The Identity Theorem in Hereditary Spine Form

Jason Reed

January 24, 2007

Terms

\[M ::= x \cdot S | \lambda x. S \]

Spines

\[S ::= () | (M; S) \]

Syntactic Objects

\[X ::= M \cdot S \]

Eta-expansion:

\[\text{ex}_\alpha (H \cdot S) = H \cdot S \]
\[\text{ex}_{A \rightarrow B} (H \cdot S) = \lambda y. \text{ex}_B (H \cdot (S \cdot \text{ex}_A (x \cdot ()))) \]

Substitution and reduction are as usual, abbreviating \(\sigma = [M/x]^A \):

\[\sigma (\lambda y. N) = \lambda y. \sigma N \]
\[\sigma (y \cdot S) = y \cdot \sigma S \]
\[\sigma (x \cdot S) = [M \mid \sigma S] \]
\[\sigma () = () \]
\[\sigma (N; S) = (\sigma N; \sigma S) \]
\[[\lambda x. N \mid (M; S)]^{A \rightarrow B} = [[M/x]^A N \mid S]^B \]
\[[x \cdot S \mid ()]^\sigma = x \cdot S \]
\[[M \mid ()]^A = M \]

In all the following lemmas, \(M \Rightarrow N \) means that if \(M \) is defined, then \(N \) is defined, and \(M = N \).

0.1 Lemmas

Lemma 0.1 \([M \mid (S; S')]^B \Rightarrow [[M \mid S]^B_1 \mid S']^B_2 \) for some \(B_1, B_2 \).

Proof Induction on \(S \).

Case: \(S = () \). Immediate by definition of reduction. Pick \(B_1 = a \) and \(B_2 = B \).

Case: \(S = (M_0; S_0) \). Then \(M \) is of the form \(\lambda y. N \), and \(B \) must be of the form \(B_L \rightarrow B_R \).

\[
[M \mid (S; S')]^B = [\lambda y. N \mid (M_0; S_0; S')]^B \\
= [[M_0/y]^B_L \cdot N \mid (S_0; S')]^B_R \\
= [[[M_0/y]^B_L \cdot N \mid S_0]^B_{R_1} \mid S']^B_{R_2} \\
= \text{by i.h.} \\
= [[\lambda y. N \mid (M_0; S_0)]^{B_L \rightarrow B_{R_1}} \mid S']^{B_{R_2}} \\
= [[M \mid S]^B_{L \rightarrow B_{R_1}} \mid S']^{B_{R_2}}
\]
Lemma 0.2 \([M/x]^A\text{ex}_B(y \cdot S) \Rightarrow \text{ex}_B(y \cdot [M/x]^A S)\).

Proof By induction on \(B\).

Case: \(B = a\). Immediate by definition of \(\text{ex}\) and substitution.

Case: \(B = B_1 \rightarrow B_2\). Then

\[
[M/x]^A\text{ex}_{B_1 \rightarrow B_2}(y \cdot S) = [M/x]^A \lambda z. \text{ex}_{B_1}(y \cdot (S; \text{ex}_{B_1}(z \cdot ())))
\]

\[
= \lambda z.[M/x]^A \text{ex}_{B_2}(y \cdot (S; \text{ex}_{B_1}(z \cdot ())))
\]

\[
= \lambda z. \text{ex}_{B_2}(y \cdot ([M/x]^A S; [M/x]^A \text{ex}_{B_1}(z \cdot ())))
\]

\[
= \lambda z. \text{ex}_{B_2}(y \cdot ([M/x]^A S; \text{ex}_{B_1}([M/x]^A(z \cdot ()))))
\]

\[
= \lambda z. \text{ex}_{B_2}(y \cdot ([M/x]^A S; \text{ex}_{B_1}(z \cdot ())))
\]

\[
= \text{ex}_{B_1 \rightarrow B_2}(y \cdot ([M/x]^A S))
\]

Lemma 0.3

1. \([\text{ex}_A(x \cdot ())/y]^B X \Rightarrow [x/y]X\)
2. \([\text{ex}_A(x \cdot S) \mid S']^B \Rightarrow x \cdot (S; S')\)
3. \([M/x]^B \text{ex}_A(x \cdot S) \Rightarrow [M][S']^B\), if \(x \not\in \text{FV}(S)\), for some \(B'\).

Proof By lexicographic induction on \(A\), the case 1–3, and the object \(X\).

1. Split cases on the structure of \(X\). The reasoning is straightforward except when \(X = y \cdot S\). Then we must show, by the definition of substitution,

 \[
 \text{ex}_A(x \cdot ()) \mid [\text{ex}_A(x \cdot ())/y]^B S \Rightarrow x \cdot ([x/y]S)
 \]

 We get \([\text{ex}_A(x \cdot ())/y]^B S = [x/y]S\) from the i.h. part 1, on the smaller expression \(S\). Then appeal to the i.h. part 2 on the same type \(A\) to see that

 \[
 [\text{ex}_A(x \cdot ())] \mid [x/y]S^B \Rightarrow x \cdot ([x/y]S)
 \]

2. Split cases on \(A\).

 Case: \(A = a\). Immediate from definitions. Note that \(S'\) must be () and \(B\) must be a base type for the left hand side to be defined.

 Case: \(A = A_1 \rightarrow A_2\). \(S'\) must be of the form \((M_0; S_0)\), and \(B\) must be of the form \(B_1 \rightarrow B_2\).
3. Split cases on A.

Case: $A = a$. Immediate from assumption and definitions.

Case: $A = A_1 \to A_2$. Note first of all that for any N, C that

$$\lambda y. [N \| (\text{ex}_{A_1}(y \cdot ()))]^C \to N$$

This is because N must be of the form $\lambda z. N_0$ and C of the form $C_1 \to C_2$ for the left-hand side to be defined, in which case we have

$$\lambda y. [\lambda z. N_0 \| (\text{ex}_{A_1}(y \cdot ()))]^{C_1 \to C_2}$$

$$= \lambda y. [\text{ex}_{A_1}(y \cdot ())/z]^{C_1} N_0 || ()))^{C_2}$$

$$= \lambda y. [\text{ex}_{A_1}(y \cdot ())/z]^{C_1} N_0$$

$$= \lambda y. y/z] N_0$$

$$= N$$

by i.h. 1 on A_1

by α-equivalence

Having made this observation, compute

$$[M/x]^{B_{\text{ex}_{A_1} \to A_2}(x \cdot S)}$$

$$= [M/x]^{B_{\text{ex}_{A_1} \to A_2}(x \cdot S; \text{ex}_{A_1}(y \cdot ()))}$$

$$= \lambda y. [M/x]^{B_{\text{ex}_{A_1} \to A_2}(x \cdot (S; \text{ex}_{A_1}(y \cdot ()))}$$

$$= \lambda y. [M/(S; \text{ex}_{A_1}(y \cdot ()))]^{B'}$$

$$= \lambda y. [M/(S; \text{ex}_{A_1}(y \cdot ()))]^{B'}$$

$$= \lambda y. [M/(S; \text{ex}_{A_1}(y \cdot ()))]^{B'}$$

$$= [M/S]^{B_1}$$

by Lemma 0.1

by above observation

by i.h. 3 on A_2