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ABsTrRACT. We discuss basic prediction theory and it’s impact on classifica-
tion success evaluation, implications for learning algorithm design, and uses
in learning algorithm execution. This tutorial is meant to be a comprehensive
compilation of results which are both theoretically rigorous and practically
useful.

There are a two important implications of the results presented here:

(1) Common practices for reporting results in classification should change
to use the test set bound.

(2) Train set bounds can sometimes be used to directly motivate learning
algorithms.

1. INTRODUCTION

Classifiers are functions which partition a set into two elements (the set of rainy
days and the set of sunny days). Classifiers are the most simple nontrivial decision
making element so studying the theory of learning classifiers is very fundamental to
studying the theory of learning, in general. Classifiers are sufficiently complex that
many phenomena observed in machine learning (theoretically or experimentally)
can be observed in the classification setting. Yet, classifiers are simple enough to
make their analysis easy to understand. This combination of sufficient yet mini-
mal complexity for capturing phenomena makes the study of classifiers especially
fruitful.

The goal of this paper is an introduction to the theory of prediction for classi-
fication. Many of these results have been presented elsewhere, although the style,
elemental nature, and generality of the presentation may be new. This is a tutorial,
so we limit our presentation to those results which are both theoretically sound and
practically useful.

There are several important aspects of learning which the theory here casts light
on. Perhaps the most important of these is the problem of performance reporting for
classifiers. Many people use some form of empirical variance to estimate upper and
lower bounds. This is an error-prone practice, and the test set bound in section 3
implies a better method by nearly any metric. Hopefully, this will become common
practice.

After discussing the test set bound we cover the Occam’s Razor bound, the
simplest train set bound, which explains (and quantifies) the common phenomena
of overfitting in simplest form. We also prove that the Occam’s Razor bound
cannot be improved without incorporating extra information and apply the bound
to decision trees.



2 JOHN LANGFORD, IBM RESEARCH

Next, we discuss two train set bounds, the PAC-Bayes bound and the Sample
Compression bound, which have proved to give practical results for more general
classifiers, such as Support Vector Machines and Neural Networks.

All of the results here should be easily approachable and understandable. The
proofs are simple, and examples are given. Pointers to related work are also given.

It is important to note that all of the results presented here fall in the realm
of classical statistics. In particular, all randomizations are over draws of the data,
and our results have the form of confidence intervals.

The layout of this document is as follows:

Section 2 presents the formal model

Section 3 presents the test set bound

Section 4 presents the Occam’s Razor bound
Section 5 presents the PAC-Bayes bound

Section 6 presents the Sample Compression bound

The formal model and test set bound must be understood in order to appreciate
all later results. There is no particular dependency between the various train set
bounds we present.

2. FORMAL MODEL

There are many somewhat arbitrary choices of learning model. The one we
use can (at best) be motivated by its simplicity. Other models such as the online
learning model [8], PAC learning [20], and the uniform convergence model [21]
differ in formulation, generality, and in the scope of addressable questions. The
strongest motivation for studying the prediction theory model here is simplicity and
corresponding generality of results. Appendix section 7.3 discusses the connections
between various models.

2.1. Basic quantities. We are concerned with a learning model in which examples
of (input, output) pairs come independently from some unknown distribution. The
goal is to find a function capable of predicting the output given the input. There
are several mathematical objects we work with.

| Object | Description |
X The (arbitrary) space of the input to a classifier
Y ={-1,1} The output of a classification.
D An (unknown) distribution over X x Y
S A set of examples drawn independently from D.
m = | S| the number of examples
c A function mapping X to Y

There are several aberrations of this model from other (perhaps more familiar)
models. There is no mention of a classifier space, because the results do not depend
upon a classifier space. Also, the notion of a distribution on X x Y is strictly more
general than the “target concept’” model which assumes that there exists some
function f : X — Y used to generate the label [20]. In particular we can model
noisy learning problems which do not have a particular Y value for each X value.
This generalization is essentially “free” in the sense that it does not add to the
complexity of presenting the results.



TUTORIAL ON PRACTICAL PREDICTION THEORY FOR CLASSIFICATION 3

It is worth noting that the only unverifiable assumption we make is examples
are drawn independently from D. The strength of all the results which follow rests
upon the correctness of this assumption.

Sometimes, we decorate these objects with labels like Sirain (a train set) or Sgest
(a test set). These decorations should always be clear.

Example 2.1. Weather prediction: Will it rain today or not? In this case X =
barometric pressure, observations of cloud cover or other sensory input and Y =0
if the prediction is “no rain” and 1 otherwise. The distribution D is over sensory
inputs and outcomes. The sample set S, might consist of m = 100 (observation,
outcome) pairs such as (pressure low, cloudy, rain), (pressure high, cloudy, not
rain), etc. A classifier, ¢, is any function which predicts “rain” or “not rain” based
upon the observation.

Note that the independence assumption here is not perfectly satisfied although
it seems to be a reasonable approximation. In any application of this theory, it
must be carefully judged whether the independence assumption holds or not.

2.2. Derived quantities. There are several derived quantities which the results
are stated in terms of.

Definition 2.2. (True Error) The true error cp of a classifier ¢ is defined as the
probability that the classifier errs:
cp= Pr (c(z) #y
b (@) #y)
The true error is sometimes called the “generalization error”. Unfortunately, the
true error is not an observable quantity in our model because the distribution, D,
is unknown. However, there is a related quantity which is observable.

Definition 2.3. (Empirical Error) Given a sample set S, the empirical error, és
is the observed rate of errors:

1 m
cs= Pr (c(z = — I(c(x; i
§= B (el #1) = 2 3 Tlelen) # )
where I() is a function which maps “true” to 1 and “false” to 0. Also, Pr(, ,)~s(--.) is
a probability taken with respect to the uniform distribution over the set of examples,

S.

The empirical error is sometimes called the “training error”, “test error”, or “ob-
served error” depending on whether it is the error rate on a training set, test set,
or a more general set.

Example. (continued) The classifier ¢ which always predicts “not rain” might have

an empirical error of % and an unknown true error rate (which might in fact be
0.5).

