA.R;

(TTA W) {o/¥} = TIA.(v{c/T})
(AA.R){o/¥} = AA.(R{0/¥})
type{o/¥} = type

Don’t know whether to treat worlds as being really modal, or else just
talking about restriction to certain contexts. The latter sounds easier...

2007.7.2

By the equivalence principle, an accelerated reference frame behaves lo-
cally the same as a frame at rest under a uniform gravitational field. Is

63

there any value to the intuition that this means massive objects act as if
they are expanding and therefore accelerating towards us? Under appro-
priate rescaling, can gravitational attraction be construed not as warping
of spacetime, but progressive consumption of it?

2007.7.3

Using the same tricks as are used in n-expansion for polymorphism, I
think I can get away with n-ary homogeneous tuples that actually allow
projection. The analogue of the trick is that if I have a variable x whose
type is a vector of type a (which is required to be a base type) of length
s"(1), where ¢ : nat is a variable, then z’s n-expanded canonical form is

hdz ::hdtlz - hdt™ o ot 2)
where the understanding is that hereditary substitution does things like

[2/iln:(R) =]
[s n/i]n;(R) = hd R :: n,(tl R)

The restriction the list carrier type to base types ensures that I don’t have
to bother about actually n-expanding elements of the list as well, which
would frightfully intertwine the term and type syntaxes, as is actually done
in the case of Nanevski-Morrisett-Birkedal polymorphism.

2007.7.4

So if T try to put a series of modal boxes back into ‘substitution-form’
LF, I don’t seem to get the restriction of local contexts present in Frank’s
description of how he tried to close CMTT up to w. The only changes
required seem to be

Contexts I' == .|l z:, V

x:, IPwvel I'Fo: W
'k z[o] = v{o/T}
Ly, FM<=V{e/V} F'ko: W
'-Mo:(¥,z:, V)
' Wectx UV <«<ok
vz, Vetx

No, hm, now that I think about it, the substitution formation rule
should restrict the remaining substitution also (and the context formation

64

rule should restrict some part of the context when checking V', though
I’'m not sure how much) to maintain the invariant that we only type-check
against well-formed types. This might impose the constraint that any par-
ticular context pragmatically needs to be ordered by modality strength in
order to make substitutions possible.

X 3k ok ok ok X

I realize why the context formation rule has to in fact be the very

restrictive
| FWctx (0,¥)] FV <ok

FFv,z:, Vetx

It’s because the following should obviously be true: if I is a valid context,
then so too is F’n. Therefore n-strong hypotheses should not be able to
having types depending on weaker ones, for the latter might disappear
during a restriction.

X 3k k X ok X%

Also, hey, I seem to get a form of negation in these base-type polymor-
phism frameworks! How weird.

-A = A — (Mz:type.x)

I only get to eliminate it at base types, but I can lift it to function types.
Let’s try to do this in substitution form:

—A=1l(z: A,y : type).y[]
So for instance I can still prove z: AF M : =—A by
M = Mo, to)-wo[na(z), to[]]
andifx: AFM:Btheny: -BF N :—-Aby
N = Az, t).y[M, t]]]
composing these and setting B = -—A we get
y:mAE M, t).y[A(zo, to).-zo[nalx), to]]], t]]] : A

Whoops, I guess I never actually needed to eliminate that falsehood at
anything other than base types. What about disjunction?

AV B =Tz:type.(A - z) - (B —2z) > x
Let a type C' — D be given. Can we do this?
(AvB)-(A—-C—-D)—-(B—-C—D)—C—D

65

It seems so.
Adbibac. d D (Az.by © ¢) (Ax.be x ¢)

So this kind of thing will obey 3 but basically no n laws. And of course it
seriously infects every base type with eliminations!

2007.7.5

m[p{o}n] iftm—-—n<0
(ot = { RIZp{ota} i o(m—n) = MR
(m —|of)[p{o}n] if m—n=]o
Lemma 0.8 X1{M.c} = X{o}
Lemma 0.9 X1, {0} 14n = X{o}nT,,
Lemma 0.10 XTLR+7TL{O-}k+7”+" = X{U}k-&-nTZ:-m

||

Lemma 0.11 IfT, A+ J then T, ¥, AT UAINE

Lemma 0.12 IfT'(m) =V then (T{o})(m) = V{a}ITI-m1,

Lemma 0.13 If U(m) =V and '+ o < ¥ then T+ o(m) < V1™ {o}.

I'(m) =TA.w Tkp<e At
Frmip] = olia o)

Theorem 0.14 If I, U, "+ J and '+ o < VU, then I',T"{c} = J{o}|r/.

Proof By induction.

Case: Abbreviate n = |I”|, and s = |¥| = |o| and k = |A] = |p|. The
derivation of J is

(F7 \Il,l"/)(m) =TIA.v F7 lII, F/ - p = AT"H_l
F, \117 F/ }_ m[p] = UT?+1{p}

By i.h., we have I, T'{c} F p{c},, < A1 {o},. We must show
0,0 {o} - (mlp)){o}n = v H{p}Hotn

Subcase: m < n.

66

(0,9, T)(m) =TA.w Assumption
I"(m) =TTAw

I"{o}(m) = (TAw){c}—m"! Lemma 0.12
(I, M{o})(m) = [MAv){o}r—m""

D, T'{c} F p{o}, < AT {0},

(T, F/{U})(m) = [Av){o}n-m-1 r, F/{U} Fplotn <= A{U}nfmfl‘rm+l

I, I'{o} - mlp{o}n] = v{otkin—m-11 " {p{on}}

I, T{c} F m[p{o}n.] = UTZLJrl{U}kJrn{P{U}n}

F’F,{U} [m[p{a‘}n] = UTZLJrl{P}{‘T}n

Subcase: n <m < n+s.
Subcase: m >n + s.

2007.7.6

In the code to check substitution-form LF, I do something like

fun ok base Gr =r = (~1,[]) orelse synth G r = (~1,[])

Would it be terminating to check in a while loop if r synths to something
that synths to something that --- synths to type? I'm pretty sure it does,
for the head of a classifier of any variable has to exist in a smaller context.

2007.7.7

It’s questionable how useful the tower of hyper™kinds actually is, given
the restriction to base everythings. Still kind of interesting. Multimodal
stuff works out great, and proof irrelevance seems to also; not certain the
full extent of how they can be combined. Taking their cartesian product
seems okay, but definitely not to have modal restriction turn disqualified
modal variables into irrelevant ones.

2007.7.8

Apparently the conditions put on Hilbert spaces make them unique such
that they are isomorphic to their dual spaces. Awfully nice, that!
2007.7.9

The quantum harmonic oscillator is starting to make some sense. I still
haven’t internalized what the ladder operators look like in position space,
but they’re super-spookily suggestive in count space of how differentiation
and ‘times x” work on generating functions.

67

2007.7.10

In GR, it’s still not clear to me how you coordinatize the curvature
vector.

DeBruijnifying substitution-style LF does not seem at all easier than
otherwise, which is annoying.

2007.7.11

If a state is z = kq + ip then hamilton’s equations are

kH, =1iz"

2007.7.12
Fully-contextual modal stuff looks cute in simple types:

Props A == T —p
Contexts I' == .|T,A"
T,0Fp N

v —p LW —-p"kp
r+A TrF®
TF W, A" Lk
Alternatively I could get it down to 3 rules like:

r-w
(¥ —p)"Fp
F‘n,Ql—p r-w
P-v,(2—p)" k-

Or by cheating, 2 rules:

I'FWw
(v —p"kp

Or even 1 rule!

68

Modal without contextual:

Contexts I == -|I[,A"
Props A = p|A—,B

A"+ B r|FA TI,B°FC
'-A—, B I,(A—, B)"+C

r,p’Fp

2007.7.13

Finally figured out how to derive relativistic momentum and mass from
Lorentz invariance of the Lagrangian.

Say we've got L(q,q). First of all assume it’s independent of ¢, and
only depends on the magnitude of ¢. So we've got some function L(v).
Consider the following two (Lorentz-equivalent) scenarios. Scenario (I): A
particle at the origin sits around at rest for one time-unit, reaching event
(1,0). Scenario (IT) (Lorentz-transformed from (I) by velocity v) a particle
moves inertially from the origin to the event v(1,v). We are abbreviating

v = \/117? as customary. Computing the Lagrangian integral for (I) and

(II) and setting them equal we get

[y =m0

L(0) = vL(v)

so L(v) = L(0)/v. We know what the Lagrangian must be for all velocities,
agsuming we know what it is for v = 0.

Now we define momentum to be the ¢-derivative of the langrangian, and
define mass to be momentum divided by velocity. We easily get

p=L4= %L(O)\/ 1—02= \/L% = L(0)yv

but this means

and
m = pfv = L(O)y
Clearly L(0) is just the rest-mass of the particle.
2007.7.14

I think T finally believe in the equivalence of provability-expressivity of
intuitionistic and classical multimodal logic. The key to the proof being
sensible is precisely a focusing discipline for both systems.

69

Intuitionistic system:

Contexts T,¥,Q == .| A"
Props A n= U—p
r=w VQ—p)t e V. (T] ,QFp)
(¥ —p)"kp IR
Classical system:
Contexts A2 == -|]AC"
Props C = plp* |[AE|VE
ACY

Aapapl‘u A7le}
AZY YCreE (Al ,CW)
ANEL ANEL

Double-negation translation:

Al & AR«

p =D
(p)"=-p
The rule A*LT:_* is admissible. Proof analogs of other rules go like
7 . L A Z %

A% p,p— *F % m
VO € E. (A*] T F %)
A" F~(29)
NN

70

Box-translation:
xu=t|f

r'p*4 & Thkp
Ve | < TFHY

(AT AT) = ((AD) ™ (A ™)
(T —p)'=\/(\/ ¥ p)

(¥ —p) = A\, p")

Classical proof analogs of intuitionistic rules go like

r\/ ey p.pt L
Ftv\/(\/ ‘llfap)vpl (3
IRRVIAVA ZR)L

VA) e vl (1] L9t 1)

VA©,) e vl (T L A©S) D)
INRVAZN

The important thing about this second proof is that \/ U/ cannot survive
to the top right, because of modal exclusion.

Hmm... Actually, since to complete the proof I would have to take

advantage of the invertibility of \/ anyway, I basically want the induction
hypothesis to actually be

I pt | r
VAT e U.(If L AT L) r

s Fop
& Fw

which would allow me to restore the more symmetric definition

(T —p)'=\/(¥,p)

Alternative classical system:

Contexts AE == -|AJ
Judgments J = Ct|Cf"
Props C = p|AE

71

ACtl AlLCfY
Aptpfl Acvl Acy
AEY VJ e E. (A, J)
ANEL ANEFY

Hm, this doesn’t actually seem any simpler.

Classical Logical Framework?

Contexts AE = -|Az:,V
Substitutions o = id|B.o
Classifiers V = v|v-|AE|IVE
Base Classifiers v = | U,
Branches B = =.E
Expressions FE m= zfo] | z[B] | y[z]

Ayz:vy:vtEylz]
x:n/\EEA AZFE | x:n\/EEA Abo: =

AF z[E.E] | AF zlo] I
A|n,u:V}—El} Ato:7T o
A (uE)o: (T,x:, V) Aflid:-
m>n Au:vtFE| At v = class" !
A F U, = class” AF u.E = class”

Maybe disjunctions are not allowed to be dependent? Conjunctions are
basically ¥, right? Good lord, what happens if you try to perp a A\, then?
Maybe this doesn’t work after all.

2007.7.15

The solution to dependent sigmas being hard to refute might just be
dependent nand!

Classifiers V 1= wv|ov"|XE|NE

2:NE€A VY, u:V)<E(AE u: V' F M)

AF 2=, u.M] |

72

where < means ‘is a prefix of’

(v)r =v
(/U)L — ,UL
(ST) = NT
(NO)* = X0

Maybe this means splitting the context into true and false assumptions
is the right way to go after all.

Booleans b = t|f
Contexts AE = - |Ajzy, V
Substitutions o = id|B,o
Classifiers V' = v|XE
Base Classifiers v = B|U,
Branches B - EE
Expressions FE w= zlo] | z[B] | ylx]

Y ifn U, T ign U EA

Ak ylz] 4
T YEEA AFo:ZE z:XEEcA AEFE|
At z[o] | At z[E.E] |
Ato:Z Al x5 V{s/E}FE|
Abid:- AF(x.E),0:(E,u:pm V)

2007.7.16

The remaining thing about classicizing LF that still confuses me is what
happens at the classifier level. Since these systems seem rather insensitive
to what the base classifiers are, I'm tempted to define classifiers and context
validity by something like

Classifiers V = v|XU
Base Classifiers v == (uw.E:v)|U,

(T, \I/)‘n FV < class
Uz, Vetx
' Wctx '+ v =" class
I'F XU « class I'F v < class

73

NuiysovEE] I'Fo=""!class
'k (u.E:v) =" class
m>n

I'+U,, =" class

2007.7.17

In fact the apparent insensitivity of much of the metatheory of LF ex-
tensions is quite frustrating! I suppose I want to by fiat impose a constraint
that type checking should maintain the invariant that all contexts and in-
put types should be valid, but it’s not clear where this constraint comes
from. If one was more liberal about allowing the presence of ill-formed
types, what damage would it do to adequacy theorems?

I would conjecture that the answer is ‘none’ but clearly we want kind-
checking in day-to-day Twelf hacking. If I write down a clause of a meta-
proof, then it being ill-typed is fairly disastrous. Already I want to use the
refinement ability that dependent types give me at the kind level to provide
a sanity check on my definitions.

2007.7.18

Nv-FR=wv
AR < 0.0
z: IYwel lFo<=v hyp(7)
'k z[o] = v{o/T}
raj-M«<V{o/¥} Thro<®
''-Mo<=V,x2:;V

I'F R = type
I' F type = class I'F R = class

(T,¥) * j -V < class ' W ctx I' ¥+ v = class ' Wetx
W,z Vetx I' = IT¥.v < class

Claim: we should only type-check in valid contexts, against valid types.
Claim: FT'ctx and T' - U ctx iff - T, ¥ ctx

Postulate Let x € {@, x}.
< is reflexive.
ixj < (ixk)x(jxk)

74

If ¢ < j and hyp(i) then hyp(j).
Both @ and x are monotone.
hyp(7Qj)

If hyp(j), then i j <1

Lemma 0.15 1. If T <TI” and T+ J, then T'F J.

2. If =T ctx, then - T' % j ctx.

3. IfTxj, Uxj FV < class and Tt 0 < U, then thenTQj - V{c/¥} <
class.

Proof
1. Easy.
2. Suppose
I'sxjFV «<class FT ctx
FI,z: Vetx
We need

(Txk)*j*kFEV < class FT*kctx
FLxk @ Vetx

So appeal to lemma and induction hypothesis.

3. Easy.

Abstract stories:

X tried to do something, and succeeded.

X tried to do something, and failed.

