
Proof Irrelevance with Hereditary Substitution

Jason Reed

May 16, 2006

1 Language

Relevance ?, ∗ ::= : | ÷
Normal Terms M,N ::= λx.M | R
Atomic Terms R ::= H · S
Heads H ::= x | c
Spines S ::= () | (M?;S)
Types A,B ::= a · S | Πx ? A.B
Kinds K, L ::= type | Πx ? A.K
Classifiers V,W ::= A | K
Contexts Γ ::= · | Γ, x ? A
Signatures Σ ::= · | Σ, c : A | Σ, a : K
Simple Types τ ::= o | τ1 → τ2

2 Syntactic Operations

2.1 Simplification

(a · S)− = o

(Πx ? A.B)− = (A)− → (B)−

2.2 Substitution and Reduction

Definitions adapted from [CLF paper XXX cite]. Substitution is a partial func-
tion [M/x]τN on two terms and a simple type; it is the substitution of the
term M for the variable x at simple type τ in the term N , which may be unde-
fined. The definition of substitution is mutually recursive with that of reduction
[M |S]τ , which operates on a term M and list of arguments (a ‘spine’) S at
simple type τ , and produces the term that is the result of applying the head M
(presumed to be of simple type τ) to arguments S.

The important case of the definition of substitution is when we reach the
variable, and invoke reduction (see below).

[M/x]τ (x · S) = [M |[M/x]τS]τ

1

The remainder of the definition consists of simple congruences. Let σ ab-
breviate [M/x]τ .

σ(λy.N) = λy.σN
σ(y · S) = y · (σS) (y 6= x)
σ(c · S) = c · (σS)

σ() = ()
σ(N?;S) = ((σN)?;σS)
σ(a · S) = a · (σS)

σ(Πy ? A.B) = Πy ? (σA).(σB)
σ type = type

σ(Πy ? A.K) = Πy ? (σA).(σK)
σ· = ·

σ(Γ, x ? A) = (σΓ), x ? (σA)

2.3 Reduction

Here we recursively use the definition of substitution, but only at strictly smaller
simple types.

[λx.M |(N?;S)]τ1→τ2 = [[N/x]τ1M |S]τ2

[R|()]o = R

Any other reduction [M |S]τ that doesn’t match these two patterns is undefined.

2.4 Promotion

Promotion is an operation on contexts; written as Γ?, it outputs a context.

·÷ = ·

(Γ, x ? A)÷ = Γ÷, x : A

Γ: = Γ

The purpose of promotion is to allow irrelevant arguments to functions to refer
to irrelevant hypotheses. When irrelevant arguments are type-checked, they are
checked in the ‘promoted’ context where all irrelevant hypotheses have been
converted to genuine ones.

2.5 Equivalence

We tacitly identify all α-equivalent terms. If a metavariable is repeated, it
implies a requirement of strict syntactic identity (up to α-equivalence). We
write this same notion of syntactic identity as =. The definition of equivalence
≡ is nearly the same as =, except that we accept as equal all terms M found
at positions of the form (M÷;S). In other words the term identity of terms ‘at
irrelevant position’ does not matter. A program that checks equivalence does
strictly a subset of the work an ordinary syntactic equality check would have

2

performed. In this way we have unique canonical forms up to the choice of
irrelevant representatives.

M1 ≡ M2

λx.M1 ≡ λx.M2

S1 ≡ S2

H · S1 ≡ H · S2

() ≡ ()

M1 ≡ M2 S1 ≡ S2

(M :
1;S1) ≡ (M :

2;S2)

S1 ≡ S2

(M÷
1 ;S1) ≡ (M÷

2 ;S2)

S1 ≡ S2

a · S1 ≡ a · S2

A1 ≡ A2 V1 ≡ V2

Πx ? A1.V1 ≡ Πx ? A2.V2

type ≡ type

3 Typing

We begin with signature validity — it is, however, mutually recursive with all
the remaining typing rules. These are the only ones on which we explicitly index
the judgement by a signature. All turnstiles that follow these three rules carry
an implicit Σ subscript.