2.3. Addressable questions. Given the true error, cp of a classifier ¢ we can
precisely describe the distribution of success and failure on future examples drawn
according to D. This quantity is derived from the unknown distribution D, so our
effort is directed toward upper and lower bounding the value of ¢p for a classifier
c.

The variations in all of the bounds that we present are related to the method of
choosing a classifier, c. We cover two types of bounds:
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FIGURE 3.1. A depiction of the Binomial distribution. The cu-
mulative of the Binomial is the area under the curve up to some
point on the horizontal axis.

(1) Test: Use examples in a test set which were not used in picking c.
(2) Train: Use examples for both choosing ¢ and evaluating c.

These methods are addressed in the next two sections.

It is worth noting that one question that cannot be addressed in this model
is “Can learning occur for my problem?”. Extra assumptions (as in [20] [21]) are
inherently necessary.

3. THE TEST SET METHOD

The simplest bound arises for the classical technique of using m fresh examples
to evaluate a classifier. This section is organized into two subsections:

e Subsection 3.1 presents the basic upper bound on the true error rate, handy
approximations, and a lower bound

e Subsection 3.2 discusses the implications of the test set bound on error
reporting practice. A better method for error reporting is applied to several
datasets and the results are shown.

3.1. The Bound. Before stating the bound, we note a few basic observations which
make the results less surprising. The principal observable quantity is the empirical
error ¢g of a classifier. What is the distribution of the empirical error for a fixed
classifier? For each example, our independence assumption implies the probability
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that the classifier errs is given by the true error, ¢p. This can be modeled by a
biased coin flip: heads if you are right and tails if you are wrong.

What is the probability of observing k errors (heads) out of m examples (coin
flips)? This is a very familiar distribution in statistics called the Binomial and
so it should be unsurprising that the bounds presented here are fundamentally
dependent upon the cumulative distribution of a Binomial.

Definition 3.1. (Binomial Tail Distribution)

m
Bin (£,0D> = Pr (ZX,-Sk
m Xl,...XmNCB i—1

= the probability that m examples (coins) with error rate (bias) ¢p produce k or
fewer errors (heads).
A depiction of the Binomial distribution is given in figure 3.1.

CD) = i (T) 7 (1 —ep)™

Jj=0

For the learning problem, we always choose a bias of ¢p and X; =error or not
on the ith example. With these definitions, we can interpret the Binomial tail as
the probability of an empirical error greater than or equal to %

Since we are interested in calculating a bound on the true error given a confidence
4, and an empirical error ég, it is handy to define the inversion of a Binomial tail.

Definition 3.2. (Binomial Tail Inversion)

m(ﬁ,é) Emax{p: Bin (E,p) 25}
m P m

= the largest true error such that the probability of observing % or more “heads”
is at least 4.

With these definitions finished, the results are all very simple statements.
Theorem 3.3. (Test Set Bound) For all classifiers, ¢, for all § € (0,1]

ngm (CD < %(65,5)) >1-46

Note that m in this equation is mest = |Stest|, the size of the test set.

Proof. (pictorially in 3.2) The proof is just a simple identification with the Bino-
mial. For any distribution over (z,y) pairs and any classifier, ¢, there exists some
probability, cp, that the classifier predicts incorrectly. We can regard this event as a
coin flip with bias ¢p. Since each example is picked independently, the distribution
of the empirical error is a Binomial distribution.

Whatever our true error ¢p is, with probability 1 — § the observation ¢ég will
not fall into a tail of size §. Assuming (correctly with probability 1 — §) that the
empirical error is not in the Binomial tail, we can constrain (and therefore bound)
the value of the true error c¢p. O

The test set bound is, essentially, perfectly tight. For any classifier with a suffi-
ciently large true error, the bound is violated exactly a § portion of the time.
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FIGURE 3.2. A graphical depiction of the test set bound. The
first graph depicts several possible Binomials given their true error
rates. The second depicts several Binomials, each with a tail cut.
The third figure shows the Binomials consistent with the tail cut
and observed test error. The worst case over all true error rates is
the consistent Binomial with the largest bias.

3.1.1. Approximations. There are several immediate corollaries of the test set bound
(3.3) which are more convenient when a computer is not handy. The first corollary
applies to the limited “realizable” setting where you happen to observe 0 test errors.

Corollary 3.4. (Realizable Test Set Bouund) For all classifiers, c, for all § € (0,1]

. ln%
Pr s=0=>cp< —2)>1-6
S~Dm m

Proof. Specializing theorem 3.3 to the zero empirical error case, we get:
. 0 m —€em
Bin{ —,e)] =(1-¢™<e
m
Setting this equal to § and solving for € gives us the result. The last inequality can
be most simply motivated by comparing graphs as in figure 3.3.

O

Approximations which hold for arbitrary (nonzero) error rates rely upon the
Chernoff bound which we state next, for completeness.
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FIGURE 3.3. A graph suggesting e™ ™ > (1 — €)™.

. k .
Lemma 3.5. (Relative Entropy Chernoff Bound) For -~ < p:
m

Proof. (Based on [19]) For all A > 0, we have:

. k 1 = k AL SmLXs AR
Bin{—,p] = Pr — E X;<—|=_Pr (em m Zai=1 2 e M)
m Xm~p™ \ M pa m Xmupm

= Pr <€_Azi=1 X > e_Ak)
Xm~pm —

Using Markov’s inequality (X >0, EX =y, = Pr(X >§) < %);

67’\k

< o
- EXmNpme*/\ Do X

Using Jensen’s inequality (% concave = ﬁ < E%), we get:
< e M By pmed T X

Using independence, we get:
=e M (pe* +(1-p)"

and rewriting, we get:
— e—mFf(N)

where f(A) = AL —In (pe* + 1 —p).
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A is a free parameter which can be optimized to find the tightest possible bound.
To find the optimal value, find A* so that f'(A*) =0.

w_ k pe
0= =~ s 1 p

=

=

S 3lE s 3l

Using this, we get:

k(1= 1—
f(,\*)__mpm((l_g)) —ln(1_£>
ko E k 1- &
= KL(L )

|

Using the Chernoff bound, we can loosen the test set bound to achieve a more
analytic fom.