Once a thing happened that nobody expected.

X loved Y, but Y did not love X.

X loved Y, but Y did not know.

X loved Y, but Z, powerful, disapproved.

X had a secret, and Y discovered it.

X loved Y, and Z loved Y also, and so Z attacked X.

X did a terrible thing to Y, whom Z loved, and so Z attacked X.
X was angry at Y for no evident reason, confusing Y.

X built a thing, but Y destroyed it.

X was told a thing was impossible by Y, but X did it anyway.
X was told a thing was immoral by Y, but X did it anyway.

75

X looked for a thing, and found it.

X expected Y to do a thing, but Y did not do it.

X said to Y something that did not make sense to Z.

X believed a thing about Y which turned out to be false.
X attacked Y, and eventually X won.

X attacked Y, and eventually Y won.

X taught Y a skill, and Y used it against X.

X taught Y a skill, and Y used for X’s benefit.

A thing that happens routinely, happened for the first time.
A thing that used to happen, happened for the last time.

A place was discovered.

X warned Y about a thing, and Y suffered for ignoring X’s warning.
X predicted a thing, and it happened.

X tried to do a thing and succeeded in an unexpected way.

2007.7.26

ICFP was fun, but difficult. Plenty of secrets remaining.
Hacking on some wavelet-ish code. The idea is to first time-divide the
signal f by partitioning it recursively into segments of equal

(@ ds

and then treat these as if they were equally long for the purpose of a
Haar transform. The partition naturally results in a (generally unbalanced,
because of the time-division bias) tree whose leaves are single samples, and
doing the Haar is as simple as usual, by propagating sums and differences
up the tree.

One can then chop up and rearrange the tree, or scale the Haar co-
efficients in some way dependent on their depth in the tree or whatever.
Chopping out the top of the tree does a sort of weird high pass, and chop-
ping out the bottom gives a very square-wavy low pass.

2007.7.27

I can find little merely type-theoretic evidence that the context restric-
tion operator requires the stringency that proof-irrelevant equality does. 1
think the right setup is:

Specify a pointed partial order (P, <,0) and operations &,®. The for-
mer is for terms, the latter for contexts. We require only

rox >0 TQy<zroy

and
z <y m >0

(zxz)x(yxz) >xz*y
Txm < Yyxm rxm< T

76

for x,+ € {©,@}. Some relevant rules:

T IV el 'CFo<=v m >0
'k zlo] = v{o/¥}

Fremb M« A{o/¥} Troe®
'EMo<=V, 2, A
Wait a second... it seems that (x ©2) @ (y © z) > z @ y leads to

oy ooy zzoy
and since (y ©y) > 0 we get
(zoy ooy <zoy

hence x © y < x © y, so that axiom is redundant. This means that if also
always x @ x > 0, then the two operations are indistinguishable. In the case
of proof irrelevance, + © + = + % 0.
2007.7.28

So in the case of the labelled linear system, I think I can conclude that
the world variables are not proof-irrelevant hypotheses at all, since they are

involved in types in such a way that their equational identity is critical.
What is irrelevant are the proofs that terms belong to certain refinments.

Here is an alternative-to-HOAS idea:

* 1 type -> type.

@ : xA -> A -> type.
just : A -> %A,

yes : (just M) @ M.
+ 0 kA > kA > KA.

0 : *A.

inl : C@N->(C+D) @N
inr : D@N -> (C+D) @N
ctx : type.

Cc : *ctx -> ctx.

sub : *ctx -> *ctx —-> type.
tm : *ctx -> ctx -> type.
atm : *xctx —-> type.

lam : tm G1 (c G2)

7

<- atm (G1 + G2)

app : atm G1
<- Gl @ (c G2)
<- sub G1 G2.

nil : sub G1 O.

cons : sub G1 (G2 + G3)
<- sub G1 G2
<- sub G1 G3.

leaf : sub G (just A)
<- tm G A.

or maybe

leaf : sub G (just (c A))
<- (G +4A) @ (c G
<- sub (G + A) G’.

which obviates the need for tm and atm.
Hmm... T don’t really need this high-powered polymorphism at all, do
17 T could just get by with a type *ctx.

Actually this bottoms out in deBruijn Hell anyway.

2007.7.29

Is it possible during unification to maintain the invariant that terms are
well-typed but do not necessarily satisfy the label refinements?

2007.7.30

T think some equivalence like ©A = (A — p) — p probably holds,
analagous to Deepak’s observation that (OA = (A — p) —o p (which I
think is in turn equivalent to (A — p) — p). The proof seems to depend
on some focussing reasoning with the fresh atom p being negative.

2007.7.31

Consider unification with metavariables just floating around, but intrin-
sically contextually typed, like uyg,. Variables v may appear in other us’
types, but presume that there is some stratification to prevent circularity.
A unification problem P is an unordered collection of equations M = M’
(or R=R or S=5'.) and assignments u < R. A problem P is solvable
if it has at least one ground instance.

78

We speak of simply typed and fully typed instances according to whether
substitutions for ugr4 have to be merely simply typed or actually of type
U + A with all the dependencies correct. We are tacitly assuming ev-
erything in sight is at least simply well-typed. A simultaneous grounding
substitution for all the free (unification) variables of a problem (and maybe
for more variables that don’t appear?) is an instance if it leaves all equal-
ities true, and is a superset of all the assignments present in the problem.
If a problem has an assignment in it that isn’t (fully) well-typed, it has no
typed instances.

A (not-necessarily-ground) substitution for some (maybe not all) @ of
the free variables of P is a u-solution if, after carrying out the substitution,
it is still solvable. Being solvable is obviously identical to having a --solution,
namely id. Some observations, though: the set of ¢/ solutions is completely
determined by the set of « solutions when v C u. The substitution 6 is a
v-solution precisely when it can be extended to a wu-solution. This means
that if P and P’ share a set of #-solutions, they also have the same set of
v-solutions.

We will impose on the design of the unification algorithm the constraint
that if P +— P’, then P and P’ have the same set of FV (P)-solutions. If we
make a further step from P’ to P”, they will have the same set of FV(P’)-
solutions, but a fortiori, the same set of F'V(P) solutions, since the set of
free variables monotonically increases.

Define FV*(P) to be the free variables of P not counting occurrences of
variables on the left of <, which are counted in F'V(P). We also maintain
the invariant that if u « M € P, then u ¢ FV*(P).

With all the above we should be able to show that the algorithm pre-
serves sets of simply typed instances of unification problems, and so we
can read off at the end what the solution is. If we care about dependent
well-typedness, then maybe we can chew through the instantiation, making
some other determinations about what must be equal for it to be well-typed.

However, it ought to be the case that unification also preserves typing.
A unification problem P is well-typed if all of its equations and assignments
are P-well-typed. An equation is P-well-typed if it can be given a context
and a type such that, for any instance of P, both sides of the equation have
the (substituted) type in the (substituted) context. An assignment is P
well-typed if for any instance of P its right-hand side does have the (substi-
tuted) type in the (substituted) context, both drawn from the contextual
type of the variable on the left.

There’s a question here of whether T mean to quantify over all (simply-
typed) instantiations or just the dependently well-typed ones. I think I can
get away with the former, for it is a stronger thing to know once I'm finished
with unification and need to read off the individual variable instantiations,

79

and I suspect it is still preserved as an invariant.
Inversion should look like

Nlo]™' =N’
PAulo] =N +— P[N'/ul Au— N’

No, wait, I need to think only about well-typed instantiations when
defining well-typedness of unification problems: specifically, to be able to
establish that the initial problem is well-typed.

2007.8.1

So unification should preserve sets of (simply-typed, from which follows
typed) unifiers and preserve well-typedness.
Let us claim that the rule

Rlo] ' =R
P Aulo) =R~ P[R'Jul Au«— R’

preserves unifiers for a set that does include u. That is, for any substitution
6 containing R,/u, we get the equivalence of = P60 A Ry[06] = RO and
E P[R'/uld AN Rs = R'6. 1 guess I am supposing that R itself does not
have any of the free variables of the simultaneous substitution 6. The
latter expression breaks down anyhow into = PO[R'0/u] A R; = R’ (again
implicitly assuming u not free in the output of #) which becomes just =
PO A Rs = R'0 because substituting twice for u has no effect.

Now for this step to go through it must be that ¢ is a pattern substitu-
tion, so hitting it with 6 does nothing. We must determine that Rs[o] = R0
and R, = R'6 have the same solvability. We just need as a lemma that
if Rlo]™! = R/, then in fact R = R'[0]. This means we are comparing
Rs[o] = R'9[o] and Rs = R'6.

The properties of pattern substitutions that make this true are that they
commute with grounding metasubstitutions #’, and that they are injective.

Why does this step preserve typing? To suppose the antecedent is well-
typed is to suppose that there is a I' and a such that for all well-typed
grounding substitutions @ that satisfy all the equations in P, we have

IoF (u[o])d =ab TOF RO= ab

and need that
YO+ RO = b0

for U I b being the type of u € A. We seem pretty stuck here!

80

Looking at Conal Elliott’s thesis, it seems that he does resort to a strict
partial order on unification equations, not just variables.

The problem I have understanding this idea is that even if I take the
substitution that resolves only the equations antecedent to the current one,
it still might instantiate u and leave me without explicit typing information
about o that I could pump through the definition of inversion and get
something reasonable out. Could I maintain the invariant that the variables
in an equation are disjoint from the ones required to be instantiated to
account for its ill-typedness?

2007.8.2

Here’s another unification idea. Define new typing judgments annotated
by a subscript P so that ' Fp M < A means ‘M has type A modulo
P’. Every particular rule remains exactly the same except for the synth-
checking boundary where I say

T'pR=a a=pa
I'tp R<d

where a =p o/ means: for all substitutions # that leave P solvable, af = a’6.

Now the invariant to be maintained is: (1) everything in sight is simply-
typed. (2) If M = N is part of the unification problem P, then there is a
I'and Asuch that TFp M < Aand T'Fp N < A. (3) If u «— R is part of
the unification problem P, and u: VF a € A, then ¥ -p R = a.

The invariant for equations of synthesizing things is, I suppose, that
they might synthesize to different things, but they will wind up equal.

To justify

Rlo] ™' =R

PAulo] =R PR Jul Au+— R’
We get by assumption that

Au:VtEal'kp o=V
Au:UFa;T Fp ulo] = alo]

and
Au:VEa;TkFp R=d

where P’ = P Au[o], and we are assuming a[o] =p: a/. Now if R’ is the only
term that can possibly satisfy u[o] = R, and it should be by injectivity of
pattern substitutions, then we also have, transferring from P’ to P, (noting
that u can’t possibly occur in a or o)

(A;T Fp o< U)[R /u]

81

(A;TFp R=d)[R /u]
alo] =p d'[R'/u]

Now o is a pattern substitution and R shouldn’t contain u by the occurs-
check, so we should be able to invoke some lemma like

Lemma 0.16 Suppose A;T'Fp o< W and A;TFp R=d'. If Rlo]™! =
R, then A; U Fp R = o such that o’'[o] =p o'.

to find that
(A;O)[R Jul Fp R = a”
such that o”[0] =p d/[R'/u] =p a[o]. Again, pattern substitutions are
injective, so a” =p a, as required.
2007.8.3

Summary of things to mention to Frank:

e Contextual stuff. By restricting all variables to have contextual
instead of functional arguments, both the substitution and identity
theorems go through nicely.

This tends to put some strong pressure on IIs and contexts to be
precisely the same.

e Base-type polymorphism stuff. We can construe atomic types
and atomic terms as belonging to the same syntactic category, likewise
unifying type- and kind-level TI. Variables of classifier ‘type’ can
occur in the context, obviating the need for signatures. They can be
instantiated by base types only.

This can be extended kinds, hyperkinds, etc., generally to a hierarchy
of universes.

This tends to put some pressure on types and objects to behave uni-
formly.
e Multimodal stuff.

By reasoning abstractly about colon-decorators, we find that we need
some operations © and @ satisfying some usual monotonicity, anti-
monotonicity, and compatibility axioms like

<y m >0

(xx2)*x(y*z) Z2axy
Txm < Yyxm rxm<x

and also to get the identity property we need x © x > 0 which entails
TQY<zTOUY.

82

The usual multimodal stuff satisfies this with two extra modes 1 and
T to represent things removed from the context, and things promoted
to be accessible by removed things. These two look exactly like proof
irrelevance by themselves! Except even for judging context validity,
we could take @ = © and allow irrelevant hypotheses to have types
in the promoted context. This corroborates the idea that the proof-
irrelevant modality (and variants of it) have an independent existence
from the proof-irrelevant notion of equality.

Classical version of LF.

Using the contextual multi-modal approach, it is fairly easy to syntac-
tically prove the correctness of both the double negation and modal
translations back and forth between intuitionistic and classical logic.
It seems that this should be extensible to dependent types more
cleanly than the old labelled approach. The novelty that I missed
before is not worrying about boxes as independent propositional op-
erators, but only allowing them as ‘parasites’ on —.

Although it’s not clear what the notion of well-formed type is in any
proposal I can come up with, it seems like ‘classical’ LF wants to have
a context of true or false assumptions where the basic type is some
kind of ¥. However, true assumptions of X should just automatically
decompose. The only interesting thing is assumptions that X is false,
right? Could T get by with true and false hypotheses at base type,
and false ¥s7 Seems unappealingly asymmetric.

Wait, no, even the true s carry modality information that makes
them interesting on the right. This is what makes classical modal logic
not pervasively asynchronous, and precisely what makes it expressive
enough to simulate intuitionistic logic.

Unification. There doesn’t seem to be any problem with ‘circularity’
in the typedness-justification of unification equations. Indeed the
equation v = ¢ u : p should be okay if v : 0 and ¢ : 0 — o, precisely
because it has no solutions.

However, rigging up Fp seems kind of logical-relationsish, because
I'm making what looks like a syntactic definition of something that
nonetheless has real powerful universal quantifiers down at the =p
leaves.

X 3k ok ok ok X

Circularity in the dependency graph among variables, however, seems
really sketchy. It’s not clear how complete pattern unification is,

83

anyway, so I'm not personally bothered by saying that Jw : o,u :
aw— o0,v:aw.(w=uwv)can throw a ‘constraints remaining’ sort
of error.

It looks like we want to extend the occurs-check for w down into the
type of u and v somehow, but not in order to fail, just to postpone. If
that check succeeds, it means that all the variables in the instantiation
for w can be moved in A to the left of w.

2007.8.4

Actually, why not allow cyclic dependent types? When I write ¥ T can
say to myself that what I really mean is something like ¥* :: ¢ where [1°
means ‘take only the variables and their simple types’ and [0 means ‘take
only the dependent types, as a list’. This way ¥? only refers back to its
left.

The substitution principle is something like:

IfT'FJand 'k o < VU then (I'\ ¥)0 + J6.

