Proof Irrelevance with Hereditary Substitution

Jason Reed

May 16, 2006

1 Language

Relevance	$\star, *$	$::=$	$: \mid \div$
Normal Terms	M, N	$::=$	$\lambda x \cdot M \mid R$
Atomic Terms	R	$::=$	$H \cdot S$
Heads	H	$::=$	$x \mid c$
Spines	S	$::=$	() $\mid\left(M^{\star} ; S\right)$
Types	A, B	$::=$	$a \cdot S \mid \Pi x \star A . B$
Kinds	K, L	$::=$	type $\mid \Pi x \star A . K$
Classifiers	V, W	$::=$	$A \mid K$
Contexts	Γ	$::=$	$\cdot \mid \Gamma, x \star A$
Signatures	Σ	$::=$	$\cdot\|\Sigma, c: A\| \Sigma, a: K$
Simple Types	τ	$::=$	$o \mid \tau_{1} \rightarrow \tau_{2}$

2 Syntactic Operations

2.1 Simplification

$$
\begin{gathered}
(a \cdot S)^{-}=o \\
(\Pi x \star A \cdot B)^{-}=(A)^{-} \rightarrow(B)^{-}
\end{gathered}
$$

2.2 Substitution and Reduction

Definitions adapted from [CLF paper $X X X$ cite]. Substitution is a partial function $[M / x]^{\tau} N$ on two terms and a simple type; it is the substitution of the term M for the variable x at simple type τ in the term N, which may be undefined. The definition of substitution is mutually recursive with that of reduction $[M \mid S]^{\tau}$, which operates on a term M and list of arguments (a 'spine') S at simple type τ, and produces the term that is the result of applying the head M (presumed to be of simple type τ) to arguments S.

The important case of the definition of substitution is when we reach the variable, and invoke reduction (see below).

$$
[M / x]^{\tau}(x \cdot S)=\left[M \mid[M / x]^{\tau} S\right]^{\tau}
$$

The remainder of the definition consists of simple congruences. Let σ abbreviate $[M / x]^{\tau}$.

$$
\begin{aligned}
\sigma(\lambda y \cdot N) & =\lambda y \cdot \sigma N \\
\sigma(y \cdot S) & =y \cdot(\sigma S) \quad(y \neq x) \\
\sigma(c \cdot S) & =c \cdot(\sigma S) \\
\sigma() & =() \\
\sigma\left(N^{\star} ; S\right) & =\left((\sigma N)^{\star} ; \sigma S\right) \\
\sigma(a \cdot S) & =a \cdot(\sigma S) \\
\sigma(\Pi y \star A \cdot B) & =\Pi y \star(\sigma A) \cdot(\sigma B) \\
\sigma \text { type } & =\operatorname{type} \\
\sigma(\Pi y \star A \cdot K) & =\Pi y \star(\sigma A) \cdot(\sigma K) \\
\sigma \cdot & = \\
\sigma(\Gamma, x \star A) & =(\sigma \Gamma), x \star(\sigma A)
\end{aligned}
$$

2.3 Reduction

Here we recursively use the definition of substitution, but only at strictly smaller simple types.

$$
\begin{aligned}
{\left[\lambda x \cdot M \mid\left(N^{\star} ; S\right)\right]^{\tau_{1} \rightarrow \tau_{2}} } & =\left[[N / x]^{\tau_{1}} M \mid S\right]^{\tau_{2}} \\
{[R \mid()]^{o} } & =R
\end{aligned}
$$

Any other reduction $[M \mid S]^{\top}$ that doesn't match these two patterns is undefined.

2.4 Promotion

Promotion is an operation on contexts; written as Γ^{\star}, it outputs a context.

$$
\begin{aligned}
. \div & = \\
(\Gamma, x \star A)^{\doteqdot} & =\Gamma^{\div}, x: A \\
\Gamma^{\vdots} & =\Gamma
\end{aligned}
$$

The purpose of promotion is to allow irrelevant arguments to functions to refer to irrelevant hypotheses. When irrelevant arguments are type-checked, they are checked in the 'promoted' context where all irrelevant hypotheses have been converted to genuine ones.