Corollary 3.6. (Agnostic Test Set Bound) For all classifiers, ¢, for all § € (0,1]

Pr (KL(¢ <)oy
Sabom (CS||CD)_W Z 1=

where KL(q||p) = qln% +(1—-¢q)ln }%Z is the Kullback-Leibler divergence between
two coins of bias q,p with q < p.

Proof. Loosening theorem 3.3 with the Chernoff approximation for % < ¢cp we get:
Bin (E,CD) < o~ mKL(lep)
m
setting this equal to §, and solving for € gives the result. O

The agnostic test set bound can be further loosened by bounding the value of
KL(q||p)-

Corollary 3.7. (Agnostic Test Set Bound II) For all classifiers, c, for all § € (0,1]

. ln%
Pr cp<ésg+i/=—2]>1-46
S~D™ 2m

Proof. Use the approximation:
k k
KL(— > 2(cp — —)?
(—»ep) 2 2(ep——)
with the Chernoff bound and Test set bounds to get the result. |



TUTORIAL ON PRACTICAL PREDICTION THEORY FOR CLASSIFICATION 9

There has been some confusion elsewhere caused by differences between results
in the realizable and the agnostic case. The differences are fundamental, and are
related to the decrease in the variance of a Binomial as the bias (i.e. true error)
approaches 0. Note that this implies using the exact Binomial tail calculation
can result in functional (rather than merely constant) improvements on the above
corollary.

3.1.2. A Test Set Lower Bound. The true error can be lower bounded using a
symmetric application of the same techniques.

Theorem 3.8. (Test Set Lower Bound) For all classifiers, ¢, for all § € (0,1]
Pr (cDZmin{p: l—Bin(éS,p)26}> >1-96§
S~Dm P

The proof is completely symmetric. Note that both bounds hold with probability
1—2¢ since Pr(A or B) < Pr(A)+Pr(B). This is particularly convenient when the
square-root version of the Chernoff approximation is used in both directions to get:

Ve P sl < 1) 25 >1-4
¢ Pr \leo—csl <[5

Example. (continued) let § = 0.1. Using the the square root Chernoff bound with
és = 15, we get the confidence interval ¢p € [0.26,0.50]. Using an exact calculation
for the Binomial tail, we get: ¢p € [0.30,0.47]. In general, as the observed error
moves toward 0, the exact calculation provides a tighter confidence interval than
the agnostic approximation.

3.1.3. The state of the art. Although the test set bound is very well understood,
the same cannot be said of other testing methods. Only weak general results in
this model are known for some variants of cross validation (see [2]). For specific
learning algorithms (such as nearest neighbor), stronger results are known (see [4]).
There are a wide range of essentially unanalyzed methods and a successful analysis
seems particularly tricky although very worthwhile if completed.

3.2. Test Set Bound Implications. There are some common practices in ma-
chine learning which can be improved by application of the test set bound. When
attempting to calculate a confidence interval on the true error rate given the test
set, many people follow a standard statistical prescription:
(1) Calculate the empirical mean fi = és,.,, = + 3.7, I(h(z;) # yi)-
(2) Calculate the empirical variance 6° = 15 > (I(c(z;) = ys) — f1)*-
(3) Pretend that the distribution is Gaussian with the above variance and con-
struct a confidence interval by cutting the tails of the Gaussian cumulative
distribution at the 26 (or some other) point.

This approach is motivated by the fact that for any fixed true error rate, the
distribution of the observed accuracy behaves like a Gaussian asymptotically. Here,
asymptotically means “in the limit as the number of test examples goes to infinity”.

The problem with this approach is that it leads to fundamentally misleading
results as shown in figure 3.4. This “misleading” is both pessimistic and (much
worse) optimistic. The pessimism can be seen by intervals with boundaries less
than 0 or greater than 1 and the optimism by observing what happens when the
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FI1GURE 3.4. This is a graph of the confidence intervals implied by
the test set bound (3.3) on the left, and the approximate confidence
intervals implied using the common two sigma rule motivated by
asymptotic normality on the right. The upper bounds of the test
set bound have § = 0.025 failure rate, so as to be comparable with
the 2-sigma approach. The test set bound is better behaved as
the confidence interval is confined to the interval [0, 1] and is never
over-optimistic.

test error rate is 0. When we observe perfect classification, our confidence interval
should not have size 0 for any finite m.

The basic problem with this approach is that the Binomial distribution is not
similar to a Gaussian when the error rate is near 0. Since our goal is finding a
classifier with a small true error, it is essential that the means we use to evaluate
classifiers work in this regime. The test set bound can satisfy this requirement
(and, in fact, operates well for all true error regimes).

(1) The test set bound approach is never optimistic.
(2) The test set bound based confidence interval always returns an upper and
lower bound in [0, 1].

The 26 method is a relic of times when computational effort was expensive. It is
now simple and easy to calculate a bound based upon the cumulative distribution
of the Binomial (see [9] for a program which does this).

The test set bound can be thought of as a game where a “Learner” attempts
to convince a reasonable “Verifier” of the amount of learning which has occurred.
Pictorially we can represent this as in figure 3.5.
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Test Set Bound
d

Verifier Learner

(W’ Choose ¢

Draw Examples

Evaluate Bound

FIGURE 3.5. For this diagram “increasing time” is pointing down-
wards. The only requirement for applying this bound is that the
learner must commit to a classifier without knowledge of the test
examples. A similar diagram for train set bounds is presented later
(and is somewhat more complicated). We can think of the bound
as a technique by which the “Learner” can convince the “Verifier”
that learning has occurred (and the degree to which it has oc-
curred). Each of the proofs can be thought of as a communication
protocol for an interactive proof of learning by the Learner.

4. THE OccaM’s RAzZor BOUND

Given that the bounds for the simple test set bound work well, why do we
need to engage in further work? There is one serious drawback to the test set
technique—it requires myest Otherwise unused examples. This can strongly degrade
the value of the learned hypothesis because an extra myes; examples for the training
set increases the true error of the learned hypothesis from 0 to 0.5 for some natural
learning algorithm /learning problem pairs.

There is another reason why training set based bounds are important. Many
learning algorithms implicitly assume that the train set accuracy “behaves like”
the true error in choosing the hypothesis. With an inadequate number of training
examples, there may be very little relationship between the behavior of the train
set accuracy and the true error. Training set based bounds can be used in the
training algorithm and can provide insight into the learning problem itself.