Simple Contexts I’ = | (T,z: 1)

Contexts A = I':v

Type Lists ¥ == |9,V

Term Lists o = -|lo,M
Types V = IAw
Terms M == MR

Base Types v = R/|type

Atomic Terms R == z[o]

A+T:UVFR=v
AF AR <INV
z: (T P.w) € A AF o< T{c/T}
AF zlo] = v{o/T'}
AFM<=V AkFo<=VU

Ao, M <=0,V Al <.
Simple typing:
T, +R= z:Tsel o<1,
FEAT..R<T, 'k zlo] =
TFM«<T, TFo<T,
o, M<T,,z:T, 'k«

84

T'+Uctx 'V «class
I'FU,V ctx I'F - etx
[TV - W ctx T+ v = class
I'FII: 0.0 < class

Context validity:

A+T:UFUcetx A+T:V¥ F o= class
A FIIT::W.v < class

2007.8.5

Negative deBruijn indices don’t seem to work the way I want them to
with respect to these contexts, sadly. However they seem fine for express-
ing constants in the signature should I choose to have one, since they’re
invariant under shifts.

2007.8.6

An interesting property of the mean p of some set of points z € R" is
that it is the that minimizes the second moment about z. For set to zero

the expression
d
7 (@@’ =) 2a)

i

and you get

nng ng T;
i i

sox==13.T; =p.

This allows a generalization of mean and variance to distributions on
graphs, metric spaces, simplicial complexes, etc. A point in a metric space
is a mean if it minimizes the second moment about that point; the variance
is the second moment about a mean.

2007.8.7

The ability to have circular dependencies seems to obviate even the need
to have universes in the language. Just allow

T'FR=w
I'F R = class

and start your signature off with, essentially, type : type!

85

2007.8.8

Doing cut-elimination for the proof irrelevant modality by itself, it seems
that an idempotent version of it is easier to show to be sound. The non-
idempotent version still is, but it depends on the absence of decompositions
at irrelevant modality, something that precisely the idempotent one allows;
so that if they are mixed, (and share the same judgmental notion of +)
suddenly the non-idempotent is unsound. One might be able to get them
in the same system by splitting + up into two judgments, one that permits
decomposition under it, and one that doesn’t.

2007.8.9

Noam pointed out to me Dummet’s example of

A-C BFC
T, AQB - C

as a connective that’s sound only in the absence of other connectives
like V. I wonder what its soundness proof looks like? T can’t reconstruct it.

Even without completely focussing the system, I think introducing cyclic
multi-ITs to LF would work fine. In fact, they would only really need to be
used during abstraction for implicit arguments.

2007.8.10

Here is an attempt at a higher-order pattern unification algorithm. We
take for granted the lack of ordering of unification equations and variables.

Postulate a dummy variable, call it __, at each simple type 7. It’s
actually the thing that pops out during pattern inversion when it’s not in
the image of the substitution. Consider it ‘outside the PER’ in the sense
that it’s not even considered equal to itself. The invariant on unification is
that we seek well-typed closed things to put in evars, so we won'’t ever put
_ in them, (at least not in closed terms) because it’s also not well-typed.

Faced with

ulo] = M

where ¢ is a pattern, we reason like this:

First of all, if o has any s in it, (I guess I'm allowing _ into the
pattern fragment, but I can weasel out of this by describing this as a move
on substitutions that are all-but-patterns, except for precisely the presence
of) replace u with something that projects them out. We can do this,
because in the absence of any non-pattern noise, the _ really would appear
on the left and induce irreflexivity of the PER.

86

If M has u at the top with a pattern substitution, do intersection. If
it’s not a pattern on the right, postpone.

Now consider the occurrences of u on the right. If there are none, great,
carry out inversion (creating _s) and execute the substitution throughout
the rest of the unification problem. We must also effectively add the equa-
tion M = M, but I expect this to be optimized away in most cases. If M
doesn’t have any occurrences of ., then we do indeed get to transform it
into T. Otherwise, we wait for some instantiation to bring it conclusively
into (or out of, possibly? I suppose I could wind up with = and have
to fail) the PER.

If there’s a rigid occurence of u somewhere, fail. If there’s only flex
occurrences, postpone.

That’s it!

One thing that confuses me is it seems like Twelf should already have
to cope with the flex-occurs-check postponement, even though the left-
hand side is a pattern. Why doesn’t this break the invariant of associating
postponed equations with evars that have non-pattern substitutions?

%ok kK k%
Yeah, considering both ways that u[z] = = A u[_] = u[_] could go
depending on which equation was attacked first, we get = _ in either

case, correctly failing.

The other thing is, if I ever get _ in a rigid position during inversion,
I pretty much know to fail. So it’s really only an extension of the pattern
language, (much like 7-short variables) not of the term language.

2007.8.11

I think I could do cyclic types in an otherwise normal LF setting by
having a pairwise cyclic ¥, like

%(z,y) : (A, B)
with rules like
' M; < [My, Ms/xq1, 23] A; (Vi)
D (M, M) < X(x1,22):(A1, Az)

Tzy: Ay, ze: Ao B A; - type (Vi)
I'F X(z1,22):(A1, A2) : type
I'FR= 3(x1,22):(41, As)

'k mR = [mR/x;)A;

87

Some ideas for how to cope with a module system.

Contexts I' == L|{{pz:C}|
I'wherex : V =M | Ty and Ty

Terms M = MvZ.R|[{ = M]
Types V = TIV.R|T
Classifiers C = V|Sy(M)| Sctx(T)
Atomic Terms R = L[{{=M)]
Long Identifiers L == x|LJt

2007.8.12

To do PCA on a dataset matrix Z that has individual observed data-
points as rows (centered so the mean is zero) look at the eigenspace decom-
position of the covariance matrix x ' z. The eigenvectors are the principal
components, and the eigenvalues are the variances.

2007.8.13

To reconcile labels with the style of unification I’ve been doing, it might
be necessary to attach a label to each equation and maintain the typing
invariant with respect to it.

A priority is to figure out which invariants I can actually get away with.

2007.8.14
Define a world-parameterized erasure A//p of HLF types into

Simple Labelled Types 7 == p|7m — 7o |Var
by
(Ilz:A.B)/p = (A)/e) — (B//p)
(Va.A)/p = Va.(A//p)
(ia.Ag//p = Alp/al/p

(AQq)/p = AJq
(a-S)/p=0p

It’s pretty easy to define typing judgments for 7; I would conjecture
the well-typed HLF terms are exactly the well-typed LF terms that satisfy
this typing judgment also. This separation might make unification easier
to talk about.

2007.8.15

I am leaning towards the equations themselves not being labelled, then;
the unification problem proper exists in the LF-world, and the typing prob-
lems exist in simplified HLF. The way they communicate is through (term-
only!) instantiations of existential variables, which have differing types (but

88

the same ultimately simplified) typs across the different parallel computa-
tions.

2007.8.16

So if T just create type-checking constraints at inversion time, they de-
compose sensibly until they get to evars, at which point we have more
suspended typechecking constraints. The only way we should ever have
some left over is if there are free term variables remaining — otherwise, all
the unification of labels should come back either true or false.

Unless perhaps it’s sensible (and/or required) to maintain connected
constraints through multiple phases of logic program execution.

2007.8.17

It’s still bothering me that I don’t know what the types would be, really,
in a classical version of LF. The point of double-negation translation is that
all the types you really have access to are either ——A* or —A* for some
translated A*, but then that would seem to imply one level up that the
only kinds you have access to are -—K* and -K*, which I don’t know how
to make sense of. Maybe I have to go back and suppose that ‘type’ is really
baked into the system somehow.

2007.8.18

In the event of working in the LF fragment of HLF, doing HLF unifi-
cation should cause little to no performance penalty, since label-unification
equation creation should take place in parallel with inversion, and the only
equations that arise will be € = e.

2007.8.19

The theorem corresponding to the definitions from the 14th is:

Theorem 0.17 T'tyrp Jp] if T~ Frrp J~ and TjJe = J/p.

for some suitable notion of erasure [0~ and proof system for types sim-
plified with /.
2007.8.20

Reading some work of Linger and Sheard. They provide at a certain
point as a tempting non-example the signature

nat < type
+ : nat — nat — nat
vec -+ Iz + nat.type
append : Tn,m + nat.vec n — vec m — vec (n+m)

This doesn’t work because + wants its arguments to be relevant. I'm
trying to see how I would do this in a refinement system. I would start out

89

just having vec : type, and then refining it to something like veen : nat —
type, but these are of different shapes. Does this make sense in william’s
system? I would also need two extra Vs to cover the way that append is
refined.
I keep coming back to the notion that Ref(A) should be a kind if A is
a type.
' A:type
I'F Ref(A) : kind
T'kr,s: Ref(A)
I'FrAs:Ref(A)

T T:Ref(A)
I'yz:BkFr: Ref(A)
I'-Va:B.r: Ref(A)
I'Fr:Ref(A) I'z:A:rbs: Ref(B)
'k a:r.s : Ref(llx:A.B)
I'FR= Ref(a-S)
' R< Ref(a-S)
And then veen would be like nat — Ref(vec) and append would be

app : vec — vec — vec :: Yn.Nm.Vd:plus n m p.vecn n — vecn m — vecn p

2007.8.21

A sketchy idea going back to some feelings [had about linear algebra and
variable-for-variable substitution, connected also to ‘first-class underscore’
in unification:

Imagine that terms are applicative trees — without much loss, let’s just
say lists — of variables. The set of free variables of a term is kind of like
the vector space that a vector lives in. E.g. consider a term that is abc.
If we want to substitute a for b, we’ll cons up a substitution that is the
identity on a and c. For clarity, let’s make the substitution totally change
the world. We’ll substitute A for b, A for a, and C for c. We want to make
this substitution a linear function, and since the set of linear functions
is itself a linear space, this should somehow be a sum of [A/b], [A/a], and
[C/c]. Each of these should further break down into a ‘recognition’ covector
and ‘generation’ vector. A covector for a transforms abc into the bitstring

90

(more generally field-element-string) 100 and then that ‘scalar’ times the
vector A will be A00. The operation that is glueing together these thingies
is linear, (not, for instance, bilinear) so that A00 + 0A0 + 00B = AAB.

I really don’t know how to tie this in with higher-order terms, though.
A does funny things.

2007.8.22

Okay, so in unification each evar has a type and a context and a label.
I want to believe that

JuuTkaplFM=N

is true if

JusaT~Fa"FM=N

and also

usTfebafpT]eku:afp

so at each evar down in the term I only have a substitution consisting of
terms. The erasure (1~ actually knocks world variables out of the context.
Really all T ought to do to show decidability of typing is to first show the
split of typing into LF typing and world checking, and then describe residual
unification over the latter.

2007.8.23

Raising is a bit sneaky. It’s intriguingly unclear when I can do it. Con-
sider the old equation

Z'z=f"(Xx)" (Y 2)

for Z linear but X,Y not. I get out that Z := f (X 1) (Y 1) and so it
must be that a = f (X 1) (Y 1) : @. As a consequence I’ll make up two
new world variables p, ¢ depending on « and I'll find that a - X 1: p and
abFY 1:¢q,and at the nil I'll get o = pq.

S EEEEE:

Irritatingly, ‘compiling’ linearity into labels obscures some invariants
that would I think be otherwise more evident in the original linear setting.
It may be that I can express them and efficiently detect them in terms of
labels, but it’s not obvious yet, that I can.

91

Some more coherent thoughts on linear algebra and the lambda calculus:

Normal Terms M == R| .M
Atomic Terms R == kH|RN
Heads H := c|x]1

where k is some field element. ‘Scalar terms’ are those all of whose heads
are 1, and regular terms never have 1 for heads. We can get a scalar term
from a term and a variable by an operation M (/x):

(Ay-M)(/x) = Ay.(M(/z))
(BN)(/z) = (R(/z)) (N(/z))
(kz)(/x) = K
(ky)(/z) = 0
(ke)(fz) = 0

We can also take a scalar term and a head and make it into an ordinary
term. We just go through and multiply all the heads by the given one. We
write this as M (x).

Now M(/x)(y) is kind of like [y/x] M, except a lot of things go to zero.
We need to define M C, which preserves all the constant stuff.

(Ay.M)C = My.(M((/y)(y) + C))
(RN)C = (RC) (NC)
(kz)C = 0
(ke)C = ¢

2007.8.24
Summary of things to mention to Frank:

e Type Validity. The issue of which atomic expressions should be
well-formed is clear, and this is all I need for HLF metatheory to
make novel sense. The question of which function types exist is still
less clear.

e Mutual Recursive Dependencies. This seems to clear up the
abstraction bug.

e Term PER for Unification. This seems like it might clear up the
approximation-step bug.

2007.8.25

The Linger & Sheard thing is still gnawing at the fringes of my attention.
The very fact that Ax.x ‘irrelevantly’ has type Ilx + 0.0 is highly peculiar,

92

yet it seems to hang together ok as a logic without worrying about erasure
or equality or whatever.

This is yet a different system, isn’t it, from the one where irrelevance is
idempotent? It sure seems to be. I can’t seem to prove ([[o] — o] — p) — p
in Awodey-Bauer.

2007.8.27

Game idea, with a competition structure akin to core wars, but a more
cellular programming model: your task is to lay out little laser turrets and
armor on, say, a 5 by 10 grid oriented vertically. The laser turrets each
have some NESW orientation, and can also be armored. An armor cell is
basically empty space plus some number of units of armor, and a gun can
have the same armor added to it at the same cost. Say armor costs 1pt
each unit, and adding the gun itself is an extra 1pt, but probably at least
one unit of armor is mandatory for any occupied cell (though cells can also
be left unoccupied) so a gun has a minimum cost of 2pts. Presumably there
is some spending limit on points.

The player also specifies an order in which all the active things (in
this case just the guns) execute. To compete, both players lay down their
machines horizontally next to each other (with one flipped) and take turns
executing the next gun in their queue. (If some get destroyed then later
ones move up in the queue) If a gun fires at a player’s own gun, the energy
is captured and stored. The targetted gun will then fire a shot of ‘more
energy’. Each shot defaults to one energy unit, but received shots are
added to that. If the energy of a shot equals or exceeds some bit of armor
or enemy gun, then the target is destroyed, otherwise it fizzles. If the energy
reaches the far side of the playing field, it scores points equal to the energy
times some number that decreases with the height above the ‘ground’ at
the bottom.

Turns are interleaved, but we can just average the two cases where each
player has the initiative.

2007.8.28

Consider personality testing. Trying to come up with a nice abstract
setting that reflects its measurement problems sufficiently. Suppose I have
a set of questions @) and a set of persons P. I can imagine that the universe
hands me a function ¢ : P x Q — R. Now if I have a distribution d over
P (say, the set of people I am likely to encounter and interact with) I
can start to talk about correlation of outputs of different questions. If 1
have g1, g2 then maybe it’s meaningful to think about the covariance term
Zp d(p)t(p,q1)t(p, g2). But then again I probably should make sure that
my data is mean-centered and varaiance-scaled, and so the distribution d
plays an essential role in determining correlation.