2.5 Equivalence

We tacitly identify all α-equivalent terms. If a metavariable is repeated, it implies a requirement of strict syntactic identity (up to α-equivalence). We write this same notion of syntactic identity as $=$. The definition of equivalence \equiv is nearly the same as $=$, except that we accept as equal all terms M found at positions of the form $\left(M^{\dot{ }} ; S\right)$. In other words the term identity of terms 'at irrelevant position' does not matter. A program that checks equivalence does strictly a subset of the work an ordinary syntactic equality check would have
performed. In this way we have unique canonical forms $u p$ to the choice of irrelevant representatives.

$$
\begin{gathered}
\frac{M_{1} \equiv M_{2}}{\lambda x \cdot M_{1} \equiv \lambda x \cdot M_{2}} \\
\frac{S_{1} \equiv S_{2}}{H \cdot S_{1} \equiv H \cdot S_{2}} \\
\overline{() \equiv()} \\
\frac{M_{1} \equiv M_{2} \quad S_{1} \equiv S_{2}}{\left(M_{1}^{;} ; S_{1}\right) \equiv\left(M_{2}^{\circ} ; S_{2}\right)} \quad \frac{S_{1} \equiv S_{2}}{\left(M_{1}^{\doteqdot} ; S_{1}\right) \equiv\left(M_{2}^{\doteqdot} ; S_{2}\right)} \\
\frac{S_{1} \equiv S_{2}}{a \cdot S_{1} \equiv a \cdot S_{2}} \\
\frac{A_{1} \equiv A_{2}}{\Pi x \star A_{1} \cdot V_{1} \equiv \Pi x \star A_{2} \cdot V_{2}} \\
\frac{V_{1} \equiv V_{2}}{\operatorname{type} \equiv \operatorname{type}}
\end{gathered}
$$

3 Typing

We begin with signature validity - it is, however, mutually recursive with all the remaining typing rules. These are the only ones on which we explicitly index the judgement by a signature. All turnstiles that follow these three rules carry an implicit Σ subscript.

3.1 Signature Validity

$\overline{\vdash \cdot: \operatorname{sgn}}$
$\frac{\vdash_{\Sigma} A: \text { type } \quad \vdash \Sigma: \operatorname{sgn}}{\vdash(\Sigma, c: A): \operatorname{sgn}}$
$\frac{\cdot \vdash_{\Sigma} K: \text { kind } \quad \vdash \Sigma: \operatorname{sgn}}{\vdash(\Sigma, a: K): \operatorname{sgn}}$

Term typing is divided naturally into checking and synthesis.

3.2 Term Checking

$$
\frac{\Gamma, x \star A \vdash M \Leftarrow B}{\Gamma \vdash \lambda x \cdot M \Leftarrow \Pi x \star A \cdot B}
$$

In the following rule, the boundary between synthesis and checking, we check that the synthesized type is equal to the type the term is checked against, up to the choice of irrelevant representatives.

$$
\frac{\Gamma \vdash R \Rightarrow A^{\prime} \quad A \equiv A^{\prime}}{\Gamma \vdash R \Leftarrow A}
$$

3.3 Term Synthesis

$$
\begin{gathered}
c: A \in \Sigma \quad \Gamma \vdash S: A>B \\
\Gamma \vdash c \cdot S \Rightarrow B \\
\frac{x: A \in \Gamma \quad \Gamma \vdash S: A>B}{\Gamma \vdash x \cdot S \Rightarrow B}
\end{gathered}
$$

3.4 Spine Synthesis

In $\Gamma \vdash S: V>W$, the inputs are Γ, S, V, and W is output.

$$
\begin{gathered}
\overline{\Gamma \vdash(): a \cdot S>a \cdot S} \\
\overline{\Gamma \vdash(): \text { type }>\text { type }} \\
\frac{\Gamma \vdash M \Leftarrow^{\star} A \quad \Gamma \vdash S:[M / x]^{A^{-}} V>W}{\Gamma \vdash\left(M^{\star} ; S\right): \Pi x \star A \cdot V>W}
\end{gathered}
$$

3.5 Promotion

$$
\frac{\Gamma^{\star} \vdash M \Leftarrow B}{\Gamma \vdash M \Leftarrow^{\star} B}
$$

