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Abstract

The proof theory of the constructive modal logic of necessity and pos-
sibility described by Pfenning and Davies can be faithfully simulated in a
first-order focused linear logic. This simulation sheds light on how the two
modal operators � and 3 are related to one another, and how Pfenning-
Davies’ relates to other constructive accounts of modal logic.

1 Languages

We will set up three languages, BML, PML, FLL.

1.1 BML

BML is the basic modal logic which we take from Pfenning and Davies’ judg-
mental reconstruction of modal logic. [PD01].

The syntax is

Propositions A ::= ⊥ | > | A ∨A | A ∧A | A⇒ A | �A | 3A | a
Contexts Γ,∆ ::= · | Γ, A

Conclusions J ::= A true | Aposs

The judgment is ∆; Γ ` J , with ∆ being the valid context, and Γ the true
context. The proof system is in Figure 1. When the judgment on a conclusion
is omitted, it is meant to be implicitly A true.

1.2 PML

Next is the polarized modal language for which we only give a syntax and no
proof theory. Its only role is to serve as a syntactic stepping-stone so that we
can divide the translation from BML to FLL into two convenient phases. Its
syntax is

Positives P ::= ↓N | ⊥ | P ∨ P | �N
Negatives N ::= ↑P | > | N ∧N | P ⇒ N | 3P | a−

A proof system could however quite easily be given for PML, by pulling back
the proof system for FLL along the translation from PML to FLL.
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∆; Γ, A ` B
⇒R

∆; Γ ` A⇒ B

∆; Γ ` A ∆; Γ, B ` J
⇒L

∆; Γ, A⇒ B ` J

∆; Γ ` A ∆; Γ ` B
∧R

∆; Γ ` A ∧B

∆; Γ, Ai ` J
∧L

∆; Γ, A ∧B ` J

∆; Γ ` Ai
∨Ri

∆; Γ ` A ∨B

∆; Γ, A ` J ∆; Γ, B ` J
∨L

∆; Γ, A ∨B ` J
>R

` >

⊥L
∆; Γ,⊥ ` J

∆; · ` A
�R

∆; Γ ` �A

∆, A; Γ ` J
�L

∆; Γ,�A ` J

∆; Γ, A ` J
copy

∆, A; Γ ` J

hyp
∆; Γ, a ` a

∆; Γ ` A poss
3R

∆; Γ ` 3A

∆;A ` C poss
3L

∆; Γ,3A ` C poss

∆; Γ ` A true
cocopy

∆; Γ ` A poss

Figure 1: BML Proof Rules

1.3 FLL

Here is first-order focused linear logic. Everything in here is fairly standard.
One quirk is that we distinguish between ‘packed’ (propositional) atoms a+

and a− and ‘unpacked’ (judgmental) atoms a+ and a−. An ‘unpacked’ atom
is what is left after we asynchronously perform the trivial decomposition of an
atomic proposition, signaling that we need not decompose it any further. This
is not really essential, but is a trick that makes proof-for-proof comparison of
the translation with the original modal language go more easily.

The downshift ↓N is missing only because we will not need it — since the
original modal logic we’re translating is unrestricted, everywhere ↓ would have
been used, we use ! instead.

The syntax of first-order terms, propositions, contexts, and conclusions is as
follows:

Terms q ::= α
Positives P ::= !N | ∃α ≥ q.P | a+ | 0 | P ⊕ P | P ⊗ P

Negatives N ::= ↑P | ∀α ≥ q.N | a− | 1 | P ( N
Linear Contexts Γ ::= · | Γ, N | Γ, a+

Valid Contexts ∆ ::= · | ∆, N | q1 ≥ q2
Ordered Contexts Ω ::= · | Ω, P

Conclusions Q ::= P | a−

We understand contraction, exchange, and weakening to hold for ∆. We
tacitly assume exchange for Γ. We have no structural rules for Ω apart from
associativity.

The judgments are:
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∆; Γ; Ω, P f̀ N
(R

∆; Γ; Ω f̀ P ( N

∆; Γ1 f̀ [P ] ∆; Γ2[N ] f̀ Q
(L

∆; Γ1,Γ2[P ( N ] f̀ Q

∆; Γ1 f̀ [P1] ∆; Γ2 f̀ [P2]
⊗R

∆; Γ1,Γ2 f̀ [P1 ⊗ P2]

∆; Γ; Ω, P1, P2 f̀ Q
⊗L

∆; Γ; Ω, P1 ⊗ P2 f̀ Q

∆; Γ f̀ [Pi]
⊕Ri

∆; Γ f̀ [P1 ⊕ P2]

∆; Γ; Ω, P1 f̀ Q ∆; Γ; Ω, P2 f̀ Q
⊕L

∆; Γ; Ω, P1 ⊕ P2 f̀ Q

1R
∆; · f̀ 1

∆; Γ; Ω f̀ Q
1L

∆; Γ; Ω, 1 f̀ Q

0L
∆; Γ; Ω, 0 f̀ Q

∆; Γ; Ω f̀ P
↑R

∆; Γ; Ω f̀ ↑P

∆; Γ;P f̀ Q
↑L

∆; Γ[↑P ] f̀ Q

∆; Γ; · f̀ N
!R

∆; Γ f̀ [!N ]