93

The question I want to ask is something like: suppose @ is closed under
linear combinations. (Hopefully the linear structure on @ I intend is obvious
— construe it as the dual space of P with ¢ acting like application) Can we
discover any intrinsic structure in P without any guarantees that our set
of questions might be wildly redundant?

2007.8.29

I find myself staring at the counterexample to Pfenning 01 that looks
like

o : type. j,k : o.
a : o —> type.

b : {x:0} a x.

¢

: {x/o} {y/a x} o
CJ(bJ)—'?ck(bk)

and thinking that it could be ‘fixed’ by a encoding into canonical irrelevant
LF maybe by using sigmas to package up collections of arguments that
are all irrelevant. The thing that threatens to break this is of course the
possibility of interleaving irrelevant and relevant arguments.

2007.8.30

The damning thing about the above example — and I'm pretty sure I
discovered this a long time ago — is that you can’t replace an irrelevant
subterm with another at the same type and retain well-typedness of the
result, or even typability with respect to other irrelevant changes. Take the
signature

o : type. j,k : o.
a : o —> type.
b:aj.

¢

: {x/o} {y/a x} o

and consider cojob. It’s well-typed, but cokob is not, nor is there anything
we could replace b with to make it well-typed. Contrarily in a well-set-up
system I should have a lemma, like

Lemma 0.18 IfI',x =~ A+ B :type, and I'® - My, My < A, then for any
N we have T+ N < [My/x]*B iff T = N < [Ms /2] B.

Indeed I might have

Lemma 0.19 If By =; Bs, then for any N we have ' F N < By iff
I'EN < B;.

Let me try to prove that. I have to generalize at least to

94

Lemma 0.20 Suppose I'y =; T's and Ay =; As.
o I[fTTFN < Ay thenTs - N < As.
e I[fT'1 F R = C then there exists C' =; C such that T+ R = C".
o I[fT1 S : A1 > C then exists C' =; C such thatTo - S : Ay > (.

This probably requires some further well-typedness assumptions.

An attempt at the modal translation from intuitionistic multimodal
LF into classical multimodal LF: A judgment I' H M < V is taken to
Pk VP E M.

(VY = zpqys: VP
(H;Iw)DD = ATk vH)
()\\II'R)]E = k|9, kg.RkQ]D
(zlo)? = al(y.y>k)oT)
(M.o)P = (k.MP).oV
RY = tRY
The opposite translation takes I' = E || to I'* = E* = § and looks like
(e V)° = x: (V¥
(e ANO)* =z —(T%)
(xop AU = x4 2(T°)
(x e v)* = zipov*
(mpo)* = x5 (0%
(t.EY* = mkip[E*]
(zoy)” = ylz]
(z[V.E)* = z[AV.E*]
(y.E)* = My.E*

where £ : type and mktp : ((type — §) — #) — type are declared, and
-V =V — {and =¥ =11V 4.
2007.8.31

A person who recommends a certain lifestyle, or habit, or methodology:
they had better follow it themselves, else they are a hypocrite. Yet they
may still be criticized for recommending it, merely because it is that which
they follow. But the truth may be: they are merely following it, because
they have come to the belief that it is appropriate.
2007.9.1

I'm leaning back towards believing in the validity of the following sort
of move in unification:

95

(X[o] =Y (c- X[o"]) -]) > (X < Y[+ ()-])

The general claim is that I can rewrite a term with a rigid head, which
contains the variable being inverted in a rigid position, with underscore.

2007.9.2

Trying to make the thing from yesterday more formal. I think I need
something like two mutually-recursive inversion stages, though it’s possible
it might be three. The top-level inversion, when it encounters a variable,
will apply top-level inversion to each of that variables arguments, will it
not? This is the notion that finding ¢ - X while inverting for X should
be replaced by _ even if it occurs deep within a term. If ordinary (top-
level) inversion reaches a constant on the other hand, we get to go to rigid
inversion perhaps.

Okay, so if ordinary inversion encounters the variable itself, we are stuck,
unless we are at the very top-level, and both variables have pattern substi-
tutions, in which case we can do intersection. If rigid inversion encounters
the variable itself, it ‘throws an exception’ back up to the last place ordi-
nary inversion was called, leaving an _ there. If rigid inversion encounters
another variable, then it switches to regular inversion.

2007.9.3
ulfr] =ulla] = w06 NE)
ulg =M e M[ESAMESE = M
Qe M)EL = da(Mz/z.L")
(@-9)EL" = y- (Sl if w/y € ¢
(mS)[ﬁ]iu = if © & cod &
(c-)L = e (S
WD = vlofel}] ifv £ u
(ol =
(ulo]) €]} fail

2007.9.4

Ultimately the thing that justifies a move like

ulér] = ula] = u —u'[§ N &

is just the fact that R[¢1] = R[&;] iff there exists R’ such that R = R'[{1N&s].
All the business about the rest of the substitution vanishes because £, &> are
patterns, and the remaining constraints in the unification problem go away

96

because either as the conclusion or assumption we have R = R'[£ N &,
which is the only difference between them.

Also I think we need only consider closed instantiations as the partial
step before we talk about solvability of unification problems in the definition
of u-solutions. This simplifies things a lot.

2007.9.12

There’s a very torsor-ish problem with news reporting: it’s hard to
genuinely say that a certain sort of story is over- or undereported, although
it’s easy to say that one source reports more of a certain kind than another.

2007.9.14

Type inference in HLF is subtler than I expected. Maybe I want to do
it before n-expansion to allow type equality to guide my hand more?
2007.9.15

Wrote some code to visualize the set of words in a corpus, plotting
log frequency against average position of the word in a sentence. I tried
both taking an average of normalized word position (in the sense that 0 is
beginning of a sentence and 1 is the end) and nonnormalized (just take the
index of the word in the sentence, 0 means first word, 1 means second, etc.)

2007.9.16

Writing Bresenham’s Algorithm in ML is relatively pleasant. I can
interpose functions in front of the pixel-drawing routine to easily enforce
monotonicity invariants that make the inner loop easier to write.

2007.9.21

Type inference in HLF is still quite tough. Doing it before n-expansion
seems rather ugly. Three possibilities come to mind:

1. Allow for some extra term construct that signifies that n-expansion
stops in a particular place.

2. Do type inference based on quantifying the variables that appear in
the context or result.

3. Do type inference based on the worlds of the arguments.

The chief problem is that the quantification prefix of a free variable’s
type is not uniquely determined by the context in which it appears. Con-
sider for instance

c : {p:w} ({b:w} {g:w} o @ (b * g)) -> 0 @ a -> type.
k : {a:w} c X X.

and also think about

97

c: (a-oD->B -0 E) —> type.
(=c: ({a,b:w} A@a->D->B@b ->E@ (a *x b)) -> type.
k : cX.

Another notable issue is that apparently the lattice of refinements has a
bottom, so why not just always choose that? (Partial answer: because then
you would fail coverage. Fewer actual closed terms would actually satisfy
the refinement, so fewer things would cover)

Something like

J_(Tl e _)7_) :Val,...,an,a~Ta1(Tl) — ..._>T<xn(Tn) — TQq

TPy — oy —71)=1(n) — - — L(mm) — 7@p

Oh, but wait, we want (something analagous to) the most general uni-
fier, not the least. So this is backwards. Nonetheless, I also have a top,
which is erasing all the Vs and setting everything to e.

%k ok ok ok ok ok

I am mistaken about the T; it’s only so for closed terms. If you have
world variables, it is not so. The definition of T? illustrates that if you
allow free world variables in the ‘answer’ then you do indeed again have a
top. For all I know, all intersections also exist, but I doubt it.

More cases to meditate on:

c : {p:w} o @ p -> type.
k : {a:zw} c X -> 0 Q@ a.

I think the right reconstruction for k involves an abstracted free variable:
k : {a:wHb:w} {X:0 @ b} c X -> 0 @ a.

(If we define subtyping by n-expansion, then a single n-expanded occur-
rence of a free variable actually does have as its most general type the type
that it gets checked against, basically by definition.)

c : ({a,b:w} a -> a -> b) -> ({a,b:w} a -> b -> b) -> type.
k :cXX.

seems like X should reconstruct as (a:w a -> a -> a) so it seems some
unification is going on.
2007.9.25

Frank pointed out that things get even hairier for doing refinement-
intersection-by-unification if there are nested universal quantifiers. I ought

98

to investigate this. Apart from this issue, I fully expect that there are not
always MGU-like universal things in the refinement lattice, precisely be-
cause there are not MGUs always in unification. A specific counterexample
there would be nice.

2007.9.26
Got an antialiased polygon fill routine working okay in ML.
2007.10.2

Had a thought about the redundancy elimination stuff; could the gap
between synth and checking be filled by optional type indices rather than
type ascriptions?

2007.10.3

QOur sense of history is ridiculously underdetermined. Without being
able to have a conversation with the past, we claim inference of more about
it that I would feel comfortable inferring from even a conversation.

2007.10.4

I like and feel like T ought to imitate Scott Aaronson’s research state-
ment. It’s not merely a blurby ‘I aim to do such-and-such’ but a nice,
thorough assessment of the open problems he cares about, why he cares
about them, what they mean, what’s been done about them, and what he
hopes to do about them.

2007.10.6

In practice, the way I do logic risks approaching the study of arbitrarily
recursively defined predicates, but some of them certainly seem more ‘log-
ical’ in flavor. They are those that act as consequence relations, ones that
establish a relation with a transitive and reflexive flavor (even if the relation
is not actually binary), i.e. those that admit cut and identity. Moreover
we expect a certain modularity from logical connectives, that each has its
meaning explained independently. Sources of great worry:

1. Why can one get away with shoving things into the ‘judgmental part’
of thie logic?

2. How much of this can we fairly get away with?
3. What is the scope of the things we can fairly call ‘judgmental’?

4. There is a similar tradeoff between the environment and the sub-
ject being in control over which OO-ish and type-theoretic FP design
habits differ. The camp I’'m in says: a piece of code should absolutely
determine what it offers to the outside world, while the aspects phi-

99

losophy says that code should be available for manipulation by the
environment.

2007.10.9

Watched a BBC video about Buddhism. A bit fluffy, but interesting.
Again T am struck with the thought of: yes, it might be useful to prac-
tice mindfulness towards certain ends, but why accomplish those ends? 1
feel that Buddhism takes for granted the, ahem, desirability of ending suf-
fering, and honestly, I'm quite willing to personally accept that, but this
seems a kind of back-pedalling retcon as usual. What happens when we,
hypothetically, eliminate the desire to eliminate desire?

2007.10.15

Digesting Linger’s newer paper. He seems to have promotion properly
sorted out now, but types are still divides-type in many places, and that
seems very strange to me.

2007.10.16

Big questions:

. What is the role of logic?

. What is the role of the judgmental methodology?

. What is the connection between that and category theory?

1
2
3
4. ...Multicategories?
5. What is the range of sensible judgmental notions?
6

. Are judgments polar the same way that connectives are?

Some thoughts on a Stephen Pinker lecture on the modern decline of
violence: modernity and technology exert a collectivizing force on indi-
viduals by providing social tools and systems that only make sense to or
are only affordable by groups; roads, agricultural systems, intellectual and
educational systems, economic systems. But they also exert an individuat-
ing force by making individuals’ lives comfortable and longer. If individuals
die frequently, they identify with their families out of necessity, but without
that necessity, they are free to perpetuate their own ends.

2007.10.17

Consider the problem of economic incentives for work. It seems neces-
sary to assign resources in exchange for work, with a concommitant guar-
antee of property rights thereafter in order to make good on the meaning-
fulness of that assignation. But to whatever degree that (possibly abstract)

100

assignation enables the actual control of physical resources, it is vulnera-
ble to the ‘problem’ that physical resources are generally higher-order and
can be used functionally to create more: nature has an interest rate. This
creates a situation that has been considered unpleasant by many, that a
person could survive without working, living off the fruit of machines.

This is not apparently so different from simple food collection (‘hunter-
gatherer’ society minus hunting) except for the possibility that only some
people are allowed the right to directly gather. Even if we reached a state
of technological advancement where scarcity is not a problem even without
labor (which I suppose we have not achieved yet, pace even those who
suggest we have effectively solved the problem of scarcity while including
labor, except that systematic polotical reasons create artificial scarcity still)
something seems suboptimal if there is no incentive left to work to create
wealth beyond necessity.

I was made to think about this because of Larry Lessig mentioning in a
talk the thesis that copyright terms should only be extended prospectively,
not retrospectively, because we do not need to give any further incentive
for work already created. A slight strawmanning of this claim is that we
might as well snatch away money from laborers five years after they have
earned it, because, after all, they already did the work, and why should we
further reward them for it now?

The counterargument to that seems to depend on the fact that the
laborers contracted to do the work only on the assumed condition that
they would own their pay in perpetuity or until they voluntarily decided
to spend it. However, inflation is always a risk; the effective value of their
wages in fact can be effectively ‘stolen away’ (a loaded phrase, though! I'd
rather say ‘may vanish’) at any point in the future, in principle. This seems
roughly analagous to the uncertainty the musician would face after their
copyright terms expire; they may still be the beneficiary of the goodwill of
the community and not have their work impolitely appropriated.

2007.10.18

Playing with a Twelf puzzle tom7 discovered stemming from unification
involving peculiar higher-order ‘specializing’ clauses and functions such as

clause : pred ([x] A x) -> pred’ (A k).
function : pred k -> outputtype -> type.

The solution to HO unification woes was to wedge in a propositional equal-
ity to postpone the unresolvable equations until another stage of splitting at
which time the twelf-programmer is able to list possible cases of (effectively)
a Huet imitation phase.

101

2007.10.19

Advisor meeting today left me feeling dissatisfied. I am somewhat stuck
on a number of fronts.
2007.10.20

There ought to be a way of doing variable cases in Twelf that at least
appears modular: if only one could make context definitions, abstract over
them in higher-order lemma appeals, and incrementally add to them.

2007.10.21

I could sort of ‘finitize’ the polymorphism problems in HLF by doing
the refinement language like this:

Unquantified Typesv == 7 —>uv|p
Quantified Types 7 = VYaw
Worlds p == €|px*(a,n)
Substitutions § == €|, [p/n]

With typing rules like

MNa:wkN<wv
I'FN <Vauw
T'x:7THFN<wv
' N<=1—-v
x:Vaw el r-60:w TFS:7{0/a}>p
'Fz-S<p

I'EQ:p>p
'FM<«<r 'ES:v>p
PE(M;S):T—v>p

2007.10.22

Semiunification is when you have inequalities instead of equalities —
seems to get undecidable even faster than unification.

2007.10.23

I worry a bit still about substitution principles as concerns chrisama-
phone’s attempt at encoding OLF with operators rather than two species
of worlds.