3.6 Type Validity

$$
\begin{gathered}
\frac{a: K \in \Sigma \quad \Gamma \vdash S: K>\text { type }}{\Gamma \vdash a \cdot S: \text { type }} \\
\frac{\Gamma \vdash A: \text { type } \quad \Gamma, x \star A \vdash B: \text { type }}{\Gamma \vdash \Pi x \star A . B: \text { type }}
\end{gathered}
$$

3.7 Kind Validity

$$
\begin{gathered}
\overline{\Gamma \vdash \text { type }: \text { kind }} \\
\Gamma \vdash A: \text { type } \quad \Gamma, x \star A \vdash K: \text { kind } \\
\Gamma \vdash \Pi x \star A . K: \text { kind }
\end{gathered}
$$

3.8 Context Validity

$$
\frac{\Gamma \vdash A: \operatorname{type} \quad \vdash \Gamma: \operatorname{ctx}}{\vdash(\Gamma, x \star A): \operatorname{ctx}}
$$

4 Properties

Lemma 4.1 If $\Gamma \vdash R \Rightarrow A$, then A is of the form $a \cdot S$.
Proof By induction on the structure of the typing derivation.
A note on the fact that substitution is partial: when we say two expressions are syntactically identical without any further qualification, (i.e. $\quad M=N$) we mean that either both are undefined, or both are defined and syntactically identical.

Lemma $4.2\left([M / x]^{\tau} \Gamma\right)^{\div}=[M / x]^{\tau}\left(\Gamma^{\dot{\doteqdot}}\right)$.
Proof By induction on the structure of Γ.
Definition Defining $\Gamma \preceq \Gamma^{\prime}$, " Γ is weaker than $\Gamma^{\prime \prime}$ ".

$$
\overline{-\preceq} \quad \frac{\Gamma \preceq \Gamma^{\prime}}{\Gamma, x \star A \preceq \Gamma, x \star A} \quad \frac{\Gamma \preceq \Gamma^{\prime}}{\Gamma, x \div A \preceq \Gamma, x: A}
$$

Lemma 4.3 Suppose $\Gamma \preceq \Gamma^{\prime}$. If $\Gamma \vdash J$ then $\Gamma^{\prime} \vdash J$, for any typing judgment J.
Proof By induction on the structure of the typing derivation. Most cases are trivial. The only interesting cases are those that treat rules that significantly manipulate the context.

Case:

$$
\mathcal{D}=\frac{\mathcal{D}^{\prime}}{\Gamma, x \star A_{0} \vdash M_{0} \Leftarrow B} \begin{gathered}
\Gamma \vdash \lambda x \cdot M_{0} \Leftarrow \Pi x \star A_{0} \cdot B
\end{gathered}
$$

Observe that since $\Gamma \preceq \Gamma^{\prime}$, also $\Gamma, x \star A_{0} \preceq \Gamma^{\prime}, x \star A_{0}$. Use the induction hypothesis on this fact and the derivation \mathcal{D}^{\prime} to obtain $\Gamma^{\prime}, x \star A_{0} \vdash M_{0} \Leftarrow$ B. Rule application gives $\Gamma^{\prime} \vdash \lambda x \cdot M_{0} \Leftarrow \Pi x \star A_{0} . B$ as required.

Case:

$$
\mathcal{D}=\frac{x: A \in \Gamma \quad \Gamma \vdash S: A>B}{\Gamma \vdash x \cdot S \Rightarrow B}
$$

Use the induction hypothesis on \mathcal{D}^{\prime} to get $\Gamma^{\prime} \vdash S: A>B$. It follows from the definition of \preceq that if $x: A \in \Gamma$ and $\Gamma \preceq \Gamma^{\prime}$, then $x: A \in \Gamma^{\prime}$. So by rule application we see $\Gamma^{\prime} \vdash x \cdot S \Rightarrow B$ as required.

