
Making Program Logics Intelligible
John C. Reynolds

Carnegie Mellon University

Lovelace Lecture — June 8, 2011

Research partially supported by National Science Foundation Grant CCF-0916808

Dedication

To the British computer scientists who taught me so much
when I was young.

Those who are gone:

Christopher Strachey Peter Landin Robin Milner

and those who continue to instruct me:

Tony Hoare Rod Burstall Alan Robinson

Introduction

To verify program specifications, rather than generic safety
properties, it will be necessary to integrate verification into
the process of programming.

Program proving is unlike theorem proving in mathematics -
mathematical conjectures may give no hint as to how they
could be proved, but programs are written by programmers,
who must understand informally why their programs work.
The job of verification is not to explore some immense search
space, but to formalize the programmer’s intuitions until any
faults are revealed.

This requires specifications and proofs that are succinct and
intelligible - which in turn require logics that go beyond pred-
icate calculus (the assembly language of program proving).
In this talk, I will recount and illustrate several steps, old and
new, towards this goal.

The Distance between Traditional Logic and Pro-
gramming

Particularly when describing arrays, program specifications
are typically full of inequalities and set definitions using in-
equalities. For example, a diagram that a programmer might
write, e.g.,

X:
a c e d b

might be expressed by:

a ≤ c ≤ e ≤ d ≤ b and domX = { i | a < i < b }.

Partition Diagrams

The obvious difficulty with diagrams such as

a c e d b

is that expressions tend to migrate slightly:

a c e d b

This fertile source of program errors can be avoided by cap-
turing the expressions inside the boxes:

a c e d b .

We call such a diagram a partition diagram.

Interval Diagrams

An interval diagram is an annotated box denoting a finite con-
secutive set of integers. In particular

a b

a b

a b

a b

a


denotes the set of
integers i such that



a < i ≤ b
a ≤ i ≤ b
a < i < b

a ≤ i < b

i = a.

Partition Diagrams

A diagram of the form

a0 a1 a2 · · · an

is called a partition diagram. The intervals denoted by
a0 a1 , a1 a2 , . . . , an−1 an

are called the component intervals of the partition diagram,
and the interval denoted by a0 an is called the total inter-
val of the partition diagram.

A partition diagram is an assertion that its component inter-
vals are a partition of its total interval, i.e., that the component
intervals are disjoint and their union is the total interval.

Some Abbreviations

Just as with interval diagrams, we may write |a instead of
a−1| and a instead of a a within partition diagrams. For
example,

a k b

has the same meaning as

a k k b ,

which has the same meaning as

a−1 k−1 k b .

Summing an Array (Annotated Specification)
{ a b ⊆ domX}
newvar k in (k := a− 1 ; s := 0 ;

{inv: a k b ∧ s =
∑
i∈ a k

X(i)}

while k < b do (

k := k+1 ;

{ a k b ∧ s =
∑
i∈ a k

X(i)}

s := s+X(k)))

{s =
∑
i∈ a b

X(i)}

Array Values as Functions

We regard an array as a variable whose value is a function,
whose domain is an interval. For example,

real array X(1 : 10) · · ·

declares X to be an array whose values have the domain
1 10 .

When S ⊆ domX, we write XeS for the restriction of X to
S, which is the function such that

dom(XeS) = S ∀i ∈ S. (XeS) i = X i.

We also write {X} for the image of X, i.e., the set

X = {X i | i ∈ domX }.

For example, suppose sq is the function with domain 0 5

that maps each number between 0 and 5 into its square. Then

{sq} = {0,1,4,9,16,25} {sqe 2 4 } = {4,9,16}.

Pointwise Extension of a Relation

Suppose ρ is a binary relation between values. Then the
pointwise extension of ρ, written ρ∗, is the relation between
sets of such values such that

S ρ∗ T iff ∀x ∈ S, y ∈ T. x ρ y.

For example,

{2,3} ≤∗ {3,4} {2,3} 6=∗ {4,5}

are both true, but

{2,3} <∗ {3,4} {2,3} =∗ {2,3} {2,3} 6=∗ {2,3}

are all false.