This section is organized into three subsections.

(1) Subsection 4.1 states and proves the Occam’s Razor bound.

(2) Subsection 4.2 proves that the Occam’s Razor bound cannot be improved
in general.

(3) Subsection 4.3 discusses implications of the Occam’s Razor bound and
shows results for it’s application.
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Occam'’ s Razor Bound

o)
Verifier Learner

Draw Training
Examples m examples

Evaluate Bound

Choose c

FIGURE 4.1. In order to apply the Occam’s Razor bound it is
necessary that the choice of “prior” be made before seeing any
training examples. Then, the bound is calculated based upon the
chosen classifier. Note that it is “legal” to chose the classifier based
upon the prior P(c) as well as the empirical error ég.

4.1. The Occam’s Razor bound. This bound in more approximate forms has
appeared elsewhere [1][16]. We use “prior” (with quotes) here because it is an
arbitrary probability distribution over classifiers and not necessarily a Bayesian
prior. The distinction is important, because the theory holds regardless of whether
or not a Bayesian prior is used.

Theorem 4.1. (Occam’s Razor Bound) For all “priors” P(c) over the classifiers,
¢, for all 6 € (0,1]:

SPEM (3c: ¢p < Bin(és,6P(c))) >1-6

The application of the Occam’s Razor bound is somewhat more complicated than
the application of the test set bound. Pictorially, the protocol for bound application
is given in figure 4.1. It is very important to notice that the “prior” P(c) must be
selected before seeing the training examples.

Proof. (pictorially in figure 4.2) The proof starts with the test set bound:
Ve SP[r)m (ep < Bin(és,6P(c))) > 1 —46P(c)

Negating this statement, we get:

Ve SPII;m (cp > Bin (és,8P(c))) < 6P(c)

then, we apply the union bound in a nonuniform manner. The union bound says
that Pr(A or B) < Pr(A4) + Pr(B). Applying the union bound to every classifier
with a positive measure gives a total probability of failure of

ZJP(C) = (SZP(C) =
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FIGURE 4.2. The sequence of pictures is the pictorial represen-
tation of the proof of the Occam’s Razor Bound. The first figure
shows a set of classifiers, each with a tail cut of some varying depth.
The second picture shows an observed training error and the possi-
ble Binomial distributions for a chosen classifier. The third picture
shows the true errors which are consistent with the observation and
the tail cuts. The fourth picture shows the true error bound.

which implies

SPJSM (3c: ep > Bin(és,6P(c))) <&

Negating this again completes the proof. |

4.1.1. Occam’s Razor Corollaries. Just as with the test set bound, we can relax
the Occam’s Razor bound (theorem 4.1) with the Chernoff approximations to get
a somewhat more tractable expression.

Corollary 4.2. (Chernoff Occam’s Razor Bound) For all “priors” P(c) over clas-
sifiers, for all § € (0,1]:

In =1 +1Inl
. e e 5

P de: <ég+A\|————— | >1-—
s~1gm € ep=Cs 2m - 0

Proof. approximate the Binomial tail with the Chernoff Bound (lemma 3.5). O

Many people are more familiar with a degenerate form of this bound where
P(c) = ‘1?‘ and H is some set of classifiers. In that case, simply replace In %
with In|H|. The form presented here is both more general and necessary if the
bound is to be used in practice.

Other corollaries as in section 3.1.1 exist for the Occam’s Razor bound. In

general, just substitute 6 — JP(c).
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4.1.2. Occam’s Razor Lower bound. Just as for the test set bound, a lower bound
of the same form applies.

Theorem 4.3. (Occam’s Razor Lower Bound) For all “priors” P(c) over the clas-
sifiers, ¢, for all § € (0,1]:

Sf[r)m (Vc :cp > m;n{p : 1— Bin(és,p) > 6P(c)}> >1-946
Example. (continued) Suppose that instead of having 100 test examples, we had
100 train examples. Also suppose that before seeing the train examples, we com-
mitted to P(c) = 0.1 for ¢ the constant classifier which predicts “no rain”. Then,
the Chernoff approximations of the upper and lower bound give the interval, cp €
[0.22,0.54]. With an exact calculation, we get ¢p € [0.26,0.51].

4.1.3. The state of the art. A very large amount of work has been done on train
set bounds. In addition to those included here, there is:

(1) Reinterpretations of uniform convergence [21] results for continuously pa-
rameterized classifiers.

(2) Reinterpretations of PAC convergence [20] results.

(3) Shell bounds [11] which take advantage of the distribution of true error
rates on classifiers.

(4) Train and Test bounds [14] which combine train set and test set bounds.

Of this large amount of work only a small fraction has been shown to be useful
on real-world learning algorithm /learning problem pairs. The looseness of train set
based bounds often precludes analytical use.

4.2. The Occam’s Razor Bound is sometimes Tight. The question of tight-
ness for train set bounds is important to address, as many of them have been
extremely loose. The simplest method to address this tightness is constructive:
exhibit a learning problem/algorithm pair for which the bound is almost achieved.
For the test set bound, this is trivial as any classifier with a large enough true error
will achieve the bound. For the train set bound, this is not so trivial.

How tight is the Occam’s Razor bound (4.1)? The answer is sometimes tight.
In particular, we can exhibit a set of learning problems where the Occam’s Razor
bound can not be made significantly tighter as a function of the observables, m,
8, P(c), and ég. After fixing the value of these quantities we construct a learning
problem exhibiting this near equivalence to the Occam’s Razor bound.

Theorem 4.4. (Occam’s Razor tightness) For all P(c), %, 0 there exists a learning
problem and algorithm such that:

SPII; (3c: ep > Bin(és,6P(c))) > 6 — &
Furthermore, if c* is the classifier with minimal training error, then:

SPDrm (¢p > Bin(¢5,6P(c))) > 6 —6°

Intuitively, this theorem implies that we can not improve significantly on the the
Occam’s Razor bound (theorem 4.1) without using extra information about our
learning problem.
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Proof. The proof is constructive: we create a learning problem on which large
deviations are likely. We start with a prior P(c), probability of error §, m, and a
targeted empirical error rate, % For succinctness we assume that P(c) has support
on a finite set of size n.

