
Base-Type Polymorphism in LF

Jason Reed

February 26, 2008

1 Introduction

The type theory of LF [HHP93] is particularly useful for representation of other
logical systems because it enjoys such a robust notion of canonical forms of
terms. With only a very weak, intensional function type, the canonical forms
of functions are typically isomorphic to terms with bound variables, making
possible powerful representational techniques such as higher-order abstract syn-
tax [PE89]. Lacking polymorphism, one immediately knows in LF how to fully
η-expand and β-normalize a term. As Watkins et al. showed in the develop-
ment of CLF [WCPW03], these canonical forms admit a substitution principle
embodied by the operation of hereditary substitution, allowing the entirety of
the metatheory of LF to be carried out on canonical forms alone.

Now on the other hand, Nanevski, Morrisett, and Birkedal [NMB06] devised
a way to add polymorphism without sacrificing the benefits of canonical forms
entirely. The price to be paid, however, is a mixing of the term and type
levels, and a mechanism for ‘on-the-fly’ η-expansion. Their technique is to add
a wrapper etaα around any term whose type is the type variable α, so that when
a substitution later replaces α with (for example) a function type, etaα(M) can
transform itself into the appropriate eta-expansion of M .

The purpose of this note is to make the observation that we can get a sur-
prising amount of mileage out of examining the subset of polymorphic extension
to LF where precisely this ‘on-the-fly’ η-expansion is not required: that is, al-
lowing quantification not over arbitrary types, but over arbitrary base types, for
which no η-expansion is required. Call this language LFB.

One advantage of this arrangement is an immediate simplification of the
definition of LF itself, in that the signature no longer needs to be fundamentally
distinguished from the context, for assumptions of existence of types and type
families may now occur in the context.

1

2 Language

The syntax of the language LFB is as follows.

Classifiers V ::= Πx:V1.V2 | v
Base Classifiers v ::= type | R
Normal Terms M ::= λx.M | R
Atomic Terms R ::= x · S

Spines S ::= () | (M ;S)

The complete type system is just these four judgments:
Classifier Well-Formedness (Γ ` V ⇐ class)

Γ ` V1 ⇐ class Γ, x : V1 ` V2 ⇐ class

Γ ` Πx:V1.V2 ⇐ class

Γ ` type ⇐ class
Γ ` R ⇐ type

Γ ` R ⇐ class
Checking (Γ ` M ⇐ V)

Γ, x : V1 ` M ⇐ V2

Γ ` λx.M ⇐ Πx:V1.V2

Γ ` R ⇒ v′ v = v′

Γ ` R ⇐ v

Synthesis (Γ ` R ⇒ v)

x : V ∈ Γ Γ ` S : V > v

Γ ` x · S ⇒ v

Spine Checking (Γ ` S : V > v)

Γ ` () : v > v

Γ ` M ⇐ V1 Γ ` S : [M1/x]V2 > v

Γ ` (M ;S) ⇒ Πx:V1.V2 > v

We assume that all terms are simply well-typed, which means that they are
well-typed according to the above rules with all v in classifier positions replaced
by • and all Π replaced by →. This means that hereditary substitution, defined
as follows, is total and manifestly terminating:

Abbreviate σ = [M/x], assume x 6= y.

σ(x · S) = [M | σS]
σ(y · S) = y · (σS)

σ(λy.N) = λy.(σN)
σ(Πy:V1.V2) = Πy:(σV1).(σV2)

σ(type) = type
σ() = ()

σ(N ;S) = (σN ;σS)
[λx.N | (M ;S)] = [[M/x]N | S]

[R | ()] = R

This system satisfies the evident substitution and identity principles, proven
by standard techniques.

2

Lemma 2.1 If Γ ` M ⇐ V and Γ, x : V,Γ′ ` J , then Γ, [M/x]Γ′ ` [M/x]J .

Lemma 2.2 If Γ ` V ⇐ class, then there exists a unique term ηV (x) such that

• Γ, x : V ` ηV (x) ⇐ V

• [ηV (x)/x]X = X

• [M/x]ηV (x) = M

Remark The lemma above does not allow substitution of Πx:V1.V2 for a vari-
able! Such a thing is already ruled out syntactically. An M can be an R which
can satisfy R ⇒ type (so base types can be substituted for type variables) but
higher types cannot.