We also abbreviate

{x} ρ∗ T by x ρ∗ T
S ρ∗ {y} by S ρ∗ y.

Ordered Arrays

We define the assertion

ordρX iff ∀i, j ∈ domX. i < j implies X(i) ρX(j).

For example, ord≤X asserts that X is ordered in nonstrict
increasing order.

Binary Search

The following is the invariant of a simple while-loop program
for binary search:

a b ⊆ domX ∧ ord≤(Xe a b) ∧
a c d b ∧
{Xe a c} ≤∗ y ∧ y <∗ {Xed b }.

Compare this with

(∀i. a ≤ i ≤ b implies i ∈ domX) ∧
(∀i, j. a ≤ i < j ≤ b implies X(i) ≤ X(j)) ∧
a− 1 ≤ c− 1 ≤ d ≤ b ∧
(∀i. a ≤ i < c implies X(i) ≤ y) ∧
(∀i. d < i ≤ b implies y < X(i)).

Partition: The Invariants

I = m i n ∧ {Ae m i} ≤∗ r ∧

m j n ∧ r ≤∗ {Aej n } ∧

(i ≤ j implies (∃p. i p n ∧ r ≤ A(p)) ∧

(∃q. m q j ∧A(q) ≤ r))

I1 = m i n ∧ {Ae m i} ≤∗ r ∧

(∃p. i p n ∧ r ≤ A(p))

I2 = m j n ∧ r ≤∗ {Aej n } ∧

(∃q. m q j ∧A(q) ≤ r)

I ′ = m i n ∧ {Ae m i } ≤∗ r ∧

m j n ∧ r ≤∗ {Ae j n } ∧

(i+1 ≤ j−1 implies (∃p. i p n ∧ r ≤ A(p)) ∧

(∃q. m q j ∧A(q) ≤ r))

Partition: The Procedure
let Partition(A, i, j ;m,n) =

{ m n ⊆ domA ∧ m n }

newvar r in(
r :=A((m+ n)÷ 2) ; i :=m ; j := n ;

{inv: I}

while i ≤ j do(
{I1 ∧ I2}
while A(i) < r do i := i+1 ;

while r < A(j) do j := j − 1 ;

{I1 ∧ r ≤ A(i) ∧ I2 ∧A(j) ≤ r}
...

...
{inv: I}

while i ≤ j do(
{I1 ∧ I2}
while A(i) < r do i := i+1 ;

while r < A(j) do j := j − 1 ;

{I1 ∧ r ≤ A(i) ∧ I2 ∧A(j) ≤ r}

if i ≤ j then(
newvar t in (t:=A(i) ;A(i):=A(j) ;A(j):=t) ;

{I1 ∧A(i) ≤ r ∧ I2 ∧ r ≤ A(j) ∧ i ≤ j}
{I ′}

i := i+1 ; j := j − 1)))
{ m j i n ∧ {Ae m i} ≤∗ {Aej n }}

Rearrangement

We write X ∼ Y , and say that X is a rearrangement of Y ,
when there is a bijection (i.e., a one-to-one correspondence)
B from domX to domY such that

∀i ∈ domX. X(i) = Y (B(i)).

Suppose S ⊆ domX = domY . We write X ∼S Y , and
say that X is a rearrangement restricted to S of Y , when
X is a rearrangement of Y and, for all i ∈ (domX) − S,
X(i) = Y (i).

Partition Revisited

let Partition(A, i, j ;m,n) =

{ m n ⊆ domA ∧ m n ∧A = A0}

newvar r in(
r :=A((m+ n)÷ 2) ; i :=m ; j := n ;

{inv: I ∧A∼ m n A0}

while i ≤ j do(
{I1 ∧ I2 ∧A∼ m n A0}
while A(i) < r do i := i+1 ;

while r < A(j) do j := j − 1 ;

{I1 ∧ r ≤ A(i) ∧ I2 ∧A(j) ≤ r ∧A∼ m n A0}
...