Case:

$$
\mathcal{D}=\frac{\mathcal{D}^{\prime}}{\Gamma \vdash M \Leftarrow B}
$$

It is easy to see from the definitions of \preceq and promotion that if $\Gamma \preceq \Gamma^{\prime}$, then $\Gamma^{\star} \preceq\left(\Gamma^{\prime}\right)^{\star}$ for either possible value of \star. Therefore use the induction hypothesis on \mathcal{D}^{\prime} to obtain $\left(\Gamma^{\prime}\right)^{\star} \vdash M \Leftarrow B$ and apply the rule to get $\Gamma^{\prime} \vdash M \Leftarrow^{\star} B$ as required.

Corollary 4.4 If $\Gamma \vdash M \Leftarrow{ }^{\star} A$, then $\Gamma^{\div} \vdash M \Leftarrow A$.
Proof If \star is :, then apply the lemma to $\Gamma \vdash M \Leftarrow A$ (which we know by inversion) and the fact that $\Gamma \preceq \Gamma^{\doteqdot}$. If \star is \div then the result is immediate from inversion.

Lemma 4.5 If $[M / x]^{\tau} A$ is well-defined, then $\left([M / x]^{\tau} A\right)^{-}=A^{-}$.
Proof By induction on the structure of A.
Lemma 4.6 (Weakening) If $\Gamma, \Gamma^{\prime} \vdash J$ then $\Gamma, x \star A, \Gamma^{\prime} \vdash J$.
Proof By induction on the derivation of $\Gamma \vdash J$.
Lemma 4.7 If X contains no free occurrence of x, then $[M / x]^{\tau} X=X$.
Proof By induction on the structure of X.
Lemma 4.8 If $X \equiv X^{\prime}$ and both $[M / x]^{\tau} X$ and $[M / x]^{\tau} X^{\prime}$ are defined, then $[M / x]^{\tau} X \equiv[M / x]^{\tau} X^{\prime}$.

Proof By induction over $\mathcal{D}:: X \equiv X^{\prime}$. The only interesting case is when
\mathcal{D}^{\prime}

$$
\mathcal{D}=\frac{S_{1} \equiv S_{2}}{\left(M_{1}^{\doteqdot} ; S_{1}\right) \equiv\left(M_{2}^{\doteqdot} ; S_{2}\right)}
$$

Here the induction hypothesis on \mathcal{D}^{\prime} gives us that $[M / x]^{\tau} S_{1} \equiv[M / x]^{\tau} S_{2}$. By rule application we get $\left(\left([M / x]^{\tau} M_{1}\right)^{\doteqdot} ;[M / x]^{\tau} S_{1}\right) \equiv\left(\left([M / x]^{\tau} M_{2}\right)^{\doteqdot} ;[M / x]^{\tau} S_{2}\right)$ as required.

Lemma 4.9 Make the following abbreviations: $\sigma_{B}=[N / z]^{B^{-}}, \sigma_{A}=[M / x]^{A^{-}}$, and $\sigma_{A}^{\prime}=\left[\sigma_{B} M / x\right]^{A^{-}}$.

1. Suppose $\sigma_{A} V, \sigma_{B} V$, and $\sigma_{B} M$ are defined. Suppose x does not occur free in N. Then $\sigma_{B} \sigma_{A} V$ and $\sigma_{A}^{\prime} \sigma_{B} V$ are both defined, and $\sigma_{B} \sigma_{A} V=\sigma_{A}^{\prime} \sigma_{B} V$.
2. Suppose $[M \mid S]^{C^{-}}, \sigma_{B} M$, and $\sigma_{B} S$ are defined. Then $\sigma_{B}[M \mid S]^{C^{-}}$and $\left[\sigma_{B} M \mid \sigma_{B} S\right]^{C^{-}}$are both defined, and $\sigma_{B}[M \mid S]^{C^{-}}=\left[\sigma_{B} M \mid \sigma_{B} S\right]^{C^{-}}$.

Proof By lexicographic induction first on the simple type (either the larger of $\left(A^{-}, B^{-}\right)$in case 1 or C^{-}in case 2), and subsequently on the structure of the expression V.
1.