To define the learning problem, let: X = {0,1}" and Y = {0,1}.

The distribution D can be drawn by first selecting ¥ with a single unbiased
coin flip, and then choosing the ith component of the vector X independently,
Pr((Xy,..., Xp)|Y) = I, Pr(X;|Y) . The individual components are chosen so
Pr(X; =Y|Y) = Bin (£,6P(c)).

The classifiers we consider just use one feature to make their classification:
ci(z) = x;. The true error of these classifiers is given by: cp = Bin (£,5P(c)).

This particular choice of true errors implies that if any classifier has a too-small
train error rate, then the classifier with minimal train error must have a too-small
train error.

Using this learning problem, we know that:

Ve, Vo € (0,1] : SP[gm (cp > Bin (és,6P(c))) = 6P(c)
(negation)

= Ve, V6 € (0,1] : SP[r)m (cp < Bin (és,6P(c))) =1 —6P(c)
(independence)

= Vo € (0,1]: Sf’gm (Ve ep < Bin(és,0P(c))) < H (1-46P(c))

(negation)
= Ve (0,1]: SPIr)m (3¢ ep > Bin (és,6P(c)))

n

=3 5P(c;) (1 ~ Pr (Je€fer, i} ep > m(es,ap(c))))
=1

=6-4°
O

The lower bound theorem implies that we can not improve an Occam’s Razor like
statement. However, it is important to note that large improvements are possible
if we use other sources of information. To see this, just note the case where every
single classifier happens to be the same. In this case the “right” bound would the
be the test set bound, rather than the train set bound. The PAC-Bayes bound and
the Sample Compression bound presented in the next sections use other sources of
information.

4.3. Train set bound implications.
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FIGURE 4.3. This is a plot comparing confidence intervals built
based upon the test set bound (3.3) with an 80%/20% train/test
split on the left and the Occam’s Razor bound (4.1) with all data
in the training set on the right. The Occam’s razor bound is some-
times superior on the smaller data sets and always nonvacuous (in
contrast to many other train set bounds).

4.3.1. results. The Occam’s Razor bound is strongly related to compression. In
particular, for any self-terminating description language, d(c), we can associate a
“prior” P(c) = 2714 with the property that 3>, P(c) < 1. Consequently, short
description length classifiers tend to have a tighter convergence and the penalty
term, In % is the number of “nats” (bits base e). For any language fixed before
seeing the train set, classifiers with shorter description lengths have tighter bounds
on the true error rate.

One particularly useful description language to consider is the execution trace of
a learning algorithm. If we carefully note the sequence of data-dependent choices
which a learning algorithm makes, then the output classifier can be specified by
a sequence such as “2nd choice, third choice, first choice, etc...” This is the idea
behind microchoice bounds [10]. Results for this approach are reported in Figure
4.3 and are strong enough to act as an empirical existence proof that Occam’s Razor
bounds can be made tight enough for useful application.

5. PAC-BAYES BOUND

The PAC-Bayes bound[16] is particularly exciting because it can provide quan-
titatively useful results for classifiers with real valued parameters. This includes
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PAC-Bayes Bound

0
Verifier Learner
Draw Training
Examples m examples

Choose Q(c)

Posterior", Q(c)
Evaluate Bound

FIGURE 5.1. The “interactive proof of learning” associated with
the PAC-Bayes bound. The figure is the same as for the Occam’s
razor bound, except that instead of committing to a single classi-
fier, the PAC-Bayes bound applies to any distribution over classi-
fiers.

such commonly used classifiers as Support Vector Machines and Neural Networks.!
This section is divided into three parts:

(1) Subsection 5.1 States and proves the PAC-Bayes Bound.

(2) Subsection 5.2 shows that the PAC-Bayes Bound is nearly as tight as pos-
sible given the observations.

(3) Subsection 5.3 discusses results from the application of the PAC-Bayes
bound to support vector machines.

5.1. The PAC-Bayes Bound. The PAC-Bayes bound has been improved by
tightening [12] and then with a much simpler proof [18] since it was originally
stated. The statement and proof presented here incorporate these improvements
and improve on them slightly.
The PAC-Bayes bound is dependent upon two derived quantities, an average

true error:

QD = ECNQCD
and an average train error:

Qs = E.nqts
These quantities can be interpreted as the train error and true error of the meta-
classifier which chooses a classifier according to @) every time a classification is made.
If we refer to this meta-classifier as (), the notation for error rates is consistent with
our earlier notation.

LThere is a caveat here—the bound only applies to stochastic versions of the classifiers. How-
ever, the probability that the stochastic classifier differs from the classifier can be made very
small.
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The “interactive proof of learning” viewpoint of the PAC-Bayes bound is shown
in figure 5.1. It is essentially the same as for the Occam’s Razor bound except for
the commitment to the metaclassifier () rather than the classifier c.

Theorem 5.1. (PAC-Bayes Bound) For all “priors” P(c) over the classifiers, c,
for all 6 € (0,1]:

KL P) +In mtd
(QH ) +In 5 )21—6
m

o5 (v Kz (Qsllan) <

Here KL(g|lp) = gln % + (1 — q)In {=% for ¢ < p and KL(Q||P) = EongIn 3 is
the Kullback-Leibler divergence between two distributions.

Note that the PAC-Bayes bound applies to any distribution over classifiers.
When @ is concentrated on one classifier, we have KL(Q||P) = In %, just as

in the Occam’s razor bound?, with the only distinction being the additive In(m+1)

term. It is somewhat surprising that the bound holds for every distribution @) with
only the slight worsening by W

Since the KL-divergence applies to distributions over continuous valued param-
eters, the PAC-Bayes bound can be nontrivially tight in this setting as well. This
fact is used in the application section.

We first state a couple simple lemmas that are handy in the proof. The intuition

behind this lemma is that the expected probability of an event is not too small.