102

2007.10.24

Whoops, the inequalities in semiunification are not held abstract, as |
suspected, but refer to the partial order of instantiation. Reading:

A Larger Decidable Semiunification Problem, Brad Lushman and Gor-
don V. Cormack.

Polymorphic Type Inference and Semi- Unification, Fritz Henglein’s PhD
thesis.
2007.10.25

Some discussion today with tom7 regarding the meaning of values, and
dan licata about binding.

A short play:

[There is table, with a cheeseburger on it. X stands in front of it, with his
arms crossed behind his back, looking attentive. Y saunters in. Y sees the
cheeseburger, delighted, and reaches for it. X, atl the last minute, observes
what is going on, and smacks Y’s hand out of the way]

Y: You can’t do that!

X: Why?

Y: That’s the very last cheeseburger in the world!

X: Oh. I see. I'll — I’ll have the salad, then.

Y: Well — actually that’s the last piece of any kind of food at all in the
world. Happens it’s a cheeseburger.

X: So, then.

Y: [Pedagogically] Mustn’t eat it.

[A little time passes. X wisibly impatient.]

X: Er — Why not?

Y: Obviously, if you eat it, there’ll be none left!

X: What good is it, exactly, to save it, if nobody gets to eat it?

Y: Well, you — you see the implications of — of — [Seems to be doing
arithmetic on his fingers] future generations will — uh — [Looks at X.
Their eyes lock, as if at a duel]

[Both lunge at the cheeseburger, wrestle over it. In the end Y gets it.]

Y: [mid-chew] The problem is, now I want fries.

2007.10.26

For a while I thought the natural unification-based reconstruction of

b : type.
c: ((b -ob) -ob) -> type.
- : cD.

103

which is to say, assigning to D something like the refinement
Wy s w — w — w. (Yo (Y8, 6] — [,]+) — a)

was totally wrong. But really, instantiating v with a projection that picks
out [loses no generality precisely because of the nested positive occurrence
of the quantifier binding 8. If I can figure out what kind of move justifies
this rewriting (notably back into a fragment I know how to do abstraction
over!) then I might have a decent reconstruction algorithm, and one which
is not too tied to LLF.

2007.10.27
We say 71 < 72 when they have the same shape (up to — and V) and

when there exists a substitution 6 over the free world variables of 75 (which
may have in its codomain free variables of 71) such that

x:1 b, (x) <7

where n-expansion is defined, as expected, by

Nry—7a (R) = Az, (R (777'1 (l‘)))
v (R) = Al (R _))
n.(R) = R

Lemma 0.21 If all the occurrences of some positively bound variable (3
are in the local contexts of one free variable, then we may replace that free
variable with (8 without loss.

Proof Sketch There are two directions to show. The first,

(VB.11) — 12 < (VB.1{P[B]/B}) — T2

is trivial by instantiation. The second,

(VB {P[B]/B}) — 2 < (VB.11) — 72
proceeds by seeing that

n{P[B]/B8} = n{P[B]/5}
B:whky _ <= n{P[B]/B}
FA(y) <= VB.n{P[B]/8}
y:Vmbtx Ay))<=
z: (VB {P[Bl/B}) — 2 b Ayx (A(y _)) <= (VB.11) — 72

104

Actually, T think I want to reason like this: My goal is to show that if a
type is of the form C[Vf.7], where the context-hole is in negative position,
then

Clvp.r] = C[vB.(r{P[p, B/ 5})]
where P is a free variable not already appearing in C or 7, and where p’
is anything else that might be formed from stuff currently in context. The
easy direction is

CWVB.7] < CVB.(T{PIp, 8]/6})]

which I get by instantiation. The less trivial but still reasonable direction
is the lemma

Lemma 0.22
1. If C is a negative context, CVB.7] > C[VB.(7{p/B})].
2. If C is a positive context, C[VGB.7] < CVG.(t{p/B})].

2007.10.28

Fragments for a play about identity:

[M1 and M2 are lying in bed]

M1: [Contentedly, but not looking directly at her/f Mmm, Mary. Last
night —

M2: [A light bulb turning on] My name is Michael!

M1: Uh, my name’s Michael.

M2: Yes!

M1: Right.

M2: Yes, exactly. My name’s Michael.

M1: No.

M2: [Confused] You just said yes a second ago.

M1: You can’t — you can’t just subsume your whole self into mine! I
thought — you told me you were a feminist.

M2: T am a feminist. I believe in rattles off some standard stuff. [Con-
spiratorially] Plus it helps me pick up chicks.

M1: You're a lesbian?

M2: [Laughing] No! Of course not! I'm a perfectly ordinary heterosex-
ual...

[M1 looks relieved]

M2: ...male.

[M1 immediately snaps back to not so relieved. He lifts up the sheet, to
inspect those parts of M2 hidden from the audience. He smiles again.]

M1: No, you're not.

105

[M2 does the same in reverse.]
M2: [Inezplicably sultry] Yes, I am.
M1: I think you mean ’you’.

M2: I think you mean ’me’.

M1: I think I mean ’me’.

2007.10.29

I think I should be able to prove the same sort of polarity-sensitive
two-part lemma to show that refinement reconstruction can actually assign
the (a?) right type to the eta expansion of a variable with unknown full
refinement but at least known simple refinement.

2007.10.30

The thing to remember about mutual recursion and parser combinators
is that the unit-applying auxiliary function that usually gets called $ actu-
ally needs to be part of the combinator library, and applies its argument
to unit ‘inside’ the application to the further argument that is actually the
next bit of stuff coming off the stream.

2007.10.31

It seems at least to be important to have a fake sort of binder (to
correspond to universal quantification over worlds) in the syntax, which
actually increments deBruijn indices appropriately, so that when we toss a
variable into the context upon decomposing a V, we don’t have to do crazy
shifting nonsense on the term side.

Xk ok ok K %
So here’s the plan about type reconstruction. Shapes are given by

Shapes s 1= Vs|s—s|e
Refinements 7 == Va7 |7—7|p

And given such a thing we can create a evar-laden guess as to what the
type of a II-bound but un-type-ascribed variable is:

Thkg(s1)=mn 'k g(sy) =7

I'Fg(e) = P[I

Fkg(sy —s3) =711 — 7
Da:whkg(s)=71
It g(Vs) =Va.7

The system for collecting unification constraints from type checking is
easy:

106

Tyx:m b M:m/C 'EM:m/Cy TES:m>p/Cy
'kXeM:m —1/C DH(M;S): 1 — 12/C1 ACo

Fa:wkM:7/C 'k S:r{Pw)]/a} >p/C

'+AM :Va.r/C T (_;9):Var>p/C
x:7T€T reS:7>p/C
'z -S:p/C I'E(0:g>p/p=q
Now n-expansion can be defined by shape:
Nsy—s:(R) 1= Am.ns, (R 05, (2))
vs(R) = Ans(R _)
ne(R) = R

The claim is something like

Lemma 0.23 Let s be the shape of 7. Let 7' be one particular choice of
evars for g(t). Run type inference

x: 7 Fns(x):T/C

Then doing unification on C will result in a substitution that will make 7/
equivalent to T.

The trouble is that this isn’t quite true — it takes some extra moves in
the abstraction phase to eliminate the remaining free variables in favor of
bound variables of the appropriate polarity.

2007.11.1

What would a constructive theory of probability look like? Neel sug-
gested to me the axioms

P(A)=1if A

PA)=0if H-4
P(A)<PB)ift A+B
P(AV B)+ P(AANB)=P(A)+ P(B)
And I think T could simplify this to just

P(M)=1

107

P(L)=0
P(A)<P(B)if Ar- B
P(AvVB)+ P(AANB)=P(A)+ P(B)
Then how do we account for conditioning? Maybe by changing them to

Pr(T)=1
P(L)=0

Pr(A) < Pr(B)ifT,A+ B

Pr(AV B)+ Pr(AAB) = Pr(A) + Pr(B)
Pr(A|B) = Pr.p(A)
Pr(A|B)Pr(B) = Pr(ANB)

2007.11.2

Here is a notion for how to use substructural features to encode freshness
and apartness of names, following bob’s suggestion. The setup is quite
similar to the encoding of a stack machine for miniml in LLF done by
iliano and frank.

name : type.

val : type.
inst : type.
final : type.

% stores are name/val pair lists

store : type.

stnil : store.

stcons : name -0 val -> store -> store.

% some expressions and values
ref : exp -> exp.
deref : exp —> exp.
loc : name -0 val.

% some instructions

ev : exp -> inst. J evaluate

return : val -> inst.

refl : val -> inst. % suspended ref
derefl : val -> inst. 7 suspended deref

108

% this is the same hack as in frank and iliano’s thing,
% to allow final states to be open
new* : (name -0 final) -> final.

% continuations are (val -> inst) lists
cont : type.

init : cont.

; : cont -> (val -> inst) -> cont.

% exec taks a store as well
exec : store -> cont -> inst -> final -> type.

% these are the easy ones that just push
% something onto the stack
ex_ref : exec ST K (ev (ref E)) W

o- exec ST (K ; refl) (ev E) W.

ex_deref : exec ST K (ev (deref E)) W
o- exec ST (K ; derefl) (ev E) W.

% these are when we get back a value
ex_refl : exec ST K (refl V) (new W)

o- ({n :” name}

exec (stcons n V ST) K (return (loc n)) (W n)).
ex_derefl : exec ST K (derefl (loc N)) W

o- (lookup ST N V & exec ST K (return V) W).

% lookup a name in the store
lookup : store -0 name -0 value -> type.

lookup/here : 'a (lookup (stcons N V S) N V).
lookup/there : lookup (stcons N’ _ S) N’ V
o- (N # N’ & lookup S N V).

% apartness
: name -0 name -0 type.
irrefl: {1 :~ loc} {1’ :~ loc} la (1 # 1°).

The new notations are {x :~ A} which means Vo : wIlz : AQq, an
affine modality 'a(A) which means |3.Va.AQ(« x 3), and zero-use impli-
cation A -0 B which means Va.(AQ«a) — B.

109

2007.11.3

The reason that nullary implication works on kinds is precisely that it
has no funny business that it applies to the codomain.

2007.11.4

Here is a problem with type reconstruction still:

z:VaVB.Pla, Bl F AA(z _) < VaVE.p(a, B)
a:w,f:wka < pla,f)

P[Q[O&, ﬁ]’ R[Oé, ﬂ]] = p(O{, 6)

like if p(a,) = a*xax (G then P =axf and R = axf and Q = «
works, and so does P = a*a* (8 and Q = « and R = §. Even in like

z:Va.Pla)F Alz _) «Va.axa

we have an ambiguity in the equation P[Q[a]] = a * a as to whether P or
@ duplicates its argument.

2007.11.5

The above problem seems to be benign for linear (and n-ary) functions
precisely because there is the single « attached to the domain that makes
appropriate-polarity equations still unambiguous.

During my advisor meeting Frank drew my attention to the question of
whether evars created during coverage checking need to have underscores
attached to them. I don’t believe they do.

2007.11.6

Need to figure out whether Alberto and Frank’s 0-use business is iso-
morphic to what I'm doing.

2007.11.7

Ok, so the nullary arrow in either system is

I'a:w,z: AQa - M < Blp]
'+ Az.M < A —4 B[p]

and their intro rule I can I can consider the same, but their elim is
something like
(mine)

I'FR= A—¢ Blp I'Qe - N < Ale]
IR N = By

110

where ‘I'Q¢’ is an operation that I can’t necessarily see how to define;
perhaps grab all world variables in I" and substitute e for them? No, this
doesn’t seem to satisfy local contraction.

Is there any left rule that would go with a modality that on the right
does the following?

F@e - Ale]
'+ xAlp)

2007.11.8

The nullary arrows are definitely different. The promotion in the Mo-
migliano-Pfenning system allows irrelevant things (once promoted) to be
used as the arguments of unrestricted functions, which isn’t the case in
HLF unless unrestricted functions are interpreted as w-ary use.

2007.11.9

Some funny things go on algebraically in chrisamaphone’s project. Dis-
tributivity isn’t obvious at all.

2007.11.10

In fact, is there special behavior for when we try to weak-bang a single-
ton ordered context? Not sure.

2007.11.11

The ability for some ASL verbs to incorporate subject and object actu-
ally depends on their gestural structure — I suppose this is like a language
that marks some feature by voicing, an operation only supported, let us sup-
pose, by some consonants in the phonetic inventory of the language. Like,
it might have m and n and lack voiceless counterparts of them. (Voiceless
nasals are pretty rare, right?)

2007.11.12

I am worried still that any paper I might write about unification in HLF
would wind up not essentially being about unification since the separation
is so straightforward. Nonetheless, the term constructs that I added to
make type reconstruction easier complicate things a tiny bit.

2007.11.13

Talked with neel about a strategy for proving the correctness of stateful
but ‘essentially functional’ things like gensym.
2007.11.14

As for unification:
I think T have paged back in the argument for why preserving all sets

111

of unifiers preserves well-typed unifiers. I expect the definition of =p is
concerned with equality under only simply-typed solutions to P.

The ‘underscore’ approach might require underscores to appear in gen-
eral head positions, not just substitutions, if we push inversion across lamb-
das. In this case the notion of ‘rigid occurrence’ needs to avoid locally bound
variables.

Thing to watch out for: what guarantees that types are all sensible
when I project out just one underscored argument in a pattern?

The right way, I think, to phrase the notion of solutions in a given set
of variables, is in terms of projected subsets of simultaneous substitutions
for all variables.

Mental health self-instruction: no more craigslist. No more reddit, digg,
or del.icio.us frontpage.

2007.11.15
Talked to rob a bit about logic programming and Girard and stuff. I
still can’t wrap my head around why Girard thinks the way he does about

logic. For my own part, the biggest blot is a lack of understanding of what
cut principles are okay.

2007.11.21

A new thought on the completeness of focussing.
Translate into ordered logic with two positive atoms p and ¢ that act as
key-tokens.

A=vFt |oF~
Fr=Ft@F™" |d+A
F-=Ft - F~ |d”A
Define X and j and X and i}:

T
A =ped
X X X
— —
vFt (g—p)eFTeg Ft
— —
vE™ F (q—p) - F
= =
dtA q—»(q;!A) p—>A
d-A pelA g— A
— - —
F1+®F2+ q—»(FﬁoFfroq) FfroF;
Ft — F~ F%i (FTH»F_'_)

Now prove:
Lemma 0.24
— —
1. A;pH A
— —
2. IfQ,q, FY, Q' - C, then Q, FT,q,Q +C
«— —
3. IfQ,qF F, then QF F~

Proof By induction on the proposition.
1.

Case: vFT.

php F*I—FZ’dR
p,FtFpeF™ qFq
(q—»p)vq,F+Fp°F+i
(q—»p),‘li,qHDOF+ ol
(g—»p)eF eqkpeF™ pEop
p—((g—>p)eFTeqiprpeF+

—»

h.

— L

Case: vIF'~.