Case: $V=z \cdot S$.

$$
\begin{gathered}
\sigma_{A}^{\prime} \sigma_{B}(z \cdot S)=\sigma_{A}^{\prime}\left[N \mid \sigma_{B} S\right]^{B^{-}} \\
\sigma_{B} \sigma_{A}(z \cdot S)=\left[\sigma_{A}^{\prime} N \mid \sigma_{B} \sigma_{A} S\right]^{B^{-}}
\end{gathered}
$$

We know that $\sigma_{A}^{\prime} N$ is defined because x does not occur in N. By the induction hypothesis part 1 , we know that $\sigma_{A}^{\prime} \sigma_{B} S$ and $\sigma_{B} \sigma_{A} S$ are defined and identical. From the induction hypothesis part 2 on $N, \sigma_{B} S, B^{-}$, and σ_{A}^{\prime}, we get $\sigma_{A}^{\prime}\left[N \mid \sigma_{B} S\right]^{B^{-}}=\left[\sigma_{A}^{\prime} N \mid \sigma_{A}^{\prime} \sigma_{B} S\right]^{B^{-}}$. It follows from the identity above that the latter is the same as $\left[\sigma_{A}^{\prime} N \mid \sigma_{B} \sigma_{A} S\right]^{B^{-}}$, as required.

Case: $V=x \cdot S$.

$$
\begin{gathered}
\sigma_{A}^{\prime} \sigma_{B}(x \cdot S)=\left[\sigma_{B} M \mid \sigma_{A}^{\prime} \sigma_{B} S\right]^{A^{-}} \\
\sigma_{B} \sigma_{A}(x \cdot S)=\sigma_{B}\left[M \mid \sigma_{A} S\right]^{A^{-}}
\end{gathered}
$$

We know that $\sigma_{B} M$ is defined by assumption. The remained of this case is symmetric to the previous one.
2.

Case: $M=\lambda w \cdot M^{\prime}, S=\left(\left(M^{\prime \prime}\right)^{\star} ; S^{\prime}\right)$, and $C^{-}=C_{1}^{-} \rightarrow C_{2}^{-}$. Then by definition of reduction

$$
\begin{gather*}
\sigma_{B}[M \mid S]^{C^{-}}=\sigma_{B}\left[\left[M^{\prime \prime} / w\right]^{C_{1}^{-}} M^{\prime} \mid S^{\prime}\right]^{C_{2}^{-}} \tag{*}\\
{\left[\sigma_{B} M \mid \sigma_{B} S\right]^{C^{-}}=\left[\left[\sigma_{B} M^{\prime \prime} / w\right]^{C_{1}^{-}} \sigma_{B} M^{\prime} \mid \sigma_{B} S^{\prime}\right]_{2}^{C_{2}^{-}}} \tag{**}
\end{gather*}
$$

We can see from the induction hypothesis (part 1, at a smaller type) that

$$
\sigma_{B}\left[M^{\prime \prime} / w\right]^{C_{1}^{-}} M^{\prime}=\left[\sigma_{B} M^{\prime \prime} / w\right]^{C_{1}^{-}} \sigma_{B} M^{\prime}
$$

and both are well-defined, since w can't appear in N. Thus we can use the induction hypothesis (part two, at C_{2}^{-}) to conclude the right-hand sides of $(*)$ and $(* *)$ are equal, as required.

Lemma 4.10 (Substitution) Suppose $\Gamma \vdash N \Leftarrow^{*} B$. Let σ be an abbreviation for $[N / z]^{B^{-}}$, with z being a variable that does not occur free in Γ or B. For cases 2-5, suppose $\sigma \Gamma^{\prime}$ is well-defined.

1. If $\Gamma \vdash S: B>A$ and $\Gamma \vdash M \Leftarrow B$ then $\Gamma \vdash[M \mid S]^{B^{-}} \Rightarrow A$.
2. If $\Gamma, z * B, \Gamma^{\prime} \vdash M \Leftarrow^{\star} A$ and σA is defined, then $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma M \Leftarrow^{\star} \sigma A$.
3. If $\Gamma, z * B, \Gamma^{\prime} \vdash M \Leftarrow A$ and σA is defined, then $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma M \Leftarrow \sigma A$.
4. If $\Gamma, z * B, \Gamma^{\prime} \vdash R \Rightarrow A$, then $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma R \Rightarrow \sigma A$.
5. If $\Gamma, z * B, \Gamma^{\prime} \vdash S: V>W$ and σV is defined, then $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma S: \sigma V>$ σW.

