The Identity Theorem in Hereditary Spine Form

Jason Reed

January 24, 2007

Terms	M	::=	$x \cdot S \mid \lambda x.S$
Spines	S	::=	$() \mid (M;S)$
Syntactic Objects	X	::=	$M \mid S$
Eta-expansion:			

$$ex_a(H \cdot S) = H \cdot S$$

$$ex_{A \to B}(H \cdot S) = \lambda y.ex_B(H \cdot (S; ex_A(x \cdot ())))$$

Substitution and reduction are as usual, abbreviating $\sigma = [M/x]^A$:

$$\begin{split} \sigma(\lambda y.N) &= \lambda y.\sigma N\\ \sigma(y\cdot S) &= y\cdot\sigma S\\ \sigma(x\cdot S) &= [M\mid\sigma S]\\ \sigma() &= ()\\ \sigma(N;S) &= (\sigma N;\sigma S)\\ [\lambda x.N\mid (M;S)]^{A\to B} &= [[M/x]^AN\mid S]^B\\ &[x\cdot S\mid ()]^a &= x\cdot S\\ &[M\parallel ()]^A &= M \end{split}$$

In all the following lemmas, $M \Rightarrow N$ means that if M is defined, then N is defined, and M = N.

0.1 Lemmas

Lemma 0.1 $[M \| (S; S')]^B \Rightarrow [[M \| S]^{B_2} \| S']^{B_2}$ for some B_1, B_2 .

Proof Induction on S.

Case: S = (). Immediate by definition of reduction. Pick $B_1 = a$ and $B_2 = B$.

Case: $S = (M_0; S_0)$. Then *M* is of the form $\lambda y.N$, and *B* must be of the form $B_L \to B_R$.

$$[M\|(S;S')]^{B} = [\lambda y.N\|(M_{0};S_{0};S')]^{B}$$

= $[[M_{0}/y]^{B_{L}}N\|(S_{0};S')]^{B_{R}}$
= $[[[M_{0}/y]^{B_{L}}N\|S_{0}]^{B_{R1}}\|S']^{B_{R2}}$ by i.h
= $[[\lambda y.N\|(M_{0};S_{0})]^{B_{L}\to B_{R1}}\|S']^{B_{R2}}$
= $[[M\|S]^{B_{L}\to B_{R1}}\|S']^{B_{R2}}$

Lemma 0.2 $[M/x]^A \exp(y \cdot S) \Rightarrow \exp(y \cdot [M/x]^A S).$

Proof By induction on *B*.

Case: B = a. Immediate by definition of ex and substitution.

Case: $B = B_1 \rightarrow B_2$. Then

$$\begin{split} & [M/x]^{A} \mathsf{ex}_{B_{1} \to B_{2}}(y \cdot S) \\ &= [M/x]^{A} \lambda z. \mathsf{ex}_{B_{2}}(y \cdot (S; \mathsf{ex}_{B_{1}}(z \cdot ()))) \\ &= \lambda z. [M/x]^{A} \mathsf{ex}_{B_{2}}(y \cdot (S; \mathsf{ex}_{B_{1}}(z \cdot ()))) \\ &= \lambda z. \mathsf{ex}_{B_{2}}(y \cdot [M/x]^{A}(S; \mathsf{ex}_{B_{1}}(z \cdot ()))) \\ &= \lambda z. \mathsf{ex}_{B_{2}}(y \cdot ([M/x]^{A}S; [M/x]^{A} \mathsf{ex}_{B_{1}}(z \cdot ()))) \\ &= \lambda z. \mathsf{ex}_{B_{2}}(y \cdot ([M/x]^{A}S; \mathsf{ex}_{B_{1}}([M/x]^{A}(z \cdot ())))) \\ &= \lambda z. \mathsf{ex}_{B_{2}}(y \cdot ([M/x]^{A}S; \mathsf{ex}_{B_{1}}(z \cdot ()))) \\ &= \mathsf{ex}_{B_{1} \to B_{2}}(y \cdot ([M/x]^{A}S) \end{split}$$
 by i.h. on B_{1}

Lemma 0.3

- 1. $[ex_A(x \cdot ())/y]^B X \Rightarrow [x/y] X$
- 2. $[\operatorname{ex}_A(x \cdot S) \mid S']^B \Rightarrow x \cdot (S; S')$
- 3. $[M/x]^B ex_A(x \cdot S) \Rightarrow [M||S]^{B'}$, if $x \notin FV(S)$, for some B'.

Proof By lexicographic induction on A, the case 1–3, and the object X.

1. Split cases on the structure of X. The reasoning is straightforward except when $X = y \cdot S$. Then we must show, by the definition of substitution,

$$[\mathsf{ex}_A(x \cdot ()) \mid [\mathsf{ex}_A(x \cdot ())/y]^B S]^B \Rightarrow x \cdot ([x/y]S)$$

We get $[ex_A(x \cdot ())/y]^B S = [x/y]S$ from the i.h. part 1, on the smaller expression S. Then appeal to the i.h. part 2 on the same type A to see that

$$[\mathsf{ex}_A(x \cdot ()) \mid [x/y]S]^B \Rightarrow x \cdot ([x/y]S)$$

- 2. Split cases on A.
 - Case: A = a. Immediate from definitions. Note that S' must be () and B must be a base type for the left hand side to be defined.
 - Case: $A = A_1 \rightarrow A_2$. S' must be of the form $(M_0; S_0)$, and B must be of the form $B_1 \rightarrow B_2$.

3. Split cases on A.

Case: A = a. Immediate from assumption and definitions.

Case: $A = A_1 \rightarrow A_2$. Note first of all that for any N, C that

$$\lambda y.[N \parallel (\operatorname{ex}_{A_1}(y \cdot ()))]^C \Rightarrow N$$

This is because N must be of the form $\lambda z.N_0$ and C of the form $C_1 \rightarrow C_2$ for the left-hand side to be defined, in which case we have

Having made this observation, compute

$$\begin{split} & [M/x]^{B} \mathbf{e}_{A_{1} \to A_{2}}(x \cdot S) \\ &= [M/x]^{B} \lambda y. \mathbf{e}_{X_{2}}(x \cdot (S; \mathbf{e}_{X_{1}}(y \cdot ())) \\ &= \lambda y. [M/x]^{B} \mathbf{e}_{X_{2}}(x \cdot (S; \mathbf{e}_{X_{1}}(y \cdot ())) \\ &= \lambda y. [M\|(S; \mathbf{e}_{X_{1}}(y \cdot ()))]^{B'} & \text{by i.h. 3 on } A_{2} \\ &= \lambda y. [[M\|S]^{B_{1}}\|(\mathbf{e}_{X_{1}}(y \cdot ()))]^{B_{2}} & \text{by Lemma } 0.1 \\ &= [M\|S]^{B_{1}} & \text{by above observation} \end{split}$$