Lemma 5.2. For all P(c), For all § € (0,1]:

Pr (ECNP 1 5m+1)21—5

S~Dm PrSNDm (és) 1)

Proof. Note that:

1 k 1
Ve Esepm ~ — = Pr (é = —) A
S~D Prgipm (CS = CS/) " S~Dm S m ) Prgi.pm (CS’ = )

3=

=m+1
Taking the expectation over classifiers according to P and switching the order of
expectation, we get:
1

Es.pmEc.p ——=m+1
¢ PrSINDm (CS = CSI)

and using the Markov inequality (X > 0, EX = u, = Pr(X > &) < §), we get:

1 m+1
vP P E.. ~ — < <é
5~5m< ““FPrgiwpm (és =) = 6 ) -
O

The next lemma shows that a certain expectation is bounded by the Kullback-
Leibler distance between two coin flips, just as for the relative entropy Chernoff
bound (Lemma 3.5).

Eengln

o
Lemma 5.3. For all Q(c): i smpm Cs) > KL(Qs||@p)

2As weakened with the relative entropy Chernoff bound (Lemma 3.5) on the Binomial.
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Proof. LE..qln L
m . .
( ¢ )Cgcs(lcn)mu—cs)
mcgs

m
1 :| ECNQ In ( més )

1
= B0 |égIn — + (1—ég)1
Q|:CanD+( cs)nl_CD

Jensen’s inequality (f concave = Ef(X) > f(EX)):

1 1 A 1 A 1
E..0|tsln — 1—2¢ég)l > In — 1-— |
CQ[CSHCD'F( Cs)nl_cD]_anQD-i-( Qs)nl_QD
m
Eevq ln( ; ) mH(és) 4
and még < E..glne _ E..qomH (¢s) <H (QS)
m m m

With these two lemmas, the PAC-Bayes theorem is easy to prove.

Proof. (Of the PAC-Bayes theorem) Let

1
Pg(c,és) = A P(c)
Prs~pm (5) Ben P bre o ts=esr)
Q) A !
<KL Pg)=FE. gl P E.. = =
=0< (Q“ G) en@ i P(c) S,\,Em (CS) ¢ PPrSINDm (cS = csr)
1 1
=KL P—EN lniA—l-lnEN ~ N
(Q“ ) c~Q PrSND"” (CS) ¢ PPI'S/NDm (CS = CS')
1 1
= Eengln 0————— < KL(Q||P) + n E..p

Prg.p= (Cs) Prgipm (s = Csr)
Now, use lemma 5.2 on the right hand term and lemma 5.3 on the left hand term
to finish the proof. a

Note that one of the last inequalities in the proof is not necessary, and so a
slightly tighter bound can be proved.

5.2. The PAC-Bayes Bound is sometimes Tight. Since the PAC-Bayes bound
is (almost) a generalization of the Occam’s Razor bound, the tightness result for
Occam’s Razor also applies to PAC-Bayes bounds.

5.3. Application of the PAC-Bayes Bound. Applying the PAC-Bayes bound
requires some significant specialization [13]. Here, we specialize to classifiers of the
form:
c(z) = sign (@ - X)
Note that via the kernel trick, Support Vector Machines also have this form.
The specialization is naturally expressed in terms of a few derived quantities:

(1) The cumulative distribution of a Gaussian. Let F(z) = [ \/%e*w'z/ 2,

Here we use F' rather than F' to denote the fact that we integrate from oo
to z rather than —oo to z.

(2) A “posterior” distribution Q(w, ) which is N(u, 1) for some p > 0 in the
direction of @ and N(0, 1) in all perpendicular directions.
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(3) The normalized margin of the examples
yu'J' z

V(fay) =
[GIETR

(4) A stochastic error rate, Q(, u)s = Ez yusF (uy(Z,9))

This last quantity in particular is very important to understand. Consider the
case as p approaches co. When the margin is negative (indicating an incorrect
classification), F' (uy(Z,y)) approaches 1. When the margin is positive F' (uy(Z,y))
approaches 0. Thus, Q(@, u)s is a softened form of the empirical error ég which
takes into account the margin.

Corollary 5.4. (PAC-Bayes Margin Bound) For all distributions D, for all 6 €
(0,1], we have:

N +In =+l
JPr | Vi KL (Q(?E,u)sllQ(IU, M)D) < 27 >1-9
Proof. The proof is very simple. We just choose the prior P = N(0,1)" and work
out the implications.
Since the Gaussian distribution is the same in every direction, we can reorient
the coordinate system of the prior to have one dimension parallel to w. Since the
draws in the parallel and perpendicular directions are independent, we have:

KL(Q|[P) = KL(QL|[PL) + KL(N (s, 1)[|N(0,1))

12
T2
as required.

All that remains is calculating the stochastic error rate Q(u’)’, 1)s. Fix a particular
example, (Z,y). This example has a natural decomposition ¥ = || + Z, into a
component, || parallel to the weight vector @ and a component #, perpendicular
to the weight vector.

To classify, we draw weight vector @ from Q(u‘)’,
ponents, @ = u')'il 4+, +, . Here u')"" ~ N(p,1)

). This @ consists of 3 com-
is parallel to the original weight

vector, @, ~ N(0,1) which is parallel to #, and | | is perpendicular to both @
and Z. We have:

Q, p)s = By ys ~Q(it )] (y # sign (u'i f))

= EfnySﬂB,NQ(IEaH)I (yu_; ) f S 0)

If we let wil = ||wi|||a w, = |[w\ ||, z; = |||, and . = ||Z.||, and assume
(without loss of generality) that y = 1 we get:

= Eiyy"’sawhNN(Nal)vle_NN(Oal)I (y(wH:L.H + wJ-mJ‘) S 0)

= FE= ,yNSE NN([L 1) wLNN(O 1) ( (UJHCE'H +U)J_£L'J_) S 0)

1 T
= Ef,y~SEz’NN(0,1)Ew’ ~N(0,1) (?/N < —yz — yw, — 7 )
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Using the symmetricity of the Gaussian, this is:

1 1 T
= Ezy~sE N By ~non! (yu <yz +yw, :T)

Using the fact that the sum of two Gaussians is a Gaussian:

= Ef,yNSE 22 I (y:u < yv)
v~N (0,1+:J2'—)
I

= EzysE

v N (0,55

)I(yu < yv)

= Ezy~sF (ny(Z,y))
finishing the proof. O

-

Using the corollary, the true error bound Q(w, u)p satisfies the equation:

2
B m+1
5 +1n ™3

m

KL (Q(#, ws|Q(, n)p) =

This is an implicit equation for @ which can be easily solved numerically.