Proof By lexicographic induction on first the simple type B^{-}, next on the case (where case 1 is ordered less than all the remaining cases), and finally (for cases $2-5)$ on the structure of the typing derivation.
1.

Case: M is of the form $\lambda x \cdot M_{0}$. Then the typing derivation of M must be of the form

$$
\begin{gathered}
\mathcal{D}_{1} \\
\frac{\Gamma, x \star B_{1} \vdash M_{0} \Leftarrow B_{2}}{\Gamma \vdash \lambda x . M_{0} \Leftarrow \Pi x \star B_{1} \cdot B_{2}}
\end{gathered}
$$

Since we know that B is $\Pi x \star B_{1} \cdot B_{2}$, the typing derivation of S must look like

$$
\begin{array}{cc}
\mathcal{D}_{2} & \mathcal{D}_{3} \\
\frac{\Gamma \vdash M_{1} \Leftarrow^{\star} B_{1}}{} \quad \Gamma \vdash S_{1}:\left[M_{1} / x\right]^{B_{1}^{-}} B_{2}>A \\
\Gamma \vdash\left(M_{1}^{\star} ; S_{1}\right): \Pi x \star B_{1} \cdot B_{2}>A
\end{array}
$$

with S being $\left(M_{1}^{\star} ; S_{1}\right)$. By the induction hypothesis (part 3) on the smaller simple type B_{1}^{-}and the derivations \mathcal{D}_{1} and \mathcal{D}_{2}, (knowing that $\left[M_{1} / x\right]^{B_{1}^{-}} B_{2}$ is defined because we have \mathcal{D}_{3} in our hands) we find that

$$
\begin{equation*}
\Gamma \vdash\left[M_{1} / x\right]^{B_{1}^{-}} M_{0} \Leftarrow\left[M_{1} / x\right]^{B_{1}^{-}} B_{2} \tag{*}
\end{equation*}
$$

Observe that by Lemma 4.5 we know $\left(\left[M_{1} / x\right]^{B_{1}^{-}} B_{2}\right)^{-}=B_{2}^{-}$, and therefore (since B_{2}^{-}is a smaller simple type) we can apply the induction hypothesis (part 1) to $(*)$ and the derivation \mathcal{D}_{3} to infer first that

$$
\Gamma \vdash\left[\left[M_{1} / x\right]^{B_{1}^{-}} M_{0} \mid S_{1}\right]^{\left(\left[M_{1} / x\right]^{B_{1}^{-}} B_{2}\right)^{-}} \Leftarrow A
$$

and subsequently by the syntactic identity we just noted

$$
\Gamma \vdash\left[\left[M_{1} / x\right]^{B_{1}^{-}} M_{0} \mid S_{1}\right]^{B_{2}^{-}} \Leftarrow A
$$

But by definition of reduction we can read off that

$$
[M \mid S]^{B^{-}}=\left[\left(\lambda x \cdot M_{0}\right) \mid\left(M_{1}^{\star} ; S_{1}\right)\right]^{B_{1}^{-} \rightarrow B_{2}^{-}}=\left[\left[M_{1} / x\right]^{B_{1}^{-}} M_{0} \mid S_{1}\right]^{B_{2}^{-}}
$$

so we are done.
Case: M is atomic, i.e. of the form R. By inversion and Lemma 4.1 we have a typing derivation

$$
\begin{equation*}
\Gamma \vdash R \Leftarrow a \cdot S_{0} \tag{*}
\end{equation*}
$$

That is, B is $a \cdot S_{0}$, and so $B^{-}=o$. The only typing rule that would conclude $S: B>A$ is

$$
\overline{\Gamma \vdash(): a \cdot S_{0}>a \cdot S_{0}}
$$

so S must be empty, and A is also $a \cdot S_{0}$. Therefore

$$
[M \mid S]^{B^{-}}=[R \mid()]^{o}=R
$$

but we already have a derivation that $\Gamma \vdash R \Leftarrow a \cdot S_{0}$, namely ($*$).
2.