3 Embedding LFB into LF

Although this system seems easily marketed as an extension to LF, from another
perspective it is just a cheap subset of (or to put it another way, an encoding
style in) LF. The translation is as follows: Let Σ be the LF signature containing
two declarations t : type and o : t → type. Any LFB classifier V is mapped to
V ∗ according to the recursive definition

(Πx:V1.V2)∗ = Πx:(V ∗
1).(V ∗

2)
type∗ = t

R∗ = o R

Then

Lemma 3.1 Σ; · `LF M ⇐ V ∗ iff `LFB M ⇐ V .

Proof By induction on the structure of the derivations.

4 Applications

The stereotypical thing that the workaday LF hacker wants polymorphism for
is lists. This is easily and directly encodable. In pseudo-Twelf syntax,

list : type -> type.
nil : list T.
cons : T -> list T -> list T.

Then we can go on to write polymorphic logic programs over this type. For
instance, snoc, which appends an item to the end of a list.

snoc : T -> list T -> list T -> type.
snoc/nil : snoc X nil (cons X nil).
snoc/cons : snoc X (cons H TL) (cons H TL’)

<- snoc X TL TL’.

3

Under the above translation, this code becomes

t : type.
o : t -> type.
list : t -> t.
nil : o (list T).
cons : o T -> o (list T) -> o (list T).
snoc : o T -> o (list T) -> o (list T) -> t.
snoc/nil : o (snoc X nil (cons X nil)).
snoc/cons : o (snoc X (cons H TL) (cons H TL’))

<- o (snoc X TL TL’).

And we can actually then run it in Twelf.

bool : t.
true : o bool.
false : o bool.
%query 1 1
o (snoc true (cons true (cons false (cons false nil))) X).
---------- Solution 1 ----------
X = cons true (cons false (cons false (cons true nil))).

What’s more, being able to abstract over type operators allows for higher-
order functions in logic programming. We can write map as follows:

map : (A -> B -> type) -> list A -> list B -> type.
map/nil : map F nil nil.
map/cons : map F (cons H TL) (cons H’ TL’)

<- F H H’
<- map F TL TL’.

Which again, after suitable translation, is runnable in Twelf.

map : (o A -> o B -> t) -> o (list A) -> o (list B) -> t.
map/nil : o (map F nil nil).
map/cons : o (map F (cons H TL) (cons H’ TL’))

<- o (F H H’)
<- o (map F TL TL’).

not : o bool -> o bool -> t.
not/t : o (not true false).
not/f : o (not false true).

%query 1 1
o (map not (cons true (cons false (cons false nil))) X).
---------- Solution 1 ----------
X = cons false (cons true (cons true nil)).

4

5 Challenges

Clearly, doing mode-, coverage-, and termination-checking directly on this lan-
guage — or even basic algorithms such as subordination — are difficult open
problems. However, these difficulties are already implicit in doing the same for
LF extended with a module language, for we’d hope to be able to assume such
properties in module signatures.

It appears prima facie that we are limited to building polymorphic data
structures of only first-order things, since we are unable to instantiate type
variables with higher types. However in some cases one can get around this by
extracting the binding outside the type operator: instead of list (tm → tm) one
can get by with tm → (list tm).

Some of the idioms of higher-order logic do not work as well as might be
hoped. Standard polymorphic definitions of propositional connectives like

A ∨B ≡def Πα:type.(A → B → α) → α

‘infect’ all types with eliminations — just as would happen with a näıve ex-
tension of LF with sums. What might be expected for a definition of Leibniz
equality

EqA(M,N) ≡def ΠP :A → type.P M → P N

fails to enjoy symmetry, for the standard proof of it involves a higher-order
(in the sense that it involves an implication) predicate substituted for P . I
would conjecture that no single such definition could suitably capture equality
as would be defined in HOL.

References

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework
for defining logics. Journal of the Association for Computing Ma-
chinery, 40(1):143–184, January 1993.

[NMB06] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymor-
phism and separation in hoare type theory. In ICFP ’06: Proceed-
ings of the eleventh ACM SIGPLAN international conference on
Functional programming, pages 62–73, New York, NY, USA, 2006.
ACM.

[PE89] Frank Pfenning and Conal Elliott. Higher-order abstract syntax.
In Proceedings of the ACM SIGPLAN ’88 Symposium on Language
Design and Implementation, pages 199–208, Atlanta, Georgia, June
1989.

[WCPW03] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework I: Judgments and proper-
ties. Technical Report CMU-CS-02-101, Department of Computer
Science, 2003.

5