∆, N ; Γ; Ω f̀ Q
!L

∆; Γ; Ω, !N f̀ Q

a+R
∆; a+ f̀ [a+]

∆; Γ, a+; Ω f̀ Q
a+L

∆; Γ; Ω, a+
f̀ Q

a−L
∆; Γ[a−] f̀ a−

∆; Γ; Ω f̀ a−
a−R

∆; Γ; Ω f̀ a
−

∆; Γ f̀ [P ]
focR

∆; Γ f̀ P

∆; Γ[N ] f̀ P
focL

∆; Γ, N f̀ P

∆, N ; Γ[N ] f̀ P
foc!L

∆, N ; Γ f̀ P

∆; Γ f̀ P
·L

∆; Γ; · f̀ P

∆, α ≥ q; Γ; Ω f̀ N(α)
∀R

∆; Γ; Ω f̀ ∀α ≥ q.N(α)

∆ f̀ t ≥ q ∆; Γ[N(t)] f̀ Q
∀L

∆; Γ[∀α ≥ q.N(α)] f̀ Q

∆ f̀ t ≥ q ∆; Γ f̀ [P (t)]
∃R

∆; Γ f̀ [∃α ≥ q.P (α ≥ q)]

∆, α ≥ q; Γ; Ω, P (α) f̀ Q
∃L

∆; Γ; Ω, ∃α ≥ q.P (α) f̀ Q

Figure 2: FLL Proof Rules

Stable ∆; Γ
f̀
Q

Right Inversion ∆; Γ; Ω
f̀
N

Left Inversion ∆; Γ; Ω
f̀
Q

Right Focus ∆; Γ
f̀

[P ]
Left Focus ∆; Γ[N ]

f̀
Q

and the proof rules for the focusing system are in Figure 2. The f decorating
the turnstile is merely to distinguish these judgments from the proof system for
BML above.

Furthermore there is the judgment ∆ ` q1 ≥ q2, which we take to mean
that the abstract first-order relation q1 ≥ q2 is deducible from assumptions of
the same relation found in ∆, provided some axiomatization for properties of ≥
that is a parameter of the logic, just as frame properties are treated in Kripke
semantics.
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2 Translations

We will have one translation, the polarization from BML to PML, and another
from PML to FLL, the modal encoding.

2.1 Polarization

Takes BML propositions and polarizes them ‘maximally’, so that even in a
focusing calculus, proof search stops after every single BML connective decom-
position. ←−A is always negative, and −→A is always positive. Think of the arrow
as pointing to where the proposition is synchronous and stable. Conversely,

←−
A

is positive and
−→
A is always negative: for these translations, the arrow points to

where the proposition is asynchronous and unstable.

←−
A = ↓←−A
−→
A = ↑−→A

A
←−
A

−→
A

A1 ∨A2 ↑(
←−
A 1 ∨

←−
A 2) ↓

−→
A 1 ∨ ↓

−→
A 2

A1 ∧A2 ↑(
←−
A 1 ∧

←−
A 2) ↓

−→
A 1 ∧ ↓

−→
A 2

A1 ⇒ A2 ↓
−→
A 1 ⇒ ↑

←−
A 2 ↓(

←−
A 1 ⇒

−→
A 2)

> ↑> >
⊥ ↑⊥ ⊥
�A ↑�↑

←−
A �

−→
A

3A 3
←−
A ↓3↓

−→
A

a a− ↓a−

2.2 Modal Encoding

Invent a positive atom h+(q) that expects one term argument, and a positive
atom m+ with no arguments.

Takes PML propositions and realizes the modal operations � and 3 as
Kripke-like quantifiers over worlds. The central difference between Simpson’s
description [Sim94] of a constructive Kripke semantics of modal logic and ours
is the linear token h+ indexed by the current world that is required to be ap-
propriately produced or consumed. This is essential to the ‘context-clearing’
effect of the judgmental � and 3 connectives. Furthermore, Pfenning-Davies
3 has the requirement that the judgment poss already exist in the conclusion
when 3L is invoked — this requirement is encoded by the extra m+ ( m+⊗
present at the beginning of the encoding of 3, which reflects the essential lax
logical character of this hypothesis-to-conclusion tethering effect, as the ‘syn-
thetic modality’ m+ ( m+ ⊗— by itself has the same proof theory as lax
logic’s #.

4



The encoding function is as follows:

X X @ q

P1 ∨ P2 (P1 @ q)⊕ (P2 @ q)
P1 ∧ P2 (P1 @ q)⊗ (P2 @ q)
P ⇒ N (P @ q)( (N @ q)
> 1
⊥ 0
↓N !(h+(q)( (N @ q))
↑P ↑(h+(q)⊗ (P @ q))
�N !(∀α ≥ q.h+(α)( (N @ α))
3P m+ ( ↑(m+ ⊗ ∃α ≥ q.h+(α)⊗ (P @ α))
a− a−

The correctness of these two translations chained together, in summary, is
the following theorem. To prove it, the induction hypothesis must of course be
strengthened to account for the effect of the translation on contexts.

Theorem 2.1 If ≤ is axiomatized to be reflexive and transitive, then

` A ⇔
f̀

−→
A @ α
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