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Abstract 

Spoken Term Detection (STD) focuses on finding instances of 

a particular spoken word or phrase in an audio corpus. Most 

STD systems have a two-step pipeline, ASR followed by 

search. Two approaches to search are common, Confusion 

Network (CN) based search and Finite State Transducer (FST) 

based search. In this paper, we examine combination of these 

two different search approaches, using the same ASR output. 

We find that the CN search performs better on shorter queries, 

and FST search performs better on longer queries. By 

combining the different search results from the same ASR 

decoding, we achieve better performance compared to either 

search approach on its own. We also find that this 

improvement is additive to the usual combination of decoder 

results using different modeling techniques. 

Index Terms: Spoken Term Detection, Keyword Search, 

System combination 

1. Introduction 

Spoken Term Detection (STD) [1] is one of the fundamental 

applications of automated speech processing. STD focuses on 

finding instances of a particular spoken word or phrase in an 

audio recording corpus. Previous research [2, 3, 4] in STD has 

shown high performance on rich resource languages, such as 

English, Chinese and Arabic. This research indicates that 

better STD performance can be achieved using an ASR 

framework, as opposed to direct (acoustic or phonetic) search. 

However, STD under conditions of limited resources [5], high 

quality ASR is not available [6, 7, 8, 9, 10, 11, 12]. This 

limitation focuses more attention to the search [13, 14, 15, 16, 

17, 18, 19, 20, 21], since search has to be based on recognition 

hypotheses with high Word Error Rate (WER). The search is 

consequently done on all hypotheses generated from the 

decoding; recall is therefore more relevant than WER. Two 

common representations for hypotheses are lattices and 

confusion networks [22, 23, 24, 25], to each of which there is 

a different search method applicable: for searching on lattices, 

we can use Finite State Transducer (FST) search, while the 

Confusion Network (CN) search is applied to a condensed 

transform of the lattice. While both searches show good 

performance on the STD task, yet there are still issues that 

need to be addressed: What are the differences between these 

two approaches? More specifically, can we take advantage of 

complementarities between the two to achieve better STD 

performance?  

This paper makes two contributions: 

• We analyze (Section 6) the two different searches 

(Section 2) based on the same decoding result. We find 

(Section 5.1) that CN search performs better on single 

word queries, and FST search performs better on 

multiple word queries. 

• We compare several search result combination 

techniques (Section 3), and show that combination leads 

to better STD results, without additional decoding 

(Section 5.2). If we add extra decoding results, we can 

provide additive improvement on the existing STD 

result. (Section 5.3) 

2. Search Description 

2.1. FST Search 

Our FST search pipeline is described in [13, 14], which is 

capable of both in-vocabulary (IV) and out-of-vocabulary 

(OOV) search. We implement the lattice indexing algorithm 

proposed in [26] making use of the Kaldi toolkit [27]. 

At the indexing stage, the lattice of each utterance is 

expanded into a finite-state transducer, such that each 

successful path in the expanded transducer represents a single 

word or a sequence of words in the original lattice. The 

posterior score, start-time and end-time of the corresponding 

word or word sequence are then encoded as a 3-dimensional 

weight of the path. Our implementation of the indexing 

algorithm relies on the fact that the lattices are defeminized at 

the word level, which is an essential part of our lattice 

generation procedure [28]. Otherwise the indexing algorithm 

tends to blow up since the number of potential word sequences 

grows exponentially with the sequence length. 

At the search stage, IV keywords are usually compiled into 

linear finite-state acceptors (FSA), with zero cost. OOV 

queries are mapped to IV queries (proxies) [14] according to 

phonetic similarity, which usually results in non-linear finite-

state acceptors with different cost for each proxy. Regardless 

of being IV or OOV queries, STD is done by composing the 

query FSA with the index, and one can work out the posterior 

score, start-time and end-time from the weight of the resulting 

FST. In this work, we only focus on IV queries since most of 

the queries in our keyword lists are in-vocabulary. 