3.1 Signature Validity

` · : sgn

· `Σ A : type ` Σ : sgn

` (Σ, c : A) : sgn

· `Σ K : kind ` Σ : sgn

` (Σ, a : K) : sgn

Term typing is divided naturally into checking and synthesis.

3

3.2 Term Checking

Γ, x ? A ` M ⇐ B

Γ ` λx.M ⇐ Πx ? A.B

In the following rule, the boundary between synthesis and checking, we check
that the synthesized type is equal to the type the term is checked against, up
to the choice of irrelevant representatives.

Γ ` R ⇒ A′ A ≡ A′

Γ ` R ⇐ A

3.3 Term Synthesis

c : A ∈ Σ Γ ` S : A > B

Γ ` c · S ⇒ B

x : A ∈ Γ Γ ` S : A > B

Γ ` x · S ⇒ B

3.4 Spine Synthesis

In Γ ` S : V > W , the inputs are Γ, S, V , and W is output.

Γ ` () : a · S > a · S

Γ ` () : type > type

Γ ` M ⇐? A Γ ` S : [M/x]A
−
V > W

Γ ` (M?;S) : Πx ? A.V > W

3.5 Promotion
Γ? ` M ⇐ B

Γ ` M ⇐? B

3.6 Type Validity

a : K ∈ Σ Γ ` S : K > type

Γ ` a · S : type

Γ ` A : type Γ, x ? A ` B : type

Γ ` Πx ? A.B : type

4

3.7 Kind Validity

Γ ` type : kind

Γ ` A : type Γ, x ? A ` K : kind

Γ ` Πx ? A.K : kind

3.8 Context Validity

` · : ctx
Γ ` A : type ` Γ : ctx

` (Γ, x ? A) : ctx

4 Properties

Lemma 4.1 If Γ ` R ⇒ A, then A is of the form a · S.

Proof By induction on the structure of the typing derivation.

A note on the fact that substitution is partial: when we say two expressions
are syntactically identical without any further qualification, (i.e. M = N)
we mean that either both are undefined, or both are defined and syntactically
identical.

Lemma 4.2 ([M/x]τΓ)÷ = [M/x]τ (Γ÷).

Proof By induction on the structure of Γ.

Definition Defining Γ � Γ′, “Γ is weaker than Γ′”.

· � ·
Γ � Γ′

Γ, x ? A � Γ, x ? A

Γ � Γ′

Γ, x÷A � Γ, x : A

Lemma 4.3 Suppose Γ � Γ′. If Γ ` J then Γ′ ` J , for any typing judgment J .

Proof By induction on the structure of the typing derivation. Most cases are
trivial. The only interesting cases are those that treat rules that significantly
manipulate the context.

Case:

D =

D′

Γ, x ? A0 ` M0 ⇐ B

Γ ` λx.M0 ⇐ Πx ? A0.B

Observe that since Γ � Γ′, also Γ, x ? A0 � Γ′, x ? A0. Use the induction
hypothesis on this fact and the derivation D′ to obtain Γ′, x ? A0 ` M0 ⇐
B. Rule application gives Γ′ ` λx.M0 ⇐ Πx ? A0.B as required.

5

Case:

D = x : A ∈ Γ

D′

Γ ` S : A > B

Γ ` x · S ⇒ B

Use the induction hypothesis on D′ to get Γ′ ` S : A > B. It follows from
the definition of � that if x : A ∈ Γ and Γ � Γ′, then x : A ∈ Γ′. So by
rule application we see Γ′ ` x · S ⇒ B as required.

Case:

D =

D′

Γ? ` M ⇐ B

Γ ` M ⇐? B

It is easy to see from the definitions of � and promotion that if Γ � Γ′,
then Γ? � (Γ′)? for either possible value of ?. Therefore use the induction
hypothesis on D′ to obtain (Γ′)? ` M ⇐ B and apply the rule to get
Γ′ ` M ⇐? B as required.

Corollary 4.4 If Γ ` M ⇐? A, then Γ÷ ` M ⇐ A.

Proof If ? is :, then apply the lemma to Γ ` M ⇐ A (which we know by
inversion) and the fact that Γ � Γ÷. If ? is ÷ then the result is immediate from
inversion.

