The Identity Theorem in Hereditary Spine Form

Jason Reed

January 24, 2007

$$
\begin{array}{lrl}
\text { Terms } & M & ::= \\
\text { Spines } & S & ::=() \mid(M ; S) \\
\text { Syntactic Objects } & X & ::= \\
\text { Eta-expansion: } & & \\
& & \\
& \operatorname{ex}_{a}(H \cdot S) & =H \cdot S \\
\operatorname{ex}_{A \rightarrow B}(H \cdot S) & =\lambda y \cdot \operatorname{ex}_{B}\left(H \cdot\left(S ; \operatorname{ex}_{A}(x \cdot())\right)\right)
\end{array}
$$

Substitution and reduction are as usual, abbreviating $\sigma=[M / x]^{A}$:

$$
\begin{aligned}
\sigma(\lambda y \cdot N) & =\lambda y \cdot \sigma N \\
\sigma(y \cdot S) & =y \cdot \sigma S \\
\sigma(x \cdot S) & =[M \mid \sigma S] \\
\sigma() & =() \\
\sigma(N ; S) & =(\sigma N ; \sigma S) \\
{[\lambda x \cdot N \mid(M ; S)]^{A \rightarrow B} } & =\left[[M / x]^{A} N \mid S\right]^{B} \\
{[x \mid S]^{a} } & =x \cdot S \\
{[M \|()]^{A} } & =M
\end{aligned}
$$

In all the following lemmas, $M \Rightarrow N$ means that if M is defined, then N is defined, and $M=N$.

0.1 Lemmas

Lemma $0.1\left[M \|\left(S ; S^{\prime}\right)\right]^{B} \Rightarrow\left[[M \| S]^{B_{2}} \| S^{\prime}\right]^{B_{2}}$ for some B_{1}, B_{2}.
Proof Induction on S.
Case: $S=()$. Immediate by definition of reduction. Pick $B_{1}=a$ and $B_{2}=B$.
Case: $S=\left(M_{0} ; S_{0}\right)$. Then M is of the form $\lambda y \cdot N$, and B must be of the form $B_{L} \rightarrow B_{R}$.

$$
\begin{array}{rll}
{\left[M \|\left(S ; S^{\prime}\right)\right]^{B}} & =\left[\lambda y \cdot N \|\left(M_{0} ; S_{0} ; S^{\prime}\right)\right]^{B} & \\
& =\left[\left[M_{0} / y\right]^{B_{L}} N \|\left(S_{0} ; S^{\prime}\right)\right]^{B_{R}} & \\
& =\left[\left[\left[M_{0} / y\right]^{B_{L}} N \| S_{0}\right]^{B_{R 1}} \| S^{\prime}\right]^{B_{R 2}} & \text { by i.h. } \\
& =\left[\left[\lambda y . N \|\left(M_{0} ; S_{0}\right)\right]^{B_{L} \rightarrow B_{R 1}} \| S^{\prime}\right]^{B_{R 2}} & \\
& =\left[[M \| S]^{B_{L} \rightarrow B_{R 1}} \| S^{\prime}\right]^{B_{R 2}} &
\end{array}
$$

Lemma $0.2[M / x]^{A} \operatorname{ex}_{B}(y \cdot S) \Rightarrow \operatorname{ex}_{B}\left(y \cdot[M / x]^{A} S\right)$.
Proof By induction on B.
Case: $B=a$. Immediate by definition of ex and substitution.
Case: $B=B_{1} \rightarrow B_{2}$. Then

$$
\begin{array}{ll}
{[M / x]^{A} \operatorname{ex}_{B_{1} \rightarrow B_{2}}(y \cdot S)} & \\
=[M / x]^{A} \lambda z \cdot \operatorname{ex}_{B_{2}}\left(y \cdot\left(S ; \operatorname{ex}_{B_{1}}(z \cdot())\right)\right) & \\
=\lambda z \cdot[M / x]^{A} \operatorname{ex}_{B_{2}}\left(y \cdot\left(S ; \operatorname{ex}_{B_{1}}(z \cdot())\right)\right) & \\
=\lambda z \cdot \operatorname{ex}_{B_{2}}\left(y \cdot[M / x]^{A}\left(S ; \operatorname{ex}_{B_{1}}(z \cdot())\right)\right) & \text { by i.h. on } B_{2} \\
=\lambda z \cdot \mathrm{ex}_{B_{2}}\left(y \cdot\left([M / x]^{A} S ;[M / x]^{A} \mathrm{ex}_{B_{1}}(z \cdot())\right)\right) & \\
=\lambda z \cdot \mathrm{ex}_{B_{2}}\left(y \cdot\left([M / x]^{A} S ; \operatorname{ex}_{B_{1}}\left([M / x]^{A}(z \cdot())\right)\right)\right) & \text { by i.h. on } B_{1} \\
=\lambda z \cdot \mathrm{ex}_{B_{2}}\left(y \cdot\left([M / x]^{A} S ; \operatorname{ex}_{B_{1}}(z \cdot())\right)\right) & \\
=\operatorname{ex}_{B_{1} \rightarrow B_{2}}\left(y \cdot\left([M / x]^{A} S\right)\right. &
\end{array}
$$

Lemma 0.3

1. $\left[\mathrm{ex}_{A}(x \cdot()) / y\right]^{B} X \Rightarrow[x / y] X$
2. $\left[\mathrm{ex}_{A}(x \cdot S) \mid S^{\prime}\right]^{B} \Rightarrow x \cdot\left(S ; S^{\prime}\right)$
3. $[M / x]^{B} \mathrm{ex}_{A}(x \cdot S) \Rightarrow[M \| S]^{B^{\prime}}$, if $x \notin F V(S)$, for some B^{\prime}.