2.2. CN Search 

Our procedure for generating confusion networks is based on 

the Minimum Bayes Risk decoding algorithm of [29]. STD is 

carried out on confusion networks as follows. For single-word 

queries, each occurrence of the query word in the confusion 

networks generates a detection. The starting and ending times 

of the detection are those of the cluster containing the word; 

the score of the detection is the probability of the word. For 

multiple-word queries, dynamic programming is used to find 

all paths in the confusion networks such that the words on the 

path form the query. The paths may contain epsilon words. 

Each path generates a detection: the starting and ending times 



are those of the first and last clusters in the path, and the score 

is the product of the probabilities of all the words (including 

epsilon words) in the path. If multiple detections for the same 

query overlap, only the one with the highest score is retained. 

3. Search Result Combination Techniques 

Search results from multiple systems or different search 

methods are combined on a per-keyword basis. For each 

keyword, its detections in all the search results are pooled 

together. These detections are regarded as nodes of a graph; an 

edge is drawn between two detections if they overlap. Each 

connected component of this graph generates a combined 

detection. The starting and ending times of the combined 

detection are calculated as the average of those of the 

individual detections; the score of the combined detection is 

calculated with one of the following three methods [30]: 

• CombMAX: The score of the combined detection is the 

maximum of the scores of the individual detections; 

• CombSUM: The score of the combined detection is the 

sum of the scores of the individual detections; 

• CombMNZ: The score of the combined detection is the 

sum of the scores of the individual detections times the 

number of individual detections. 

In CombSUM and CombMNZ, if some detection for a 

keyword ends up with scores larger than 1, then the scores of 

all detections for this keyword are divided by the highest 

score.  

4. Experiments 

4.1. Dataset 

We use conversational (telephone) speech recorded in five 

different languages: Assamese1, Bengali2, Haitian3, Lao4 and 

Zulu5, as available in the IARPA BABEL [5] program. For 

each language, there are 10 hours of training data and 10 hours 

of development data. We conduct our experiments using the 

development query sets and the development data. 

4.2. The Evaluation metrics 

Spoken Term Detection uses multiple metrics for evaluation. 

All metrics are based on the Term Weighted Value (TWV) [1]. 

The formula for TWV is as follows: 

)),(),((1)( θβθθ termPtermPTWV FAMiss ⋅+−=  (1) 

where θ  is the detection threshold, β is a factor that controls 

the balance between misses and false alarms, which is set to 

999.9 in BABEL program. 

The concept of TWV score is simple: If the system 

performs perfectly on a query, it has a TWV of 1; if the system 

misses some of the query words or produces false alarms, it 

receives penalty on the TWV score. As a result, the TWV 

score is bounded above by 1 but has no fixed lower bound. 

                                                                 

 
1 Language collection release IARPA-babel102b-v0.5a. 
2 Language collection release IARPA-babel103b-v0.4b. 
3 Language collection release IARPA-babel201b-v0.2b. 
4 Language collection release IARPA-babel203b-v3.1a 
5 Language collection release IARPA-babel206b-v0.1e 

We use two separate metrics to describe the performance 

of STD systems:  

• Maximum Term Weighted Value (MTWV): MTWV is 

the maximum TWV over the range of all possible values 

of the detection threshold.  

• Supreme Term Weighted Value (STWV): STWV is the 

maximum TWV without considering false alarms. It is 

similar to lattice recall for a given query.  

The metrics are computed on a per-query basis, and then 

averaged for reporting. Together these two metrics provide 

better insight into the overall quality for our search results, as 

they are not sensitive to specific detection threshold. 

4.3. Experimental Setup 

We conducted three different sets of experiments. Each set is 

conducted on three different decoding systems: a Deep Neural 

Network (DNN) system, a Bottleneck Feature (BNF) system 

and a Perceptual Linear Prediction (PLP) system. Our search 

component only processes the IV queries, for the OOV 

queries, it does not output any result.   

The first set of experiments compare the performance of 

the two different searches, FST search and CN search. The 

second set of experiments combine the search results from 

FST search and CN search to determine if we can obtain better 

STD performance. The final set of experiments combine all of 

our results to see if the gain from the individual systems is 

additive. The combination is also performed in different orders 

to note whether that affects the final result.  