Case:

$$
\mathcal{D}=\frac{\Gamma, z * B, \Gamma^{\prime} \vdash M \Leftarrow A}{\Gamma, z * B, \Gamma^{\prime} \vdash M \Leftarrow^{\prime} A}
$$

By the induction hypothesis on \mathcal{D}^{\prime} we obtain $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma M \Leftarrow \sigma A$. By rule application we have $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma M \Leftarrow: \sigma A$ as required.

Case:

$$
\mathcal{D}=\frac{\left(\Gamma, z * B, \Gamma^{\prime}\right)^{\prime} \div \vdash \Leftarrow A}{\Gamma, z * B, \Gamma^{\prime} \vdash M \Leftarrow \div A}
$$

By Corollary 4.4 we know $\Gamma^{\div} \vdash N \Leftarrow B$, so we can apply the induction hypothesis to \mathcal{D}^{\prime} (which, unwinding the definition of promotion, is a derivation of $\left.\Gamma^{\doteqdot}, z: B,\left(\Gamma^{\prime}\right)^{\div} \vdash M \Leftarrow A\right)$ to obtain $\Gamma^{\doteqdot}, \sigma\left(\left(\Gamma^{\prime}\right)^{\dot{\doteqdot}}\right) \vdash \sigma M \Leftarrow \sigma A$. This is the same as $\left(\Gamma, \sigma \Gamma^{\prime}\right) \div \vdash M \Leftarrow \sigma A$ by Lemma 4.2. By rule application we have $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma M \Leftarrow \div \sigma A$ as required.
3.

Case:

$$
\mathcal{D}=\frac{\Gamma, z * B, \Gamma^{\prime}, x \star A_{0} \vdash M_{0} \Leftarrow B_{0}}{\Gamma, z * B, \Gamma^{\prime} \vdash \lambda x \cdot M_{0} \Leftarrow \Pi x \star A_{0} \cdot B_{0}}
$$

By the induction hypothesis on \mathcal{D}^{\prime} we know $\Gamma, \sigma \Gamma^{\prime}, x \star \sigma A_{0} \vdash \sigma M_{0} \Leftarrow$ σB_{0}. By rule application we obtain $\Gamma, \sigma \Gamma^{\prime} \vdash \lambda x . \sigma M_{0} \Leftarrow \Pi x \star \sigma A_{0} . \sigma B_{0}$ as required.

Case:

$$
\mathcal{D}=\frac{\mathcal{D}^{\prime}}{\Gamma, z * B, \Gamma^{\prime} \vdash R \Rightarrow A^{\prime} \quad A \equiv A^{\prime}} \underset{\Gamma, z * B, \Gamma^{\prime} \vdash R \Leftarrow A}{ }
$$

By the induction hypothesis on \mathcal{D}^{\prime} we obtain $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma R \Rightarrow \sigma A^{\prime}$. Since $A \equiv A^{\prime}$, so too $\sigma A \equiv \sigma A^{\prime}$ by Lemma 4.8. By rule application we obtain $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma R \Leftarrow \sigma A$ as required.
4.

Case:

$$
\mathcal{D}=\frac{c: A_{0} \in \Sigma \quad \Gamma, z * B, \Gamma^{\prime} \vdash S: A_{0}>A}{\Gamma, z * B, \Gamma^{\prime} \vdash c \cdot S \Rightarrow A}
$$

By the induction hypothesis on \mathcal{D}^{\prime} we obtain $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma S: \sigma A_{0}>\sigma A$. But A_{0} can have no free occurrence of z, so $\sigma A_{0}=A_{0}$ by Lemma 4.7. By rule application we get $\Gamma, \sigma \Gamma^{\prime} \vdash c \cdot \sigma S \Rightarrow \sigma A$ as required.

Case: \mathcal{D}^{\prime}

$$
\mathcal{D}=\frac{x: A_{0} \in \Gamma, z * B, \Gamma^{\prime} \quad \Gamma, z * B, \Gamma^{\prime} \vdash S: A_{0}>A}{\Gamma, z * B, \Gamma^{\prime} \vdash x \cdot S \Rightarrow A}
$$

We split on three subcases depending on the location of $x \in \Gamma, z * B, \Gamma^{\prime}$.
Subcase: $x \in \Gamma$. In this case z can have no occurrence in the type A_{0} of x. Thus σA_{0} is syntactically equal to A_{0} by Lemma 4.7. By the induction hypothesis (part 5) on \mathcal{D}^{\prime} we obtain $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma S: A_{0}>\sigma A$. By rule application we get $\Gamma, \sigma \Gamma^{\prime} \vdash x \cdot \sigma S \Rightarrow \sigma A$ as required.