...
{inv: I ∧A∼ m n A0}

while i ≤ j do(
{I1 ∧ I2 ∧A∼ m n A0}
while A(i) < r do i := i+1 ;

while r < A(j) do j := j − 1 ;

{I1 ∧ r ≤ A(i) ∧ I2 ∧A(j) ≤ r ∧A∼ m n A0}

if i ≤ j then(
newvar t in (t:=A(i) ;A(i):=A(j) ;A(j):=t) ;

{I1 ∧A(i) ≤ r ∧ I2 ∧ r ≤ A(j) ∧ i ≤ j ∧A∼ m n A0}
{I ′ ∧A∼ m n A0}

i := i+1 ; j := j − 1)))
{ m j i n ∧ {Ae m i} ≤∗ {Aej n } ∧A∼ m n A0}

Quicksort

letrec Quicksort(A ;m,n) =

{ m n ⊆ domA ∧A = A0}

if m < n then newvar i, j in(
{ m n ⊆ domA ∧ m n }
Partition(A, i, j ;m,n) ;

{ m j i n ∧ {Ae m i} ≤∗ {Aej n } ∧A∼ m n A0}
Quicksort(A ;m, j) ;

{ m j i n ∧ ord≤Ae m j ∧
{Ae m i} ≤∗ {Aej n } ∧A∼ m n A0}

Quicksort(A ; i, n)
...

...

{ m j i n ∧ {Ae m i} ≤∗ {Aej n } ∧A∼ m n A0}
Quicksort(A ;m, j) ;

{ m j i n ∧ ord≤Ae m j ∧
{Ae m i} ≤∗ {Aej n } ∧A∼ m n A0}

Quicksort(A ; i, n)

{ m j i n ∧ ord≤Ae m j ∧ ord≤Ae i n ∧

{Ae m i} ≤∗ {Aej n } ∧A∼ m n A0})
{ord≤Ae m n ∧A∼ m n A0}

Realignment

We write X ' Y , and say that X is a realignment of Y , when
there is a monotonic bijection B from domX to domY such
that

∀i ∈ domX. X(i) = Y (B(i)).

When X and Y are array values, i.e., functions on intervals,
X ' Y holds only when X is a “shift” of Y .

But whenX and Y are functions whose domains can be arbi-
trary finite sets of integers — which we might call “lacy array
values” — things become more interesting.

Eliminating Zeroes

{ a b ⊆ X ∧X = X0}

newvar d in(c := a ; d := a ;

{inv: a c d b ∧
Xe a c ' X0e(a d ∩ { i | X(i) 6= 0 }) ∧
Xe d b = X0e d b }

while d ≤ b do
if X(d) = 0 then d := d+1

else (X(c) :=X(d) ; c := c+1 ; d := d+1))
{ a c b ∧Xe a c ' X0e(a b ∩ { i | X(i) 6= 0 })}

Separation Logic: An Example

Suppose
list ε i

def
= i = nil

list(a·α) i def= ∃j. i ↪→ a, j ∧ list α j

and consider the program

LREV
def
= j := nil;

while i 6= nil do (k := [i+1] ; [i+1] := j ; j := i ; i := k).

To prove {list α i}LREV {list α† j}, the invariant

∃α, β. list α i ∧ list β j ∧ α†0 = α†·β

is inadequate.

An adequate invariant (in Hoare logic):

(∃α, β. list α i ∧ list β j ∧ α†0 = α†·β)
∧ (∀k. reachable(i, k) ∧ reachable(j, k)⇒ k = nil).

An adequate invariant (in separation logic):

∃α, β. (list α i ∗ list β j) ∧ α†0 = α†·β.

where ∗ is the separating conjunction.

Enriching the Concept of State

In separation logic, the state consists of two components:

— A store, which maps variables into their values,

— A heap, which maps addresses (which are values)
into their values.

The Separating Conjunction

The assertion p1 ∗ p2 holds for a heap h when h can be
partitioned into two disjoint subheaps h1 and h2 such that p1
holds in h1 and p2 holds in h2.

The Points-To Relation

The assertion ` 7→ e holds when the heap consists of a single
cell mapping the address ` into the value of e.