5. Results 

5.1. Comparison between FST and CN Searches 

 

Figure 1: System comparison between different 

decoding systems and search methods. 

Figure 1 shows the MTWV for different systems on five 

different languages (Assamese, Bengali, Haitian, Lao and 
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(DNN), Bottle-neck Features (BNF), and Perceptual Linear 

Predictive (PLP). We performed a statistical analysis by fitting 

a general linear model to the data and found statistically 

significant differences  between languages, front-end features 

and search methods, all at p<0.001. FST search generally 

outperforms CN search on every language except for Zulu. 

This is due to the distribution of query length (the number of 

word tokens per query) in the Zulu query set. We provide an 

analysis for it in Section 6.1.  

Language Metric FST CN CombSUM 

Assamese 
MTWV 0.193 0.190 0.203 

STWV 0.369 0.372 0.38 

Bengali 
MTWV 0.207 0.202 0.217 

STWV 0.361 0.366 0.373 

Haitian 
MTWV 0.356 0.342 0.368 

STWV 0.496 0.501 0.514 

Lao 
MTWV 0.342 0.330 0.358 

STWV 0.474 0.476 0.492 

Zulu 
MTWV 0.101 0.105 0.107 

STWV 0.235 0.236 0.236 

Table 1: MTWV/STWV for search combination  

5.2. Combination of FST and CN searches 

We evaluated three different combination techniques: 

CombMAX, CombSUM and CombMNZ. CombSUM appears to 

be the best way to combine FST and CN search. The results 

shown in Table 1 are averaged over front-end. It is worth 

noting that the performance on each decoding front-end shows 

the same trend as with the average performance. There are two 

observations that are worth making. First, the search 

combination has less effect on Zulu. This is due to the 

distribution of query length (see Table 3). Second, CN search 

has better performance on STWV over FST search. This is 

caused by the conversion from lattice to CN. The detail for 

both observations is discussed in the Analysis section (Section 

6.1, 6.3). 

5.3. Combination between decoding systems 

The final set of experiments is carried out to determine 

whether the improvement from search combination is additive 

to the existing decoding based system combinations. 

Language Metric 
Single 

Best 

Search 

Comb. 
Search+ 

Decode 

Assamese 
MTWV 0.219 0.229 0.248 

STWV 0.430 0.441 0.465 

Bengali 
MTWV 0.226 0.234 0.258 

STWV 0.407 0.417 0.445 

Haitian 
MTWV 0.394 0.402 0.423 

STWV 0.564 0.576 0.597 

Lao 
MTWV 0.378 0.396 0.418 

STWV 0.541 0.556 0.584 

Zulu 
MTWV 0.113 0.116 0.128 

STWV 0.264 0.265 0.279 

Table 2: MTWV/STWV from search combination to 

decoding system combination  

After combining result from multiple searches, these 

results are further combined with the result from different 

decoding systems to achieve even greater improvement, as 

shown in Table 2. The result is the average MTWV over all 

languages. We pick the DNN system as our single best system. 

By search combination, we achieve better performance on all 

five languages. If we combine the search combination result 

from other decoding systems, we gain further improvement. 

This indicates that the improvement from system combination 

comes from the diversity between systems. Although the BNF 

system and the PLP system have slightly worse performance 

compared to the DNN system, combining them nevertheless 

yields improvement. We also tested doing system 

combinations in different orders but found out that the order of 

combination does not have much impact on performance. 

6. Analysis 

6.1. Analysis of search and query length distribution  

During our experiments, we discovered that the improvement 

from search combinations varies for different languages. On 

closer inspection, we found that the difference is due to the 

distributions of query length for each language. Each of the 5 

language has around 2000 queries, yet query length distribute 

differently, as shown in Table 3. 

Length Assamese Bengali Haitian Lao Zulu 

1 947 926 573 325 1857 

2 850 877 953 902 109 

3+ 162 167 398 698 19 

Table 3. Distribution of query length in five languages 

The queries for Haitian and Lao have relatively low 

percentages of queries with length 1. On the other hand, the 

queries for Zulu have extremely high percentage of queries 

with length one. This distribution is highly correlated with the 

result showed in Table 1, where it is showed the search 

combination is more helpful for Haitian and Lao and less 

beneficial for Zulu. The statistical analysis indicates a 

significant interaction (p<0.01) between query length and 

search technique. 