— id
F~FF™ pkp
.

p—»F;pl—F qtq

= A»L
p—~>F q—>pqbF~
——i.h.
p—»>F ;q—>pkEF~ I
p—>F ;- F(g—>p) > F~ pkp

p—F";pFpe((¢g—+p) — F)

o R

113

i.h.
— —
A;pE A Ass.
'L,>R
— — =4
1AFp—» A Q.qp— A,QFFC
— cut
Q,q1A,Q FC
—.L
—
Q,qe!A. Q' +C qtq
—
Q,q—» (qe0'A),q, QY +C
Case: Fit @ FyF
id id
Z*Tfr)l—F—l+> F?I—F? R Ass.
[]
FR R R o F 0.q,Ff o F; 2K C
— cut
qu,Fer;’Q/FC.h
i.h.
QF .q.F Q' FC
— i.h.
QO E g, Y- C
— oL
O FfeF eqQFC atq
N

—
0,q— (F e Feq),q, Q0 FC

Case: d— A.
— — i.h.
Ass A;pF A
oL, !L
= =
Q,q-pelA pelAF A
cut
Q.qkF- A
—
QFqg—» A

114

Case: Ft — F~.
id

— L

id

Ass. Fr+F* F~FF~
— R — =
QqFF" - F~ Ft = FtF~
O,q FF - F~
—————

O, Ft g F~
—_———
QFTFF~
—_———
QF Ft — F~

cut
i.h.
- R

2007.11.24

I think it would be sensible to have some kind of reversal modality (and
corresponding judgment) in ordered logic. Say the two judgments are

ju=blf
(‘backwards’ and ‘forwards’) Define Qf by
(A1 1y An Gn)T = A gl AL]

where b' = f and f = b. The principal judgment is Q F; C, and Q -, C
is a derived judgment defined as Qf ¢ C. The left and right rules for
connectives are always defined for hypotheses of the ‘forwards’ judgment,
for a typical connective like - would be like

O, Af+; B UH, A QBf,QYH;C

QI_JA—»B Q,A—»Bf,\l/7Q/|_jC

and for the reversal operator
Qi A Q,Apk; C
Q}_] *A Q,*Afl_JC

The cut principles are:
QA Q1,Ab, Q- C Qks A Q,Af,QFC
0,00 Q- C 0,0, C

2007.11.25

The funny thing about focussing in ordered logic is that the asyn-
chronous decomposition looks very different depending on whether you

115

started on the left or the right. On the left, there is stuff on the left
and right fringes of the context, but if you start on the left, all the action
is in the middle.

2007.12.8

Trying to push the nicety of the completeness proof back into soundness;
not working so well.

2007.12.9

Thought a little about Dan’s claim that pattern matching on intensional
function spaces is kind of like a positive arrow. Not sure I agree at all. The
only way it even starts to work out is if the arrow is asynchronous on both
sides, and even then it looks like it wants to turn cointuitionistic on the
left. In which case it’s something more like =A A B rather than A = B.

2007.12.11

Frustrating thing about trying to import Luis’s notions into HLF-land
is the Il heritage of Twelf-like systems.

2007.12.12

Dan and Noam explained the positive arrow stuff to me today. I think
I get it, though haven’t fully digested it. At the very least I understand
better the way that Noam derives asynchronous rules from synchronous
ones. Less sure about whether I feel that it’s ‘modular’.

2007.12.13

For everyone that says “why does everyone have a crush on me” there
is someone who says “why does no-one have a crush on me” and vice versa.

On emotions:

(my perhaps over-Westernized notion of) Buddhism teaches some sort
of control or abandonment of emotion as attachment. This harmonizes
well with an already-present sort of analytic, pragmatic, utillitarian, reduc-
tionistic tendency that says: look, if it doesn’t do you any good to hold
a grudge, and it does do you harm, then don’t. But the one (religiously
enshrined) source of this reaction gets more respect, sometimes, and the
other is more often brushed off as geeky roboticness, emotionlessness.

I have emotions, but they have harmed me. At greater distance, they
harm me less. T have negotiated this distance, perhaps inexpertly. (Forgive
me.)

It does no good to assert without evidence that it’s important to em-
brace (worse: cling to) or to ignore (better: transcend) emotions. Who
knows if it’s important or not? It may be that (and it is sometimes as-
serted that) we can’t or shouldn’t fight “nature”. I could accept the “can’t”,
at least, only if it happens to be true: but it seems that with effort, one can

116

partially beat it. Without construing it as defeat: one can mold oneself.
Here is what bothers me. The smug, pitying belief that if one does not
follow certain rules of accepting (as opposed to ignoring or defusing) grief
or anger or whatever, then inevitably it will come back to bite you. However
true this might be, it doesn’t seem to have careful evidence on its side, but
rather anecdotes. 1 could be ignorant of the appropriate evidence.

On the other hand: how could one prove that there is not a methodology
which allows you to escape this? Here the proponents of emotion-positivism
seem to fall back on ‘hmph! well, I can’t imagine such, and looking for it
is clearly wrong-headed’.

Besides which, the line between emotion and non-emotion is always
suspect.

Science (or as far as I care the useful part of it) is merely the combination
of curiosity and the application of some techniques to avoid obstructions
to understanding. It may be identified with these techniques, but perhaps
more successful techniques may be discovered.

2007.12.15

The changes on the topic of thesis: lake over water, “exhaustion”. Con-
tainment leads to intensity. Read as: determine the work that needs to be
done, in order that it can be completed with focus.

The function of (a function of) examining divination systems is merely
the practice of introducing randomness with a particular flavor, to jostle
oneself out of local minima. There is not really ‘true’ or ‘false’ randomness,
but there are different distributions: it may be useful (or at the very least
interesting) to shift my distribution around.

2007.12.22

An essential insight of postmodernism: more truths are more modal
(time-indexed, place-indexed, sex-indexed, culture-indexed) than we ex-
pected.

An essential insight of “How to Win Friends and Influence People™ to be
more influential over a person’s decisions, become that person to a greater
extent. When I say to myself ‘I shall do this’, I believe it because I am
saying it. When I expressing sincere interest in another person, it blurs the
boundary of their identity slightly; I am on their side, I have their interests
in mind, etc. To a slightly greater extent, I am them.

There is statistical learning on the one hand, and cognitive learning
on the other. But there seems to be another form of ‘learning’ spoken of
that is not any more than paraconsistent, but still effective as a means of
memorization: call it narrative learning. HtWFalP is basically constructed
out of anecdotes and epigrams, tagged with morals. Nothing prevents us
from learning bad lessons this way, but given human psychology, it appears

117

to be an effective way of (for better or worse) imparting beliefs.

2007.12.29

I can write the following sort of stories. What can be deduced from
this?

One.

There was a being who thought himself a god, who thought himself
omniscient and omnipotent, because he knew the extent of the universe,
and every query he posed to himself came back with a certain answer, and
each answer was correct, and he knew that he knew everything, and if he
posed to himself the question of whether he knew everything, the answer
came back yes.

But he was wrong. Look: here is our own universe, of which he knew
nothing.

Two.

A writer wrote a story, in which a character recited a magic spell that
allowed him to escape the story he was in. Immediately, this character
appeared next to the writer.

2008.1.1

There are dilemmas of the aggregate. If I do this, it causes this much
harm, but that is small. However, if everyone does it, the damage is great.
Am T responsible?

The question is: the aggregate may be harming itself. If it is to avoid
doing this, it must engage in cognition at a level that corresponds to the
problem, which is to say, not at the level of me.

Perhaps, however, I am part of this process. I need not know it for it
to be true.

2008.1.2

Consider the notion of synthetic judgmental structures.

We specify them by giving a translation of propositional connectives
in the synthetic system, into expressions in a known logic. I suppose one
would allow some sort of state-machine-ish system to emulate sensitivity to
polarity or other (perhaps non-binary) such features.

But we at least need extra expressional functions on the hypothesis and
conclusion side, saying at least what one hypothesis and one conclusion
look like, from the outside.

We can then demand without any further use of imagination a limited
form of identity and cut.

Say our known logic has a language o of propositions. We ask first of
all for propositional functions H,C : 0 — o (this — is really the intensional
‘Twelf’ arrow). Let p be the new, synthetic language. For each connective

118

k:p" — pwe ask for k: 0" — o.

So we can easily translate a particular proposition A : o into A : p
by changing each k in A to k. Our imagination is temporarily limited to
singleton (think: created by monadic injection) contexts, so we translate

the sequent
AFB

to
H(A) - C(B)

The question is: does the burden of proving this mere transitivity form of
cut elimination plausibly (essentially) require the full theorem?

2008.1.3

Claim: If;H(Zl) FiC’(Zg) and H(Zg) = C(Zg), then H(Zl) F C(Zg)
If always C(Az) - H(Az) then we’re done by appeal to cut-elimination in
the original system, but it may not always be this simple.

2008.1.4

SML still suffers from serious annoyances when it comes to implementing
long sequences of translations between highly similar languages. What
would fix my headaches? Maybe polymorphic variants? I'm not sure.

2008.1.6

I' H A is correct notation when A is interpreted conjunctively. If A is
interpreted disjunctively, this is really I'; A b #.

2008.1.7

The thing that struck me about positive arrow is that, when combined
with disjunction, it is simply not familiar logic, by the distributivity over
disjunction that as been observed. This means also that Briinnler’s deep in-
ference system does not obviously extend to disjunction, but maybe there’s
some tricky way around it that works.

T, A+ B I, BIA, Al - C kA
I'rA=B T,A=B[A]-C T,A[AlFA

Cut: If T, A A and T, A[A] - C, then T F C.
IfFTF A and I, A[] F O, then T - C.

Identity: A[], A[A] - A.
AFA.

119

Ik A ILA[AJFC T,B[A]FC

'+A; VA AV B[A]EC
alternatively?
' A; r-A AR C I,B[|FC
I'HA @A, F,AEBB[A]"C

Identity seems okay for both of these, but I don’t expect to be able to prove
C=(AeB)F(C=A)® (C= B)

but I can prove
C=(AVB)F(C=A)® (C= B)

and
C=(A®B)FC= (AVB)
so cut must fail. Ok, so let’s reason this through:
A® B[C],C[|F AV B AV B[C]F (C = A)® (C = B)
C=(AeB)FC=(AVvB) C=(AVB)F(C=A)® (C= B)
C=((AeB)F(C=A)® (C= B)

cut

we can call this a principal cut plus one left commutative, and map it to
* AlCIFC = A B[C]-C =B
A® B|C],C[|[FAVB AVB[C|F(C=A)a& (C= B)
A® B[C]F (C= A)® (C = B)

cut

where « is the three premisses C[| - C, A[|F AV B,B[|F AV B.
Hm, suspect. Let’s try proving the commutative case for &L in isolation.
We have

LUEA TDUX[FA LU X[[FA
T,0, X, ® XAl A T, A[U]+C
[, X, ® XAl F C

we get I', X;[| F C for both ¢ by cut, but then we try to do &L again and

we get only
LUVEA I,X[[FC L,X[FC

I, 0, X, & X5[AlFC

120

Similarly I would expect a Dyckhoff-like implementation of the ordinary
arrow

A+ B 'EAA I'B|FC

I'rA— B I'A— B[A]FC

to fail in roughly the same way.
Suppose I did this with linear logic, so that & is surely negative. Can I
create a synthetic connective out of & and ‘positive —’?

I AJFB T+C I',CIAlFD I, B[A, Al F D

I'(A—B)&C T,(A—B)&C[AlFD T,(A— B)&C[A]F D

T AJFB T,AJFC T,C[A, Al F D T,B[A, Al F D

I'FA— (B&C) I''A— (B&C)[A]FD T,A— (B&C)[A]F D
But I do seem to have some evidence that even now, positive —o is not
negative in its first argument:
T A FC I,B[|+FC I,C[A, A& B??)+ D

for it’s not clear how to write the left rule. Note that we get the same
right rules from synthesizing (A — C) @ (B — (') but this is not bientailed
by (A& B) — C.

Is it positive in its first argument?

T AJ+C T,B[|FC I, C[A, AlF D I,C[A,B]+F D

I'F(A®B)—~C T,(A®B)—=C[A]FD T,(A®B)— C[A]F D

These seem like they might be okay, but they are the same rules as I'd
get from synthesizing (A — C) &(B — C) — oh, which is bientailed by
(A@ B) —- C!

Okay, so is it really positive on the outside?
T, A+ B r-c I,C[A]-D T,B[AAlFD

I'(A—-B)@&@C I'k(A—B)aC I, (A— B)®C[A]F D

Seems disturbingly like it. In conclusion, I find myself able to believe in
two arrows in this system, one (+,—) : —, and one (+,+) : +, but both of
them distribute strangely over disjunction.

121

2008.1.9

Dan and Noam sidestep the above question by making the syntactic
type of things that are arguments to positive arrows totally separate, and
therefore not clearly positive or negative.

2008.1.10

The ITw-at-kind-level thing still seems like a plausible intuition for how
to think about coverage checking etc.

Does SOME in block declarations demand the expression is closed?
Probably not.

2008.1.11

The difference between free and existential variables is subtle. Should
think more about whether unification can stand up to circularity as long
as simple types are maintained.

2008.1.12

Couldn’t I treat all the free variables at once as a big multi-pi, and then
just ask the question of whether they’re topological sorted after the fact?

2008.1.13

The free and existential variables are certainly “intertwined” in the sense
that their types may involve the other.

Thus:

We begin with a constant declaration. We look at its classifier. We
infer a simple type for it. This might as well go so far as what Frank and
Kevin actually do habitually call a simple type, not what I've been lazily
calling that — as opposed to a mere skeleton. That is, actually figure out at
least the family for everything, but not the indices. If simple type inference
cannot even figure out the family, we’ll be left with type-level evars at the
very end anyhow, which won’t do us any good.

So in some sense FVs and EVs are both modal. For all underscores, we
make up an evar of functional type with included dependencies on all local
bound variables. For FVs, their type includes evars for each index.

What happens if you explicitly indicate a dependency on a bound vari-
able? Should the system duplicate it and yield a non-pattern?

Experimentally: this is what twelf does.

o : type.
a : o -> type.
c:{y : o} {x:0}a (Ly.

122

[Opening file /tmp/a.elf]

o : type.

a : o —> type.

c : {Xl:0 > 0 > 0 -> o} {y:0} {x:0} a X1 y x y).
[Closing file /tmp/a.elf]

val it = OK : Twelf.Status

So I seem to be left with a context of variables about which I am curious
as to whether a well-typed instantiation of a certain subset of them leads
to certain equations holding.

After finding the most general such instantiation (if it exists) I can then
ask whether there is a topological sort of the resulting context.

This context ‘knows’ the full types of all its variables, but they may of
course be expressions that involve instantiatable variables from precisely
that context.

Say that every variable intrinsically, syntactically knows its simple type.

