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Terms M ::= x · S | λx.S
Spines S ::= () | (M ; S)
Syntactic Objects X ::= M | S

Eta-expansion:

exa(H · S) = H · S
exA→B(H · S) = λy.exB(H · (S; exA(x · ())))

Substitution and reduction are as usual, abbreviating σ = [M/x]A:

σ(λy.N) = λy.σN
σ(y · S) = y · σS
σ(x · S) = [M | σS]

σ() = ()
σ(N ; S) = (σN ; σS)

[λx.N | (M ; S)]A→B = [[M/x]AN | S]B

[x · S | ()]a = x · S
[M‖()]A = M

In all the following lemmas, M ⇒ N means that if M is defined, then N is
defined, and M = N .

0.1 Lemmas

Lemma 0.1 [M‖(S; S′)]B ⇒ [[M‖S]B2‖S′]B2 for some B1, B2.

Proof Induction on S.

Case: S = (). Immediate by definition of reduction. Pick B1 = a and B2 = B.

Case: S = (M0; S0). Then M is of the form λy.N , and B must be of the form
BL → BR.

[M‖(S; S′)]B = [λy.N‖(M0; S0; S
′)]B

= [[M0/y]BLN‖(S0; S
′)]BR

= [[[M0/y]BLN‖S0]
BR1‖S′]BR2 by i.h.

= [[λy.N‖(M0; S0)]
BL→BR1‖S′]BR2

= [[M‖S]BL→BR1‖S′]BR2
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Lemma 0.2 [M/x]AexB(y · S) ⇒ exB(y · [M/x]AS).

Proof By induction on B.

Case: B = a. Immediate by definition of ex and substitution.

Case: B = B1 → B2. Then

[M/x]AexB1→B2
(y · S)

= [M/x]Aλz.exB2
(y · (S; exB1

(z · ())))
= λz.[M/x]AexB2

(y · (S; exB1
(z · ())))

= λz.exB2
(y · [M/x]A(S; exB1

(z · ()))) by i.h. on B2

= λz.exB2
(y · ([M/x]AS; [M/x]AexB1

(z · ())))
= λz.exB2

(y · ([M/x]AS; exB1
([M/x]A(z · ())))) by i.h. on B1

= λz.exB2
(y · ([M/x]AS; exB1

(z · ())))
= exB1→B2

(y · ([M/x]AS)

Lemma 0.3

1. [exA(x · ())/y]BX ⇒ [x/y]X

2. [exA(x · S) | S′]B ⇒ x · (S; S′)

3. [M/x]BexA(x · S) ⇒ [M‖S]B
′

, if x 6∈ FV (S), for some B′.

Proof By lexicographic induction on A, the case 1–3, and the object X .

1. Split cases on the structure of X . The reasoning is straightforward except
when X = y · S. Then we must show, by the definition of substitution,

[exA(x · ()) | [exA(x · ())/y]BS]B ⇒ x · ([x/y]S)

We get [exA(x · ())/y]BS = [x/y]S from the i.h. part 1, on the smaller
expression S. Then appeal to the i.h. part 2 on the same type A to see
that

[exA(x · ()) | [x/y]S]B ⇒ x · ([x/y]S)

2. Split cases on A.

Case: A = a. Immediate from definitions. Note that S ′ must be () and B
must be a base type for the left hand side to be defined.

Case: A = A1 → A2. S′ must be of the form (M0; S0), and B must be of
the form B1 → B2.
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[exA1→A2
(x · S) | S′]B1→B2

= [λy.exA2
(x · (S; exA1

(y · ()))) | (M0; S0)]
B1→B2

= [[M0/y]B1
exA2

(x · (S; exA1
(y · ()))) | S0]

B2

= [exA2
(x · [M0/y]B1(S; exA1

(y · ()))) | S0]
B2 by Lemma 0.2

= [exA2
(x · (S; [M0/y]B1

exA1
(y · ()))) | S0]

B2 y 6∈ FV (S)

= [exA2
(x · (S; [M0‖()]

B
′

)) | S0]
B2 by i.h. 3 on A1

= [exA2
(x · (S; M0)) | S0]

B2

= x · (S; M0; S0) by i.h. 2 on A2

= x · (S; S′)

3. Split cases on A.

Case: A = a. Immediate from assumption and definitions.

Case: A = A1 → A2. Note first of all that for any N, C that

λy.[N‖(exA1
(y · ()))]C ⇒ N

This is because N must be of the form λz.N0 and C of the form
C1 → C2 for the left-hand side to be defined, in which case we have

λy.[λz.N0‖(exA1
(y · ()))]C1→C2

= λy.[[exA1
(y · ())/z]C1N0‖()]

C2

= λy.[exA1
(y · ())/z]C1N0

= λy.[y/z]N0 by i.h. 1 on A1

= N α-equivalence

Having made this observation, compute

[M/x]BexA1→A2
(x · S)

= [M/x]Bλy.exA2
(x · (S; exA1

(y · ()))
= λy.[M/x]BexA2

(x · (S; exA1
(y · ()))

= λy.[M‖(S; exA1
(y · ()))]B

′

by i.h. 3 on A2

= λy.[[M‖S]B1‖(exA1
(y · ()))]B2 by Lemma 0.1

= [M‖S]B1 by above observation
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