Lemma 4.5 If [M/x]τA is well-defined, then ([M/x]τA)− = A−.

Proof By induction on the structure of A.

Lemma 4.6 (Weakening) If Γ,Γ′ ` J then Γ, x ? A, Γ′ ` J .

Proof By induction on the derivation of Γ ` J .

Lemma 4.7 If X contains no free occurrence of x, then [M/x]τX = X.

Proof By induction on the structure of X.

Lemma 4.8 If X ≡ X ′ and both [M/x]τX and [M/x]τX ′ are defined, then
[M/x]τX ≡ [M/x]τX ′.

Proof By induction over D :: X ≡ X ′. The only interesting case is when

D =

D′

S1 ≡ S2

(M÷
1 ;S1) ≡ (M÷

2 ;S2)

Here the induction hypothesis on D′ gives us that [M/x]τS1 ≡ [M/x]τS2. By
rule application we get (([M/x]τM1)÷; [M/x]τS1) ≡ (([M/x]τM2)÷; [M/x]τS2)
as required.

6

Lemma 4.9 Make the following abbreviations: σB = [N/z]B
−
, σA = [M/x]A

−
,

and σ′A = [σBM/x]A
−
.

1. Suppose σAV , σBV , and σBM are defined. Suppose x does not occur free
in N . Then σBσAV and σ′AσBV are both defined, and σBσAV = σ′AσBV .

2. Suppose [M |S]C
−
, σBM , and σBS are defined. Then σB [M |S]C

−
and

[σBM |σBS]C
−

are both defined, and σB [M |S]C
−

= [σBM |σBS]C
−
.

Proof By lexicographic induction first on the simple type (either the larger of
(A−, B−) in case 1 or C− in case 2), and subsequently on the structure of the
expression V .

1.

Case: V = z · S.
σ′AσB(z · S) = σ′A[N |σBS]B

−

σBσA(z · S) = [σ′AN |σBσAS]B
−

We know that σ′AN is defined because x does not occur in N . By the
induction hypothesis part 1, we know that σ′AσBS and σBσAS are defined
and identical. From the induction hypothesis part 2 on N , σBS, B−, and
σ′A, we get σ′A[N |σBS]B

−
= [σ′AN |σ′AσBS]B

−
. It follows from the identity

above that the latter is the same as [σ′AN |σBσAS]B
−
, as required.

Case: V = x · S.
σ′AσB(x · S) = [σBM |σ′AσBS]A

−

σBσA(x · S) = σB [M |σAS]A
−

We know that σBM is defined by assumption. The remained of this case
is symmetric to the previous one.

2.

Case: M = λw.M ′, S = ((M ′′)?;S′), and C− = C−
1 → C−

2 . Then by definition
of reduction

σB [M |S]C
−

= σB [[M ′′/w]C
−
1 M ′|S′]C

−
2 (∗)

[σBM |σBS]C
−

= [[σBM ′′/w]C
−
1 σBM ′|σBS′]C

−
2 (∗∗)

We can see from the induction hypothesis (part 1, at a smaller type) that

σB [M ′′/w]C
−
1 M ′ = [σBM ′′/w]C

−
1 σBM ′

and both are well-defined, since w can’t appear in N . Thus we can use the
induction hypothesis (part two, at C−

2) to conclude the right-hand sides
of (∗) and (∗∗) are equal, as required.

7

Lemma 4.10 (Substitution) Suppose Γ ` N ⇐∗ B. Let σ be an abbreviation
for [N/z]B

−
, with z being a variable that does not occur free in Γ or B. For

cases 2-5, suppose σΓ′ is well-defined.

1. If Γ ` S : B > A and Γ ` M ⇐ B then Γ ` [M |S]B
− ⇒ A.

2. If Γ, z ∗B,Γ′ ` M ⇐? A and σA is defined, then Γ, σΓ′ ` σM ⇐? σA.

3. If Γ, z ∗B,Γ′ ` M ⇐ A and σA is defined, then Γ, σΓ′ ` σM ⇐ σA.

4. If Γ, z ∗B,Γ′ ` R ⇒ A, then Γ, σΓ′ ` σR ⇒ σA.

5. If Γ, z ∗ B,Γ′ ` S : V > W and σV is defined, then Γ, σΓ′ ` σS : σV >
σW .

Proof By lexicographic induction on first the simple type B−, next on the case
(where case 1 is ordered less than all the remaining cases), and finally (for cases
2-5) on the structure of the typing derivation.