The context of metavariables looks like

A= (ug, . uy) (A, .. Ap)

Damn — there seems to be three dispositions of variables that T might
care about for the definition of solutions, then; variables that are never in-
stantiated (FVs) and apart from that, EVs that are vs. are not instantiated
right now.

2008.1.14

We suppose there to be existential variables and free variables at various
contextual types. Every appearance of these guys in the expression occurs
under a substitution. The only real difference between a substitution and
a spine is the associativity of them; and that substitutions sort of carry a
functional interpretation so that inverting them makes sense.

We might as well do everything with substitutions, right?

Anyway, the unification query names a subset of the evars, and asks:
what are the well-typed instantiations of them that extend to well-typed
instantiations of all evars (not necessarily closed) so that some resulting
equations hold?

Equations can be decided syntactically.

The substitution principle is something like: if AT+ J, and A, ¥ F o :
To, then A, U Jo.

The type invariant is: every equation is well-typed, modulo all the equa-
tions being solved.

123

We start this invariant off by having equations that are well-typed pe-
riod, modulo nothing, right?

2008.1.15

Uncertainty — funny that the natural word, and all the synonyms I
can think of it, are so negatively defined. Not knowing for sure. Imperfect
knowledge. Unclear, undetermined. etc.

The things we negate here are the exception! Uncertainty is the rule;
the blankness of the future, of distant places and times, the not-clarity of
the not-here, not-now.

The thesaurus provides me some good positive words for this phe-
nomenon: opacity, vagueness, ambivalence, ambiguity, conjecturality. The
notions I can get at here are positive notions of the un-seeability of things,
but also their multi-valuedness, conveying the feel of all the endlessly ram-
ifying possible worlds sitting in the same space, and also our (mere) ability
to guess at these possibilities.

2008.1.16

Saw Derek’s talk about his and Andreas Rossberg’s mixin module cal-
culus. There’s something pleasing about the initial simplicity of it, but it
soon got quite complicated. Sadly the calculus presented int he talk was
the EL, not the IL. The latter still involves the mysterious sort-of-stateful
backpatching that I have never understood.

One argument for why the EL cannot be so easily turned into a reason-
able IL is that there is no evident type system for it, it being all at one
universe, so to speak. Nonetheless I think one might hope for a system of
stratification that leaves it (parametrically) looking just about as simple,
much like the LF stratification into types and kinds and so forth.

2008.1.17

I still think module systems as we conceive them are “too focused”, and
lump too many things together. I wonder what makes sense in the domain
of mere name-management. The namespace lifting operator {¢ = mod}
from yesterday, for instance, is interesting.

2008.1.19

The only difference between fvars and evars seems to be that the fvars
are not subject to further substitution. So closedness of a substitution is
merely a convenience that says it’s the last substitution that will take place
right now — even though, of course, fvars will get abstracted to IIs, which
will ‘allow’ substitution later via application.

It is still necessary to be careful what is meant by a fully well-typed
solution to some equations. If I introduce extra fvars, they are ab initio

124

merely simply typed. So I say:

A solution to a unification problem W; A F P consists of a (tacitly
simply-well-typed) substitution 6 for A that leaves all of P true. The
codomain of # may mention fvars not in ¥. This substitution 6 is a well-
typed solution of P iff there exists an extension of ¥ to ¥’ such that ¥'; A
0:A.

2008.1.20

Inversion:

iu=r|f
(rigid or flex)

if no such m.

n{o} = {T if m{o} = n;

vlol{p}i, = vlo{p}.]
ulol{p}, = _
ulo]{p}} = abort
(z-S){o}, ' =z (5{o}])
(c-S){o}yt =c-(S{a}0)

(but treat non-local variables like constants) is like an exception that
bubbles up to substitution elements.

2008.1.21

Thinking about a statistical puzzle (“the paradox of early stopping’?)
Gustavo told me. Remarkable how shaken the validity of scientific results
can be if we don’t know all of the experiments that ‘fail’.

2008.1.22

I was incorrectly imagining that there was a three-way difference be-
tween variables, local variables, and constants in unification. This is silly.
Unifiers are relatively closed; there are only variables (which might well be
called local) and constants.

For non-pattern substitutions o, even when £ is a pattern, it is not safe
to reject on occurs-check in situations like

because you might get (for u:: f:0— ol 0)
ulz/f] =z - (u[ry.k/f])

which allows u < f.f - k as an instance.

125

I suppose it’s still ok to reject

though, as long as u[¢’] occurs rigidly?

2008.1.23

Does it make any sense to attach scalar multiples to lambda terms to
affect merely how [-reductions are counted so as to effect a sort of strong
diamond property?

2008.1.24

The unification algorithm consists of these kinds of steps:

1. Homomorphic decomposition of lambda, spine application and cons.
2. Inversion (rigid and weakly-flex)

3. Projection (actually projecting out _ arguments of evars that occur
rigidly)

4. Intersection (u[¢] = ul[¢'] — u[ENE] =ulENE))
5. Extra Occurs-check (ulé] = - (---u[¢']--+) — 1)

Type preservation and solution preservation are easy for 1, 4, 5. Solution
preservation seems easy for 3, but what about types? What happens when
the projected-out variable occurs in the type later on?

v:(0,a 1F o)

z:oy:axtulyl =c-oly,

Hm, it seems that this can’t happen for the pure pattern fragment, but it
can certainly happen otherwise.

w:: (a ufid] = a ulid] F o)

vi(o,al—alt o)
y:a ulid] — a ulid] F uly] = ¢ o[y, u[id]]
—ku—c-ou[l,]

Here we can’t really project out the underscore in v since the type of y still
depends on it. Maybe we simply refrain from making such a projection if
it doesn’t work out? I don’t think there would be an extra computation
to see if it was possible. I think it would just pop out as the attempt to

126

compute what the type of the new evar is resulting in an exception being
thrown.

2008.1.25

Ok, so say inversion only deals with bound variable replacement and
doesn’t do anything else. Like:

ulz,y] = c- (x;v]y,ulz, 2]]) — u =c- (L;v[2,ull,]])

and only secondarily to we do occurs-check and stuff — in fact, we
postpone carrying out the known instantiation until we know that there
are no occurrences of u on the right.

Underscore cannot always bubble up in nonpatterns past ‘locally’ bound
variables in a different sense of locally. Consider

ul] = c-v[Az.k, Ay.y - uf]]
we do have a solution in v « 2 - 1, so we should make a move to
u<—c-v[Az.k,Ayy- |
not
u— c-v[Az.k,]

Projection takes place when the types can be so projected, but since
IIs are linearized, we can eagerly attempt to project rightmost things in a
context, which might make more leftward things projectible later.

Really _ is a root, I think; I ought to lambda abstract it when it is
standing for a bunch of lambdas, but whatever.

So my new set of things is

1. Homomorphic decomposition of lambda, spine application and cons.
2. Inversion

3. Projection (actually projecting out _ arguments of evars that occur
rigidly)

4. Intersection Projection (project out n from u = u[¢,n, '] when n #

€1)

5. Pattern occurs-check (u[¢] =z - (- u[¢']---) — L if u occurs rigidly
on the right)

6. Rigid head occurs-check (u[¢] = c-(---ufo]---) —ulé] =c-(---_--+))

7. Pushing up underscores.

127

8. Changing v = R to u < R and carrying out modal substitution
{R/u}.
Suppose u :: Aq1,..., A, F A. We hear from somewhere else that u’s

instantiation cannot possibly use its ith argument. So we set up a new
variable v with type

v Ay, Ay, A0, A 070, AT

where § = { .id}, and o = 1.7 o 0, and we add an equation
we—v[l,... 0...,n]

Now: could this substitution go through even when a variable is used
deeply under some other evar, resulting in a captured exception?

I can check whether a given substitution is well-typed, before I check
that the classifiers are types. So I can say things like “for all well-typed
substitutions, the following thing is well-typed”, also “for all well-typed
substitutions that satisfy P, the following thing is well-typed”.

2008.1.27

Recall that economic value is torsorial — how can one sensibly speak
of derivatives with bounded exposure about goods that may themselves
be perishable? The value of fiat currency derives from peculiarly human
recursive beliefs, just like art.

2008.1.28

Does game semantics merely dress up quantifier alternation in cute
clothing? I think reading Colin Stirling’s higher-order matching work has
a good chance of disabusing me of precisely this cynicism.

Trying to figuring out what the typing invariant on underscored expres-
sions should be is still vexing. I cannot assume that they only appear to
the right of u « M if T want to actually carry out substitutions of such —
which is the whole point.

2008.1.29

Figuring out the typing invariant for unification with underscore is in-
furiating.
2008.1.30

Harry Mairson gave a talk on how kCFA is EXPTIME-complete. I
didn’t quite see how the k > 0 came into play. For £ = 0 it happens to be
PTIME-complete.

2008.1.31

Consider type theories that capture polynomial-time computation; can
they be refined to say anything about particular-degree polynomials?

128

Mairson’s assertion that all static analyses are essentially abstract in-
terpretation sticks in my mind. Don’t know whether to agree with it or
not.

* %k %k ok k X

Try the following invariant for typing in unification:

Given My = M, € P. It is well-formed if there is a I and A such that for
any 6, that is a well-typed instantiation of every free evar that results in no
underscores in M7 and M, we have I' Fp M;0; < A. The B =p B’ deep
inside that judgment essentially: means for any 0 that is a (not necessarily
well-typed) instantiation of all the evars that satisfies the equations in P,
then 392 = B/eg.

2008.2.1

Rename the 61,65 above to 64, 8, for typed and equational substitutions.
For the spine cons case, we have by assumption

I'kp M0, < A I'kp SO, : [M;0;/2]B > C;
Ltp (M;;S;)0; : x:A.B > C;

for some C; =p Cy. But we should have M, =p M>, so M0, =p M>0,?

This doesn’t really work — I’ve got the quantification mixed up. I am
introducing a V in the two premises, and I let two 6; be given, and then I
don’t know how to reconcile them in the V elimination for the conclusion.

Here’s another attempt. An entire set of underscore-mentioning equa-
tions P is well-formed if: for any possibly open substitution 6; that is well-
typed, not necessarily satisfying of all the equations, but which eliminates
all underscores, P6, is well-formed in the sense of - py,.

Then, we start by considering (M1,S1) = (Ms, Sa) — My = My A S; =
So. We want to show the latter is well-formed, so let a 6; be given. Since
the types of evars have not changed, this is also a valid typed substitution
for the former state. By inversion we see

I'tpo, M6 <= A T Fpg, SO, : [Mib;/2]B > C;
T bpg, (My;Si)0; : Tl:A.B > C;

(For some Cy =py, C2) But M0, =py, M2b;, so we can transfer the
spine typing to the appropriate type.
2008.2.2

The thing from yesterday seems to be working well so far.
2008.2.3

Hit a snag: instantiation fucks up types in the context. Still searching
for a workaround.

129

2008.2.4

Here’s an idea. Define a notion of ‘simple development’ of a unification
problem that allows introduction of new variables, new underscore-free well-
typed assignments, and replacement of equals with equals. The invariant is:
every underscore-free simple development of the current unification problem
is well-typed.

2008.2.5

Here’s a gadget that seems sort of like a free strict w-category.

Call it a ‘dicomplex’ by analogy with ditopologies.

The data of one consists of a set C,, of n-cells for each n, and again
for each n there are maps dom,cod : C, 11 — P,. The set P, is defined
recursively from the C),. First of all we have Py = Cy, and P,,41 is going
to be the set of pasting diagrams that arise from syntactic expressions over

Cri1-
What are these syntactic expressions? A candidate 7w for P, is made
from
mu=c" | mop m|id,

where p is an actual path from P, ;. When is one of these well-formed?

domc"” = p; codc" = py

Fc:ipi=np2

Fid,:p=n,p

Fmip =0 D2 b 7ot p2 =p p3

F o 09 1 1 p1 =0 P3
Fatpl =, ph Fp? om p% sl (Vi e {1,2})

F 72 omgr 7' (0] om P1) =n (P3 om D))
A 7" is something of the form p =, p’ for p,p’ € P,_1.
Now we want to interpret such a candidate as a graph of sorts. Notice
that P, also supports dom and cod operations.
Xk ok ok K %

Erg, let me start over.

To describe a dicomplex, we provide sets C), and maps dom, cod Cj, 41 —
P,,, which are to satisfy certain axioms. First, define the P,,. An element
of P, is called an n-diagram.

A O-diagram is a set X, and amap ¢ : X — Cy. An n + 1-diagram is a
tuple (X, 4, p,d, c) where

130

X is a set

e {isamap X — Chi1
e pe P,

e d,c are both functions such that d(z) and c¢(z) are both morphisms
from dom(¢ z) to p, for any z € X

A 0-diagram morphism (X, ¢) to (X', ¢') is a function f: X — X’ such
that ¢'o f = ¢. An n+ 1-diagram morphism (X, ¢,p,d, ¢) to (X', ¢',p',d',)
is a pair consisting of f: X — X' and g : p — p’ such that

e lof=1¢
o dof=MXx.god(x)
e dof=Xr.goc(x)

The intuition behind the axioms is that I want to require the domains
and codomains in a dicomplex to be ‘connected’ pasting diagrams, which
are generated from composition, identities, and cells. Connected pasting
diagrams have a clear notion of domain and codomain themselves, so that
I can require that the domain and codomain of the domain and codomain
are the same.

2008.2.6
Let me try to construct a counterexample to the type soundness of

unification as I understand it.
It would have to involve

PAu«— R+ [R/u]'PAu— R

I suppose beforehand that there for any well-development of the former
that results in no underscores, the result is well-typed. I wish to show this
about the latter. I can take any development of the latter and mostly imi-
tate it in the former: the only thing I cannot to is imitate the substitution
of R for u itself, since I don’t generally know that R is well-typed. If the
development apart from R/u already eliminates all underscores, then I do.
So I must worry that it doesn’t.

Now u could occur in another equation somewhere, or else in a type in
A. This being unless I don’t need to push developments through to A, not
sure about that. I will have to deal with the case of other equations at the
very least.

So my situation looks like:

PAQ(ulo]) Nu+— R— PAQ(R[o]) Nu<— R

131

Hmm... Here’s an idea: a development step is licensed if the terms are
well-typed modulo the equations after adding it.

2008.2.9
Summary of approaches tried so far:

1. Naive attemps to find typing invariant on underscore expressions
2. Early quantification that failed to separate equality and typing
3. Separate quantificational approaches
(a) For all underscore-eliminating substitutions (one for each equa-

tion; fails at cons case)

(b) For all underscore-eliminating substitutions (global; fails at sub-
stitution case)

(¢) For all developments (various definitions of ‘development’; also
fails at substitution)

(d) For all generalized projections (couldn’t figure out good defini-
tion)

(e) For all entailed equalities (fails at the outset)

4. Attempt to rewrite every underscore-using unification trace to one
that doesn’t.

(a) By analyzing and eliminating circularity (works for purely rigid
problems)
i. Without extra nondeterministic guessing of, e.g. generalized
projections
ii. With them

(b) NEW: By blatantly deunderscoring failed occurs-checks and
substituting ‘forbidden fvars’ for underscores arising from inver-
sion.