Subcase: x is in fact z. In this case A_{0} and B are syntactically identical, the relevancy variable $*$ must be :, and the term $\sigma(x \cdot S)$ we aim to type is $[N \mid \sigma S]^{B^{-}}$. We know $\Gamma \vdash N \Leftarrow B$, and by using Lemma 4.6 repeatedly we can obtain $\Gamma, \sigma \Gamma^{\prime} \vdash N \Leftarrow B$. By Lemma 4.7 and the induction hypothesis (part 5), we know $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma S: B>\sigma A$. Use the induction hypothesis (part 1: this is licensed because it is ordered as less than the other cases, and the simple type B^{-}has remained the same) to obtain the required derivation of $\Gamma, \sigma \Gamma^{\prime} \vdash[N \mid \sigma S]^{B^{-}} \Rightarrow \sigma A$.
Subcase: $x \in \Gamma^{\prime}$. By assumption on Γ^{\prime}, we have that σA_{0} is defined. By the induction hypothesis (part 5) $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma S: \sigma A_{0}>\sigma A$. Clearly $x: \sigma A_{0} \in$ $\Gamma, \sigma \Gamma^{\prime}$ so it follows by rule application that $\Gamma, \sigma \Gamma^{\prime} \vdash x \cdot \sigma S \Rightarrow \sigma A$.
5.

Case:

$$
\mathcal{D}=\overline{\Gamma, z * B, \Gamma^{\prime} \vdash(): a \cdot S>a \cdot S}
$$

Since we know $a \cdot \sigma S$ is defined, by rule application we immediately have $\Gamma, \sigma \Gamma^{\prime} \vdash(): a \cdot \sigma S>a \cdot \sigma S$.

Case:

$$
\mathcal{D}=\overline{\Gamma, z * B, \Gamma^{\prime} \vdash(): \text { type }>\text { type }}
$$

By rule application, we immediately have $\Gamma, \sigma \Gamma^{\prime} \vdash()$: type $>$ type

Case:

$$
\begin{gathered}
\mathcal{D}_{1} \\
\mathcal{D}=\frac{\Gamma, z * B, \Gamma^{\prime} \vdash M \Leftarrow^{\star} A}{\mathcal{D}_{2}} \\
\Gamma, z * B, \Gamma^{\prime} \vdash\left(M^{\star} ; S\right): \Pi x \star A . V>W
\end{gathered}
$$

By the induction hypothesis (part 2) we know $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma M \Leftarrow^{\star} \sigma A$. Observe that M has no free occurrence of z, by assumption σV is welldefined, and from the existence of \mathcal{D}_{2} we know that $[M / x]^{A^{-}} V$ is welldefined. Therefore we can use Lemma 4.9 to infer that both $[\sigma M / x]^{A^{-}} \sigma V$ and $\sigma[M / x]^{A^{-}} V$ are defined, and that they are syntatically identical. By the induction hypothesis (part 5) we know $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma S: \sigma[M / x]^{A^{-}} V>$ σW, which is the same thing as $\Gamma, \sigma \Gamma^{\prime} \vdash \sigma S:[\sigma M / x]^{A^{-}} \sigma V>\sigma W$. By rule application we obtain $\Gamma, \sigma \Gamma^{\prime} \vdash\left(\sigma M^{\star} ; \sigma S\right): \Pi x \star \sigma A . \sigma V>\sigma W$.

Lemma 4.11 (Validity) Suppose Γ is well-formed.

1. If $\Gamma \vdash R \Rightarrow A$ then $\Gamma \vdash A$: type.
2. If $\Gamma \vdash S: A>B$ and $\Gamma \vdash A$: type, then $\Gamma \vdash B$: type.

Proof By induction on the structure of the derivation. Requires the fact that if Γ valid, then Γ^{\div}valid, which requires Corollary 4.4.