1.

Case: M is of the form λx.M0. Then the typing derivation of M must be of the
form

D1

Γ, x ? B1 ` M0 ⇐ B2

Γ ` λx.M0 ⇐ Πx ? B1.B2

Since we know that B is Πx?B1.B2, the typing derivation of S must look
like

D2

Γ ` M1 ⇐? B1

D3

Γ ` S1 : [M1/x]B
−
1 B2 > A

Γ ` (M?
1 ;S1) : Πx ? B1.B2 > A

with S being (M?
1 ;S1). By the induction hypothesis (part 3) on the

smaller simple type B−
1 and the derivations D1 and D2, (knowing that

[M1/x]B
−
1 B2 is defined because we have D3 in our hands) we find that

Γ ` [M1/x]B
−
1 M0 ⇐ [M1/x]B

−
1 B2 (∗)

Observe that by Lemma 4.5 we know ([M1/x]B
−
1 B2)− = B−

2 , and therefore
(since B−

2 is a smaller simple type) we can apply the induction hypothesis
(part 1) to (∗) and the derivation D3 to infer first that

Γ ` [[M1/x]B
−
1 M0|S1]([M1/x]

B
−
1 B2)

−
⇐ A

and subsequently by the syntactic identity we just noted

Γ ` [[M1/x]B
−
1 M0|S1]B

−
2 ⇐ A

8

But by definition of reduction we can read off that

[M |S]B
−

= [(λx.M0)|(M?
1 ;S1)]B

−
1 →B−2 = [[M1/x]B

−
1 M0|S1]B

−
2

so we are done.

Case: M is atomic, i.e. of the form R. By inversion and Lemma 4.1 we have a
typing derivation

Γ ` R ⇐ a · S0 (∗)
That is, B is a · S0, and so B− = o. The only typing rule that would
conclude S : B > A is

Γ ` () : a · S0 > a · S0

so S must be empty, and A is also a · S0. Therefore

[M |S]B
−

= [R|()]o = R

but we already have a derivation that Γ ` R ⇐ a · S0, namely (∗).

2.

Case:

D =

D′

Γ, z ∗B,Γ′ ` M ⇐ A

Γ, z ∗B,Γ′ ` M ⇐: A

By the induction hypothesis on D′ we obtain Γ, σΓ′ ` σM ⇐ σA. By rule
application we have Γ, σΓ′ ` σM ⇐: σA as required.

Case:

D =

D′

(Γ, z ∗B,Γ′)÷ ` M ⇐ A

Γ, z ∗B,Γ′ ` M ⇐÷ A

By Corollary 4.4 we know Γ÷ ` N ⇐ B, so we can apply the induction hy-
pothesis to D′ (which, unwinding the definition of promotion, is a deriva-
tion of Γ÷, z : B, (Γ′)÷ ` M ⇐ A) to obtain Γ÷, σ((Γ′)÷) ` σM ⇐ σA.
This is the same as (Γ, σΓ′)÷ ` σM ⇐ σA by Lemma 4.2. By rule appli-
cation we have Γ, σΓ′ ` σM ⇐÷ σA as required.

3.

Case:

D =

D′

Γ, z ∗B,Γ′, x ? A0 ` M0 ⇐ B0

Γ, z ∗B,Γ′ ` λx.M0 ⇐ Πx ? A0.B0

By the induction hypothesis on D′ we know Γ, σΓ′, x ? σA0 ` σM0 ⇐
σB0. By rule application we obtain Γ, σΓ′ ` λx.σM0 ⇐ Πx ? σA0.σB0 as
required.