2008.2.10

I tried to get rid of the ‘forbidding’ itself, but it seems to be easier to
keep it — that way I can push the identical equational theory down through
both the actual trace and the one that is simulated in parallel so as to show
preservation of types. While creating them during inversion, one may need
to create them at higher type and apply them to local variables that were
preserved in order to get the typing to work right.

For underscores arising from occurs-checks I just carry out one substi-
tution and leave it at that. This move would be no good in the actual

132

algorithm of course because of termination concerns, but the ‘simulated’
trace simply tracks the original, and by construction ends the same way.
2008.2.13

The totality of patterns is useful after all. Consider the contexts I' =
z:0y:ax,z:ax—oand V=w:o,w :awv:0v :av—o.

Faced with the equation

ulz. .y J=zy

(which is well-typed because we can fill in both underscores with x) we
would like to say u «+ v’ w’, but this is not well-typed.

2008.2.14

Dan Licata talking again about his and Noam’s work. Definitional Re-
flection a la Schroder-Heister feels very much like merely offering a graph-
theoretic way of defining propositions.

2008.2.15

A return to thinking about multidimensional graphs.

We define three notions indexed by natural numbers: graphs, paths, and
path morphisms. An n-path exists in an n-graph. An n-path morphism is
between two n-paths. The homset of morphisms between n-paths P and
P’ i written nPath(P, P’).

e A O-graph is a set C.
e A O-path in a O-graph C' is a set X and amap £: X — C.

e A 0O-path morphism (¢ : X — C) — (¢ : X’ — () is a morphism
f:X — X’ such that ¢(z) = ¢'(f(x)) for all x.

e An (n+ 1)-graph is a tuple (G, C,dom, cod) where G is an n-graph,
C is a set, and dom, cod are maps that take elements of C' to n-paths

in G.
e An (n+1)-path in an (n + 1)-graph of the form (G, C, dom, cod) is a
tuple (P, X, ¥, d,c) where
— P is an n-path in G
— X is a set
—fisamap X - C
— d is a function of type Iz: X .nPath(dom(¢(x)), P)
¢ is a function of type Ilz: X.nPath(cod({(z)), P)

133

e An (n+1)-path morphism (P, X, ¢,d,c) — (P', X', ¢',d', ') is a tuple
(f,g) where
- f: X=X
— g : nPath(P, P')
U(z) =l'(f(x))
— d'(f(z)) =god(z)
- d(f(x)) =goc(x)

(Categorifying, I might think d, ¢ were sort of natural transformations.)

Let’s try to define connected paths.

One judgment is f : A — B (‘f is a connected path from A to B’) where
fis an (n+1)-path, and A, B are n-paths. We will arrange in this case for
there to be a homomorphism of A and B into the underlying n-path of f.

The other one is P : o, (‘P is a connected 0-path’) which is true just in
case the underlying set of P is a singleton. 7 stands for either A — B or o.

P:r
idp: P — P

There are no (n + 1) cells at all of idp. The homomorphisms from P and
P are the identity ones.

f:A—B g:B—-C
goof:A—C
We have an f = (P, X,¢,d,c) and g = (P, X', ¢',d’,¢') and maps i4 :
nPath(A, P),ip : nPath(B, P) and jg : nPath(B, P’),jc : nPath(C, P’).
I think what we do then is take the two evident arrows nPath(B, P + P’)
that we can hack out of ig,jg and coproduct injections, and take their
coequalizer nPath(P + P, Q). We can string along the old ¢, ¢/, d’,d" by
tacking on injections and sending them to @ via the coequalizer. and same

thing with 74 and jo. The label set for the result is just X + X'/, and we
similarly coproduct together £ + ¢’ etc.

134

Bio, A1 :C — D Byo, Ay:C — D
g:B1— B fiA— Ay
gont1 fi(Bioy Ar) — (B oy A)
We have an f = (P, X,{,d,c) and g = (P', X', ¢',d', ') and maps

il : nPath(Al, P), ig : nPath(Ag, P)

j1 : nPath(By, P'), jo : nPath(Bsy, P’)

Then I guess I need to take a big colimit. I should also be inductively
guaranteeing that there are embeddings of arrows into their composition so
this is possible.

2008.2.16

Yeah, the colimit construction seems right — I want to lift (via id)
things of lower dimension.

The funny thing about the Baez-Dolan ‘periodic table’ in this setting in
that if you look at a twice-monoidal set (i.e. a commutative monoid) the
commutativity arised from the fact that you can’t anchor down the two-
cells to any particular one-cell — the only one that there is is the identity
on the unique object, so you can’t tell the different paths apart.

2008.2.18

There’s a notion of ‘admissibility’ mentioned in Neelk’s thesis proposal
that seems interesting — it is supposed to have come from Lars Birkedal and
some coauthor. Sadly it’s not as symmetric as I thought, passing from arbi-
trary functions to extensions to continuous functions: all the approximation
seems to happen in the second step.

2008.2.20

Two uses for goals: as information for error-correction during commu-
nication, and as predictions for the sake of self-directed ‘machine-learning’.

2008.2.21

Went to a talk by some guy about mechanisms and cognition. Pretty
low-content. I am frustrated at notions like ‘embodied’ vs. ‘nonembodied’
computation because they seem contentless — or rather, that their content
is mushy and subjective. Like, plainly, a machine with eyes and arms and
legs interacts with the world in a very complicated way, but it’s not as if
a laptop with a monitor and keyboard doesn’t interact with the world. It’s
just that it can’t move about very effectively.

135

2008.2.22

I feel like I should be able to identify the ‘twist’ arrow in the w-graph
analogue of a braided monoidal category. It would be something with 2- and
3-cells, and trivialized at 0- and 1-cells. The only 1-cell is the identity arrow
e — eo. All 2-cells are therefore horizontally and vertically composable.
Suppose there are two basic 2-cells z and y... actually, I can’t find any
evidence that a twist exists, because as things are set up, x oy and yox are
just plain identical. Maybe this has to do with the fact that every bicategory
is equivalent to a 2-category, but not every tricategory is equivalent to a
3-category?

Nonetheless by using 1-categorical concepts (of taking colimits of paths
to define composition) T might have got an adequate notion of 2-graphs.
Maybe this can be pushed up somehow?

2008.2.23

What is the cut elimination theorem for ordered logic like in HLF?
IfQF Aand Qp, A, QrF C, then Qp,Q,Qr F C.

ca : {a} {b} {c}
(conc A @ a)
-> ({d} hyp A@d -> conc C @ (b *x d * c))
-> (conc C @b * a * c)

-> type.
2008.2.24
‘Open-ended’ equality for LF.
Syntax: 3
Expressions E =M | A(E)
Types A ==---]{A4}
Terms M «=-.-|{E}
Judgments:)
'k X: X1 ~ Xg
r-E+A
Rules:
I'-E=+A '-M«<A TFE=+A TFA:A~A
I'F{E}«<{A} TrHM=A I+ A(E) + Ay

Ly:Yi~Y,FX:X;~X, TFE=+EqY,Ys)
IFlety=FEinX : X; ~ X,

136

2008.2.25

A funny thing about base-type polymorphism is that the obvious def-
inition of Leibniz equality isn’t symmetric — going down an order in the
types I can get a reflect, but it’s not obvious whether this process has a
fixpoint.

2008.2.26

Turns out the higher-order logic programming thing I thought of is
totally old hat to lambda prolog hackers.

2008.2.27

Think I have an easier way of thinking about the Stirling algorithm.
Dunno whether it will stand up to his later development, but it seems
largely isomorphic for the special case of there being only first-order con-
stants.

Set up the usual contextual business by saying

Normal Terms M == AU.R
Atomic Terms R =:=z-S| f(R,R)|c
Substitutions o ==id| M.o
and then add
Preatomic terms P == (M,o0) | R
Lookup Table g™ u=-|g8"[(8™,M)/x]
Lookup Table Pair v == (8% 31)

Polarity =« ==0]1

We write projection from pairs as 7., and polarity flipping as 7. A closed
atomic term is written r. A state is a tuple (P, r,~, 7). The interpretation
of a state is the proposition [y; 7] P = r. The left side is defined by

;7 (M, 0) = [z M | vx0]
;7R ="=R
We define winning states inductively.

t (R7 T77[("/ﬁ'70—)/\ij],ﬂ') win
F (()\\i/.R, o), T, Y, T) win = (e, ¢, 7, m) win

F (Ry,71,7,7) win F (Ra,72,7,T)win
F (f(R1, Ra), f(r1,72),7,T) win

137

(BT M)/x€ve F((M,0),r,y < B7,7)win

F (z[o], r,~,m) win

Where 7[(vz,0)/¥] and v « 7 are hopefully obvious abbreviations for
substitution operations.

2008.2.29

Even better: A state is a tuple (R,7,7). The interpretation of a state
is the proposition YR = r. The notion of winning state

- F (Ry,71,7) win F (Ra,72,7) win
[(C; CKY) win = (f(Rl,RQ),f(?"l,Tg),’y) win

(Y AR /xey F(RrA +((y,0)/F)win
F (z[o],r,v)win

2008.3.3

Can’t trust the constant rule that I have necessarily. Counterexample:

Afulf] = ¢ (f (u[Az.k])))

has solution u « ¢ (f (ck)).
2008.3.4

I think the two rules I want are:

w=H-Slg]) ~u=H-5()

u = R(u[o]) — L (R is strongly rigid)

2008.3.5
Reading through Twelf’s unify.fun. Thoughts:

e What are LVars? Something to do with blocks.
e What are AVars? Haven’t a clue.

e Might want invert to pass along a variable that says whether it’s in a
rigid or nonrigid position.

e Or is this already the distinction between invert and prune? Seems
so: prune is rigid, invert is not necessarily.

e pruneSub comment by invertSub???

138

o What’s the deal with waking up constraints? What else should be
done about it?

Okay, so Twelf does actually throw the occurs-check when it shouldn’t.
Consider:

o : type.

k : o.

eq : (0 => 0) => 0) => ((o => 0) -> o) -> type.
refl : eq M M.

% co: eq ([x] U x) ([x] x (U ([y] k)))
% -> type.
% test : c refl.

c : {U: (0 =>0) > 0} eq ([x] U x) ([x] x (U ([y]l k)))
-> type.
test : ¢ ([x] x k) refl.

The commented-out code will crash and burn with an occurs-check, but
the code below it works fine. This is because when trying to solve

Az.ulz] = - u[Ay.k]

Twelf thinks that « on the right is a ‘rigid enough’ position even thought
the substitution isn’t a pattern.

2008.3.6

The troubling thing about the way constraints are stored is that both
having extra variables without constraints constraining them, and extra
constraints without variables witnessing them, seem to be possible errors.

2008.3.8

It seems reasonable to store even singleton MIDI events as durationed
sequences, so that operators like “speed up” and “transpose” and so on work
uniformly on sequences and singletons.

2008.3.9

Negationless logic doesn’t yet make much sense to me. It isees like it’s
strictly less expressive than inuitionistic logic.

2008.3.10
Watching a John Baez video talking about lattices and Lie Groups and
Dynkin diagrams. It seems that he’s claiming Dy is the four-tuples that

are all integers or all half-integers, and also that D,, is the n-tuples that
sum to an even number. I don’t see why these are isomorphic.

139

The Ejg lattice is supposed to be 8-tuples that are all integers or all
half-integers, which also must sum to an even number.

2008.3.12
Intrinsic encoding of LF breaks down when you get to II typing.

tp : type. %name tp T.

ltp : type. Y%name tp LT.

tm : tp -> type. %name tm M.

ltm : ltp -> type. %name tm LM.

var : ltp -> type. %name var H.

sp : 1ltp -> tp -> type. %name sp S.

subst/ltp : ltm A -> (var A -> 1ltp) -> 1ltp -> type.
subst/tp : 1ltm A -> (var A -> tp) -> tp -> type.

tt @ tp.
fam : tm tt -> tp.

base : tp -> 1ltp.
pi : {x:1tp} (var x -> 1ltp) -> ltp.

root : tm T -> 1ltm (base T).
lam : ({x:var A} 1ltm (B x)) -> 1ltm (pi A B).

app : var A -> sp AT -> tm T.

nil : sp (base T) T.
cons : sp B’ T -> subst/1tp M B B’ -> sp (pi A B) T.

subst/ltp/base : subst/ltp M ([x] base (T x)) (base T’)
<- subst/tp M T T’.
subst/ltp/pi : 777

2008.3.13

Consider coverage checking.

A coverage goal is something like I' - A : type. For example, z : nat, y :
nat - plus = y ul] : type. The question is, how can I use constants from
the signature to match something of type A? My signature in the above
case probably looks like

nat : type. z : nat. s : nat -> nat.
plus : nat -> nat -> nat -> type.

140

plus/z : plus z N N.
plus/s : plus (s N) M (s P)
<- plus N M P.

The inputs = and y are ‘hard’, so they don’t unify with s n[] or with z. I
would have thought this were matching but for the evar u[] coming from
the output. Do we just ignore the output then? Anyway, splitting the free
variable x leads to two coverage goals:

2’ i nat,y : nat - plus (s 2’) y u[] : type

y :nat - plus z y ul] : type

Assuming the evars in the clauses are given permission to depend on the
2.y, these are now immediately covered. But how did we even do split-
ting? We tried to unify the output types of clauses against nat, and then
abstracted. For instance, with s we fully applied it to maximally general
evars of the types of its arguments, and then unified its result type with
nat, which left no constraints, and generated the evar z’. Hmm. Say >

for coverage:
c:IIPbeXx 0b=a

Y>> (T'kFa:type)
Y>> (T,¢: Bk a: type)

(3,c:a)~B= (X~ B),(a~ B)

Wa=b— AL0
MV.a~b=(A,0)
My brain is giving up at the notion of how to split on higher types.

2008.3.14

Splitting at higher types doesn’t seem quite so crazy to me anymore.
You just keep a context of parameters that are introduced by arguments
to free variables. These are also available for constructing things at the
eventual return type.

Conjecture If a logic program covers with each of the blocks in its regular
world added to the signature somehow (not clear what to do with the SOME
parts: maybe turn them into free variables?) then it covers over the actual
regular world.

141

c:MWbey [0/¥b=a
Y > (T'Fa:type)
S0~ b= (A0, R) Vi > (A, T 6;MNV.R/vY)a : type)
> (T,¢:IIV.bF a: type)

(E,c: A);-~b=(8;-~b),(c: A~ D)
YT,z:A~b=(2~b),(x: A~Db)

H:TW.a~b= (A0, Hlidyg))

Could these specifications of splitting yield coverage results even for LF
as self-encoded to yield base-type polymorphism? Eh. Probably not for
higher-order programs. Maybe for polymorphic ones.

142