The bound is stated in terms of dot products here, so naturally it is possible to
kernelize the result using methods from [6]. In kernelized form, the bound applies
to classifiers (as output by SVM learning algorithms) of the form:

(5.1) c(z) = sign (Z aik(:ci,x))
i=1

Since, by assumption, k is a kernel, we know that k(z;,z) = ®(z;) - $(z) where
®(x) is some projection into another space. In kernelized form, we get o - & =

-

Y aik(zi,z), -8 = k(z,z), 7 -0 = 2i; @iyk(zi, ), defining all of the
necessary quantities to calculate the normalized margin,
ey cik(zi, )
o) = S
\/k(ﬂfa ) D55, i k(@i ;)

One element remains, which is the value of y. Unfortunately the bound can
be nonmonotonic in the value of y, but it turns out that for classifiers learned by
support vector machines on reasonable datasets, there is only one value of y which
is (locally, and thus globally) minimal. A binary search over some reasonable range
of p (say from 1 to 100) can find the minima quickly, given the precomputation of
the margins. It is worth noting again here that we are not “cheating”—the bound
holds for all values of u simultaneously.

The computational time of the bound calculation is dominated by the calculation
of the margins which is O (mz) where m is the number of support vectors with a
nonzero associated a. This computational time is typically dominated by the time
of the SVM learning algorithm.
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FIGURE 5.2.

This figure shows the results of applying SVMlight to 8 datasets with a Gaussian
kernel and a 70/30 train/test split. The observed test error rate is graphed as an
X. On the test set, we calculate a Binomial confidence interval (probability of
bound failure = 0.01) which upper bounds the true error rate. On the training set
we calculate the PAC-Bayes margin bound for an optimized choice of p.

5.3.1. Results. Application of this bound to support vector machines is of signifi-
cant importance because SVMs are reasonably effective and adaptable classifiers in
common and widespread use. A SVM learns a kernelized classifier as per equation
5.13.

We apply the support vector machine to 8 UCI database problems chosen to fit
the criteria “two classes” and ‘real valued input features”. The problems vary in
size over an order of magnitude from 145 to 1428 examples. In figure 5.2 we use a
70/30 train/test split of the data.

In all experiments, we use SVMlight with a Gaussian kernel and the default
bandwidth. Results for other choices of the “C”, bandwidth, and/or kernel appear
to be qualitatively similar (although of course differing quantitatively).

It is important to note that the PAC-Bayes margin bound is not precisely a
bound (or confidence interval) on the true error rate of the learned classifier. In-
stead, it is a true error rate bound on an associated stochastic classifier chosen so
as to have a similar test error rate. These bounds can be regarded as bounds for
the original classifier only under an additional assumption: that picking a classifier
according to the majority vote of this stochastic distribution does not worsen the
true error rate. This is not true in general, but may be true in practice.

It is of course unfair to compare the train set bound with the test set bound on
a 70/30 train/test split because a very tight train set bound would imply that it is

3Some SVM learning algorithms actually learn a classifier of the form: c(z) =
sign (b+ 31, a;k(zi, )). We don’t handle this form here.
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In addition to comparing with everything in figure 5.2, we graph the margin
bound when all of the data is used for the train set. Note that it improves
somewhat on the margin bound calculated using the 70% train set (7/10 margin
bound), but not enough to compete with the test set bound.

unnecessary to even have a test set. In figure 5.3 we compare the true error bounds
on all of the data to the true error bounds generated from the 70/30 train/test
split.

The results show that the PAC-Bayes margin bound is tight enough to give useful
information, but still not competitive with the test set bounds. This is in strong
contrast with a tradition of quantitatively impractical margin bounds. There are
several uses available for bounds which provide some information but which are not
fully tight.

(1) They might be combined with a train/test bound [14].

(2) The train set bound might easily become tighter for smaller sample sizes.
This was observed in [14].

(3) The train set bound might still have the right “shape” for choosing an
optimal parameter setting, such as “C” in a Support Vector Machine.

6. SAMPLE COMPRESSION BOUND

The sample compression bound [15], [5] is like the PAC-Bayes bound in that it
applies to arbitrary precision continuous valued classifiers. Unlike the PAC-Bayes
bound, it applies meaningfully to nonstochastic classifiers. Mainstream learning
algorithms do not optimize the sample compression metric, so the bound application
is somewhat rarer. Nonetheless, there do exist some reasonably competitive learning
algorithms for which the sample compression bound produces significant results.

The section is organized as follows:

(1) Subsection 6.1 states and proves the sample compression bound.
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Sample Compression Bound
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Learning Algorithm A
Draw Training

Examples m examples

Choose Subset

Subset S
<  S, c=A(S)
Evauate Bound

For c=A(S)

FIGURE 6.1. The interactive proof of learning for the sample
compression bound. Note that the learning algorithm is arbitrary
here, similar to the test set bound.

(2) Subsection 6.2 shows that the sample compression bound is nearly as tight
as possible given the observations.

(3) Subsection 6.3 discusses results from the application of the sample com-
pression bound to support vector machines.

6.1. The Sample Compression Bound. The Sample Compression bound stated
here is differs somewhat from other results ([15][5] and others) by generalization
and simplification but the bound behavior is qualitatively identical.

Suppose we have a learning algorithm, A(S) whose training is “sparse” in the
sense that the output classifier is dependent upon only a subset of the data, A(S) =
A(S") for S' C S. The sample compression bound is dependent on the error rate,
¢és_s on the subset S — S’. The motivation here is that the examples which the
learning algorithm does not depend upon are “almost” independent and so we can
“almost” get a test set bound.

Viewed as an interactive proof of learning (in figure 6.1), the sample compression
bound is unique amongst training set bounds because it does not require any initial
commitment to a measure over the classifiers.