 

Figure 2: MTWV interactions for search methods and 

query length  
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Figure 2 shows the interactions between search methods 

and the query length, averaged over all languages and 

decoding systems. This analysis yields two findings.  

CN search performs somewhat better on queries of length 

one word, while FST search outperforms CN search on longer 

queries. As well, CN search has fewer false alarms compared 

with FST search on the one word queries. This is a 

consequence of lattice to CN conversion, since hypotheses in 

the lattice are merged or pruned during the conversion process. 

The false alarm hypothesis can be pruned, or its probability 

can be suppressed by other well-recognized hypotheses in the 

same confusion set. The conversion process does not have too 

much impact on correct detections, since these are mostly 

preserved in the CN. As a result, the preserved correct 

detections and the removed false alarms contribute to better 

MTWV score. FST search outperforms CN search on multi-

word queries. This is because lattices can better preserve 

history information for decoding hypothesis compare to CN. 

This observation provides an explanation for the result shown 

in Figure 3, where FST search outperform CN search on every 

language except for Zulu. From Table 3, we can see the query 

set for Zulu is mostly composed of single word queries. We 

believe the overall difference in MTWV is caused by the 

imbalanced query set, not by properties of the language.  

Search combination provides better improvement on 

multi-word query, compared with single word query. This 

matches our finding that the improvement from system 

combinations comes from the diversity of systems. FST search 

and CN search use different approaches to search on multi-

word queries. This diversity contributes to the consistent 

improvement over different languages and systems. For the 

single-word query, since there is less difference on two search 

approaches, the improvement for system combination is 

limited due to the lack of diversity. This answers why the 

search combination has less effect on Zulu. The Zulu query set 

is mostly single word queries, and there is insufficient 

diversity between the two different search approaches. 

6.2. Analysis between search and decoding systems 

 

Figure 3: MTWV interactions for search methods and 

decoding systems  

Figure 3 shows the interactions between different decoding 

systems and search methods. The result is the average MTWV 

over all languages, using different search methods. We have 

two observations according to this analysis. First, search 

combination provides consistent improvements across 

different decoding systems. This indicates the search 

combination is not sensitive to the properties of decoding 

systems. Second, the difference on MTWV for CN and FST 

search is correlated to the performance of the decoding 

system. The DNN system has the best overall performance on 

the MTWV, and the difference between FST and CN search is 

the largest. On the other hand, the PLP system has the worst 

performance on MTWV among the three systems. The 

difference between FST and CN search is also the least in our 

experiment. This suggests that FST and CN search have 

similar performance on a weaker decoding result, and the 

difference is larger when a higher quality decoding result is 

available. But combining the different results can still gain 

extra improvement, as shown in Section 5.3.  

6.3. The higher STWV in CN search 

From Table 1, we can see that CN search consistently has 

higher STWV compared to the FST search. This is because 

creation of confusion networks gives rise to extra links 

between words. These links are only available during CN 

search, and they contribute to the somewhat higher STWV. 

This phenomenon increases the STWV for the CN system, yet 

does not have huge impact on the MTWV score. FST search 

still produces a better MTWV score over multi-word queries. 

7. Related Work 

Recently, it has been shown that good STD performance can 

be obtained by combining ASR systems [20, 30, 31]. 

However, these works focus on combining different ASR 

systems. Our work shows that even by combining the different 

search results from the same ASR system, we can achieve 

better performance. Moreover, if multiple decoding results are 

available, doing decoding system based combination after 

search combination can achieve even better results.  

8. Conclusion 

In this paper, we examine two different STD search 

approaches, CN search and FST search, using the same ASR 

output. We find that CN search performs better on single word 

queries, and that FST search performs better on longer queries. 

We find that combination of the results of the two different 

searches achieves better performance than either search 

approach on its own. Our finding holds across three different 

decoding systems on five different languages. If we have 

multiple ASR system available, doing ASR based combination 

can achieve an even better result; the order of combination 

does not impact performance.  
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