Some Inference Rules

• Frame Rule (O’Hearn)

{p} c {q}
{p ∗ r} c {q ∗ r},

where the free variables of r are not modified by c.
• Existential Quantification

{p} c {q}
{∃v. p} c {∃v. q},

where v does not occur free in c.

• Concurrent Composition (O’Hearn)

{p1} c1 {q1} {p2} c2 {q2}
{p1 ∗ p2} c1 ‖ c2 {q1 ∗ q2},

where the free variables of p1, c1, and q1 are not
modified by c2, and vice-versa.

The Iterated Separating Conjunction

Suppose S is a finite set. Then the assertion
⊙
i∈S P (i)

holds when the heap can be partitioned into an family hi of
heaplets indexed by i, such that, for all i ∈ S, P (i) holds in
hi.

For example,
⊙
i∈S ` + i 7→ A(i) describes an array with

base address `, whose subscripts range over S, and whose
value is the function A.

More Definitions

When S is a finite set of integers,

` 7→S A
def
= S ⊆ domA ∧

⊙
i∈S `+ i 7→ A(i)

A ∼S A′ def= (AeS) ∼ (A′eS).

Quicksort Revisited: Some Assumptions

{` 7→ m n A0}
Quicksort(; `,m, n)

{∃A. ` 7→ m n A ∧A ∼ m n A0 ∧ ord≤(Ae m n)}

{` 7→ m n A0 ∧ m n }
Partition(i, j ; `,m, n)

{∃A. ` 7→ m n A ∧A ∼ m n A0 ∧ m j i n ∧
{Ae m i} ≤∗ {Aej n }}

Quicksort Revisited: The Procedure Body

{` 7→ m n A0}
if m < n then newvar i, j in(
{` 7→ m n A0 ∧ m n }
Partition(i, j ; `,m, n)

{∃A1. ` 7→ m n A1 ∧A1 ∼ m n A0 ∧ m j i n ∧
{A1e m i} ≤∗ {A1ej n }}

...

...

{∃A1. ` 7→ m n A1 ∧A1 ∼ m n A0 ∧ m j i n ∧
{A1e m i} ≤∗ {A1ej n }}

{` 7→ m j
A1}

Quicksort(; `,m, j)

{∃A2. ` 7→
m j

A2 ∧

A2 ∼
m j

A1 ∧
ord≤(A2e m j)}


‖



{` 7→ i n A1}
Quicksort(; `, i, n)

{∃A3. ` 7→ i n A3 ∧

A3 ∼ i n A1 ∧
ord≤(A3e i n)}


∗


` 7→ j i A1 ∧A1 ∼ j i A1 ∧
A1 ∼ m n A0 ∧ m j i n ∧
{A1e m i} ≤∗ {A1ej n }


 ∃A1

...



{` 7→ m j
A1}

Quicksort(; `,m, j)

{∃A2. ` 7→
m j

A2 ∧

A2 ∼
m j

A1 ∧
ord≤(A2e m j)}


‖



{` 7→ i n A1}
Quicksort(; `, i, n)

{∃A3. ` 7→ i n A3 ∧

A3 ∼ i n A1 ∧
ord≤(A3e i n)}


∗


` 7→ j i A1 ∧A1 ∼ j i A1 ∧
A1 ∼ m n A0 ∧ m j i n ∧
{A1e m i} ≤∗ {A1ej n }


 ∃A1

{∃A′. ` 7→ m n A′ ∧A′ ∼ m n A1 ∧A1 ∼ m n A0 ∧
m j i n ∧ {A1e m i} ≤∗ {A1ej n } ∧

ord≤(A′ e m j) ∧ ord≤(A′ e i n)}

where A′ = (A2e m j) ∪ (A1ej i) ∪ (A3e i n).

...

{∃A′. ` 7→ m n A′ ∧A′ ∼ m n A1 ∧A1 ∼ m n A0 ∧
m j i n ∧ {A1e m i} ≤∗ {A1ej n } ∧

ord≤(A′ e m j) ∧ ord≤(A′ e i n)}
{∃A′. ` 7→ m n A′ ∧A′ ∼ m n A0 ∧ ord≤(A′ e m n)}

What’s Next

— Permissions

— Lacy Arrays