Theorem 6.1. (Sample Compression Bound) For all § € (0,1], D, A:

Pr (vs' C S withec= A(S"): ¢p < Bin (éssl, %)) >1-46
m
|

S~D |S—s’

Proof. Suppose we knew in advance that the learning algorithm will not depend
upon some subset of the examples. Then, the “undependent” subset acts like a test

4This is satisfied, for example, by the Support Vector Machine algorithm which only depends
upon the set of support vectors.
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set and gives us a test set bound:

VSI Q S with ¢ = A(Sl) : Pr (CD S m (ég_gl, %)) 2 ].—Lm

S~bm m (s ) m (s )
(Note that, technically, it is possible to refer to S’ unambiguously before random-
izing over S by specifying the indices of S contained in S’.) Negating this, we
get:

vS' C S with c= A(S,) : Pr (CD > Bin (és_sl, %)) < Lm
S~pm m( |) m(\s-s'\)

|S—5'
and using the union bound (Pr(A or B) < Pr(A)+Pr(B) over each possible subset,
S’ we get:

Pr (EIS’ C S withe=A(S"): ¢p > Bin (éSS’a _( 6m ))) <9
m
|

§~bm 1S—s"
Negating this again gives us the proof. |

6.2. The Sample Compression Bound is Sometimes Tight. We can con-
struct a learning algorithm /learning problem pair such that the Sample compression
bound is provably near optimal, as a function of it’s observables.

k

Theorem 6.2. (Sample Compression Tightness) For all 6 € (0,1], -, there exists

a distribution D and learning algorithm A s.t.

Pr (3;5, g S with ¢ = A(Sl) . Ccp > Bin <éS—S’; %)) >0 — 62
m
|

§~bm |S—s"

furthermore, if S* minimizes Bin (é S_S, ﬁ) , then
[

|s—s’

_ )
Pr |c¢*=A(S*): ¢p > Bin (éf‘;_s*, 7m>) > 66
S~bm ( m( s s+)

Proof. The proof is constructive and similar to the Occam’s Razor tightness re-
sult. In particular, we show how to construct a learning algorithm which outputs
classifiers that err independently depending on the subset S’ used.

Consider an input space X = {0,1}2". Each variable in the input space 25/ can
be thought of as indexing a unique subset S’ C S of the examples. In the rest of
the proof, we index variables by the subset they correspond to.

Draws from the distribution D can be made by first flipping an unbiased coin to
get y = 1 with probability 0.5 and y = —1 with probability 0.5. The distribution
on X consists of a set of independent values after conditioning on y. Choose

—( k é
Pr(zs #y) = Bin | —, ———
(1‘5 #y) 1 <m m(S_S,)>

Now, the learning algorithm A(S’) is very simple—it just outputs the classifier
¢(z) = zg. On the set S — S, we have:

Vs’ Pr (65_51 > E) =1- 46"1
s~ m m(s”s)
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FIGURE 6.2. The sample compression bound applied to the output
of a support vector machine with a Gaussian kernel. Here we use
6 =0.01

Using independence, we get:

k J
Pr (VS’ éS—S' Z —) = (1 - >
S~Dm m ls—,[ m(\S—S’\)

Negating, we get:

k 1)
Pr (vs' és s < —) —1- (1 - 7,”)
S~bm m l;f[ m (5" )

and doing some algebra, we get the result. |

6.3. Application of the Sample Compression Bound. One obvious applica-
tion of the Sample Compression bound is to support vector machines, since the
learned classifier is only dependent on the set of support vectors. If S’ is the set
of support vectors then S — S’ is the set of nonsupport vectors. Unfortunately, it
turns out that this does not work so well, as observed in figure 6.2.

There are other less common learning algorithms for which the sample compres-
sion bound works well. The Set Covering machine [17] has an associated bound
which is a variant of the Sample Compression Bound.

7. DISCUSSION

7.1. Learning algorithm design. Fvery train set bound implies a learning al-
gorithm: choose the classifier which minimizes the true error bound. This sounds
like a rich source of learning algorithms, but there are some severe caveats to that
statement.
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(1) Itisimportant to note that the form of a train set bound does not imply that
this minimization is a good idea. Choosing between two classifiers based
upon their true error bound implies a better worst-case bound on the true
error. It does not imply an improved true error. In many situations, there
is some other metric of comparison (such as train error rate) which in fact
creates better behavior.

(2) Another strong caveat is that, historically, train set bounds have simply
not been tight enough on real datasets for a nonvacuous application. This
is changing with new results, but more progress is necessary.

(3) Often the optimization problem is simply not very tractable. In addition to
sample complexity, learning algorithms must be concerned with run time
and space usage.

7.2. Philosophy. Train set bounds teach us about ways in which verifiable learn-
ing is possible, a subject which borders on philosophy. The train set bound pre-
sented here essentially shows that a reasonable person will be convinced of learning
success when a short-description classifier does well on train set data. The results
here do mot imply that this is the only way to convincingly learn. In fact, the
(sometimes large) looseness of the Occam’s Razor bound suggests that other meth-
ods for convincing learning processes exist. This observation is partially shown by
other train set bound results which are presented next.

7.3. Conclusion. This introduction to prediction theory covered two styles of
bound: the test set bound and the train set bound. There are two important
lessons here:

(1) Test set bounds provide a better way to report error rates and confidence
intervals on future error rates than some current methods.
(2) Train set bounds can provide useful information.

It is important to note that the train set bound and test set bound techniques are
not mutually exclusive. It is possible to use both simultaneously [14], and doing so
is often desirable. Test set bounds are improved by the “free” information about
the training error and train set bounds become applicable, even when not always
tight.
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APPENDIX

For those interested in comparing models, the uniform convergence model [21]
requires the additional assumption of the axiom of choice (to achieve empirical risk
minimization) and a bound on the hypothesis space complexity. Typical theorems
are of the form “after m examples, all training errors are near to true errors”.

The PAC learning model[20] requires a polynomial time complexity learning
algorithm and the assumption that the learning problem comes from some class.
Theorems are of the form “after m examples learning will be achieved”.

Both of these models can support stronger statements than the basic prediction
theory model presented here. Results from both of these models can apply here
after appropriate massaging of results.
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The online learning model [8] makes no assumptions. Typical theorems have the
form “This learning algorithm’s performance will be nearly as good as anyone of a
set, of classifiers.” The online learning model has very general results and no ability
to answer questions about future performance as we address here.

The prediction theory model can most simply be understood as a slight refine-
ment of the information theory model.
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