Proof By lexicographic induction on A, the case 1-3, and the object X.

1. Split cases on the structure of X. The reasoning is straightforward except when $X=y \cdot S$. Then we must show, by the definition of substitution,

$$
\left[\mathrm{ex}_{A}(x \cdot()) \mid\left[\mathrm{ex}_{A}(x \cdot()) / y\right]^{B} S\right]^{B} \Rightarrow x \cdot([x / y] S)
$$

We get $\left[\operatorname{ex}_{A}(x \cdot()) / y\right]^{B} S=[x / y] S$ from the i.h. part 1, on the smaller expression S. Then appeal to the i.h. part 2 on the same type A to see that

$$
\left[\mathrm{ex}_{A}(x \cdot()) \mid[x / y] S\right]^{B} \Rightarrow x \cdot([x / y] S)
$$

2. Split cases on A.

Case: $A=a$. Immediate from definitions. Note that S^{\prime} must be () and B must be a base type for the left hand side to be defined.
Case: $A=A_{1} \rightarrow A_{2}$. S^{\prime} must be of the form $\left(M_{0} ; S_{0}\right)$, and B must be of the form $B_{1} \rightarrow B_{2}$.

$$
\begin{array}{lr}
{\left[\operatorname{ex}_{A_{1} \rightarrow A_{2}}(x \cdot S) \mid S^{\prime}\right]^{B_{1} \rightarrow B_{2}}} & \\
=\left[\lambda y \cdot \mathrm{ex}_{A_{2}}\left(x \cdot\left(S ; \mathrm{ex}_{A_{1}}(y \cdot())\right)\right) \mid\left(M_{0} ; S_{0}\right)\right]^{B_{1} \rightarrow B_{2}} & \\
=\left[\left[M_{0} / y\right]^{B_{1}} \operatorname{ex}_{A_{2}}\left(x \cdot\left(S ; \operatorname{ex}_{A_{1}}(y \cdot())\right)\right) \mid S_{0}\right]^{B_{2}} & \\
=\left[\operatorname{ex}_{A_{2}}\left(x \cdot\left[M_{0} / y\right]^{B_{1}}\left(S ; \operatorname{ex}_{A_{1}}(y \cdot())\right)\right) \mid S_{0}\right]^{B_{2}} & \text { by Lemma } 0.2 \\
=\left[\operatorname{ex}_{A_{2}}\left(x \cdot\left(S ;\left[M_{0} / y\right]^{B_{1}} \operatorname{ex}_{A_{1}}(y \cdot())\right)\right) \mid S_{0}\right]^{B_{2}} & y \notin F V(S) \\
=\left[\operatorname{ex}_{A_{2}}\left(x \cdot\left(S ;\left[M_{0} \|(()]^{B^{\prime}}\right)\right) \mid S_{0}\right]^{B_{2}}\right. & \text { by i.h. } 3 \text { on } A_{1} \\
=\left[\operatorname{ex}_{A_{2}}\left(x \cdot\left(S ; M_{0}\right)\right) \mid S_{0}\right]^{B_{2}} & \\
=x \cdot\left(S ; M_{0} ; S_{0}\right) & \text { by i.h. } 2 \text { on } A_{2} \\
=x \cdot\left(S ; S^{\prime}\right) &
\end{array}
$$

3. Split cases on A.

Case: $A=a$. Immediate from assumption and definitions.
Case: $A=A_{1} \rightarrow A_{2}$. Note first of all that for any N, C that

$$
\lambda y \cdot\left[N \|\left(\mathrm{ex}_{A_{1}}(y \cdot())\right)\right]^{C} \Rightarrow N
$$

This is because N must be of the form $\lambda z \cdot N_{0}$ and C of the form $C_{1} \rightarrow C_{2}$ for the left-hand side to be defined, in which case we have

$$
\begin{aligned}
& \lambda y \cdot\left[\lambda z \cdot N_{0} \|\left(\mathrm{ex}_{A_{1}}(y \cdot())\right)\right]^{C_{1} \rightarrow C_{2}} \\
& \left.=\lambda y \cdot\left[\operatorname{ex}_{A_{1}}(y \cdot()) / z\right]^{C_{1}} N_{0} \|()\right]^{C_{2}} \\
& =\lambda y \cdot\left[\operatorname{ex}_{A_{1}}(y \cdot()) / z\right]^{C_{1}} N_{0} \\
& =\lambda y \cdot[y / z] N_{0} \\
& =N
\end{aligned}
$$

$$
=\lambda y \cdot[y / z] N_{0} \quad \text { by i.h. } 1 \text { on } A_{1}
$$

Having made this observation, compute
$[M / x]^{B} \operatorname{ex}_{A_{1} \rightarrow A_{2}}(x \cdot S)$
$=[M / x]^{B} \lambda y \cdot \operatorname{ex}_{A_{2}}\left(x \cdot\left(S ; \operatorname{ex}_{A_{1}}(y \cdot())\right)\right.$
$=\lambda y \cdot[M / x]^{B} \operatorname{ex}_{A_{2}}\left(x \cdot\left(S ; \operatorname{ex}_{A_{1}}(y \cdot())\right)\right.$
$=\lambda y \cdot\left[M \|\left(S ; \operatorname{ex}_{A_{1}}(y \cdot())\right)\right]^{B^{\prime}}$
$=\lambda y \cdot\left[[M \| S]^{B_{1}} \|\left(\mathrm{ex}_{A_{1}}(y \cdot())\right)\right]^{B_{2}}$
$=[M \| S]^{B_{1}}$
by i.h. 3 on A_{2} by Lemma 0.1 by above observation