9

Case:

D =

D′

Γ, z ∗B,Γ′ ` R ⇒ A′ A ≡ A′

Γ, z ∗B,Γ′ ` R ⇐ A

By the induction hypothesis on D′ we obtain Γ, σΓ′ ` σR ⇒ σA′. Since
A ≡ A′, so too σA ≡ σA′ by Lemma 4.8. By rule application we obtain
Γ, σΓ′ ` σR ⇐ σA as required.

4.

Case:

D = c : A0 ∈ Σ

D′

Γ, z ∗B,Γ′ ` S : A0 > A

Γ, z ∗B,Γ′ ` c · S ⇒ A

By the induction hypothesis on D′ we obtain Γ, σΓ′ ` σS : σA0 > σA.
But A0 can have no free occurrence of z, so σA0 = A0 by Lemma 4.7. By
rule application we get Γ, σΓ′ ` c · σS ⇒ σA as required.

Case:

D = x : A0 ∈ Γ, z ∗B,Γ′
D′

Γ, z ∗B,Γ′ ` S : A0 > A

Γ, z ∗B,Γ′ ` x · S ⇒ A

We split on three subcases depending on the location of x ∈ Γ, z ∗B,Γ′.

Subcase: x ∈ Γ. In this case z can have no occurrence in the type A0 of x. Thus σA0

is syntactically equal to A0 by Lemma 4.7. By the induction hypothesis
(part 5) on D′ we obtain Γ, σΓ′ ` σS : A0 > σA. By rule application we
get Γ, σΓ′ ` x · σS ⇒ σA as required.

Subcase: x is in fact z. In this case A0 and B are syntactically identical, the
relevancy variable ∗ must be :, and the term σ(x · S) we aim to type is
[N |σS]B

−
. We know Γ ` N ⇐ B, and by using Lemma 4.6 repeatedly we

can obtain Γ, σΓ′ ` N ⇐ B. By Lemma 4.7 and the induction hypothesis
(part 5), we know Γ, σΓ′ ` σS : B > σA. Use the induction hypothesis
(part 1: this is licensed because it is ordered as less than the other cases,
and the simple type B− has remained the same) to obtain the required
derivation of Γ, σΓ′ ` [N |σS]B

− ⇒ σA.

Subcase: x ∈ Γ′. By assumption on Γ′, we have that σA0 is defined. By the
induction hypothesis (part 5) Γ, σΓ′ ` σS : σA0 > σA. Clearly x : σA0 ∈
Γ, σΓ′ so it follows by rule application that Γ, σΓ′ ` x · σS ⇒ σA.

5.

10

Case:
D = Γ, z ∗B,Γ′ ` () : a · S > a · S

Since we know a · σS is defined, by rule application we immediately have
Γ, σΓ′ ` () : a · σS > a · σS.

Case:
D = Γ, z ∗B,Γ′ ` () : type > type

By rule application, we immediately have Γ, σΓ′ ` () : type > type.

Case:

D =

D1

Γ, z ∗B,Γ′ ` M ⇐? A

D2

Γ, z ∗B,Γ′ ` S : [M/x]A
−
V > W

Γ, z ∗B,Γ′ ` (M?;S) : Πx ? A.V > W

By the induction hypothesis (part 2) we know Γ, σΓ′ ` σM ⇐? σA.
Observe that M has no free occurrence of z, by assumption σV is well-
defined, and from the existence of D2 we know that [M/x]A

−
V is well-

defined. Therefore we can use Lemma 4.9 to infer that both [σM/x]A
−
σV

and σ[M/x]A
−
V are defined, and that they are syntatically identical. By

the induction hypothesis (part 5) we know Γ, σΓ′ ` σS : σ[M/x]A
−
V >

σW , which is the same thing as Γ, σΓ′ ` σS : [σM/x]A
−
σV > σW . By

rule application we obtain Γ, σΓ′ ` (σM?;σS) : Πx ? σA.σV > σW .

Lemma 4.11 (Validity) Suppose Γ is well-formed.

1. If Γ ` R ⇒ A then Γ ` A : type.

2. If Γ ` S : A > B and Γ ` A : type, then Γ ` B : type.

Proof By induction on the structure of the derivation. Requires the fact that
if Γ valid, then Γ÷ valid, which requires Corollary 4.4.

11

