Computational Complexity of K_n

15-453 Project Presentation

Project Advisor: Leonid Kontorovich

Jeremiah Blocki
What is K_n anyway and why do we care?

Definitions:

Given a fixed alphabet Σ and $x, y \in \Sigma^*$
- $\text{DFA}(n, \Sigma) = \{M: M$ is a DFA with n states and alphabet $\Sigma\}$
- $K_n(x, y) = |\{M: M \in \text{DFA}(n, \Sigma) \text{ and } \{x, y\} \subseteq L(M)\}|$

Why is K_n interesting?
- It is useful for learning regular languages, a topic Vinay will discuss later today
- K_n is a universal regular kernel which
 “can be easily adapted to render all the regular languages linearly separable”
- Our focus, however, will be the computational complexity of computing K_n
Counting…

\[|\text{DFA}(n, \Sigma)| = ?\]
- There are \(n\) states, and \(|\Sigma|\) transitions for each state.
- There are \(n\) possibilities for each of the \(n|\Sigma|\) transitions.
- There are \(2^n\) ways to label of final states
 (by default \(q_0\) is the start state)
Hence, \(|\text{DFA}(n, \Sigma)| = 2^n n^{|\Sigma|}\)

Note: \(\text{DFS}(n, \Sigma) := \{M : M \text{ is a semi-automaton}\)
 (no labeled accept\/reject states)
 with \(n\) states and alphabet \(\Sigma\}\)
\(|\text{DFS}(n, \Sigma)| = n^{n|\Sigma|}\)
Examples

Let $\Sigma = \{0,1\}$, $x \in \Sigma$

1. $K_n(x,x) = \ ?$

 \[= \frac{|DFA(n,\Sigma)|}{2} \]

2. $K_n(1,\varepsilon) = \ ?$

 \[= \frac{1}{n} \times \frac{|DFA(n,\Sigma)|}{2} + \frac{n-1}{n} \times \frac{|DFA(n,\Sigma)|}{4} \]

 \[= \frac{n+1}{2n} \times |DFA(n,\Sigma)| \]

The probability that a semi-automaton ends on the same state given strings “1”, ε is

- $\Pr[\delta(q_0,1) = q_0] = \frac{1}{n}$

The probability that a semi-automaton ends on different states given strings “1”, ε is

- $\Pr[\delta(q_0,1) \neq q_0] = \frac{n-1}{n}$

If a semi-automaton ends on a different state on x,y then exactly a fourth of the labelings of final states will result in a DFA accepting both x and y

Otherwise exactly half of the labelings of final states will result in a DFA accepting both x and y
Results

1. C++ Code for Brute Force Computation of K_n
2. Closed form expressions for $K_n(x,y)$, $(x,y \in \Sigma^* \text{ s.t } |x| \leq 2, |y| \leq 2)$
3. An Algorithm to “Efficiently” Compute $K_n(x,y)$ given sufficiently short strings x,y
4. Proof that computing $K_n(x,y)$ requires completely reading both strings x and y
5. A modified version of the problem is at least as hard as factoring
6. The corresponding universal kernel for Turing Machines is incomputable.
Brute Force

Let $\Sigma = \{0, 1\}$

Idea: Represent a Semi-Automaton as a $2 \times n$ array of integers $\{0, \ldots, n-1\}$, and compress/decompress the semi-automaton to an integer

Brute Force computation is feasible for $n \leq 6$, after this time is a huge constraint (not to mention that there are only 32 bits used to store an integer…)

Recall that:

$$|\text{DFS}(n, \Sigma)| = n^{n\Sigma} = n^{2n}$$
// Assuming the DFA is "small enough" (<= 6 states)
// At 7 states already 7^(2*7) > 2^32 - 1, takes in an input
// array of dimensions: ALPHABET_SIZE x MAX_STATES, but only
// considers the first n states to compress the DFA
inline unsigned int compressDFS(int Delta[ALPHABET_SIZE][MAX_STATES], int n) {
 unsigned int total = 0;
 for (int i = 0; i < ALPHABET_SIZE;i++) {
 for (int j = 0; j < n; j++) {
 total*=n;
 total += Delta[i][j];
 }
 }
 return total;
}
// Only works for n <= 6, see note above
//
// Only fills the first n states, decompresses based on n
inline void decompressDFS(unsigned int compressedDFA, int n, int DFS[ALPHABET_SIZE][MAX_STATES]) {
 unsigned int comp = compressedDFA;
 for (int i = ALPHABET_SIZE-1; i >= 0; i--){
 for (int j = n-1; j >=0; j--){
 DFS[i][j] = comp % n;
 comp/=n;
 }
 }
}
Closed Form

Closed form expressions for $K_n(x,y)$, $(x,y \in \Sigma^* \text{ s.t } |x| \leq 2, |y| \leq 2)$

Example: ($\Sigma = \{0,1\}$)

$K_n(11,01) = ?$

- Case 1:
 - $\delta(q_0,1) = \delta(q_0,0) = q_i$ (probability: $1/n$)
 - Then semi-automata must end at the same state on “11” and “01”

- Case 2:
 - $\delta(q_0,1) \neq \delta(q_0,0)$ (probability: $(n-1)/n$)
 - The semi-automata ends on the same state with probability:
 $Pr[\delta(\delta(q_0,0),1) = \delta(\delta(q_0,1),1)] = 1/n$

(Here we invoke the fact that one of the final transitions is as of yet undetermined)
Closed Form Results

- \(K_n(x,x) = 2^{n-1}n^{\mid\Sigma\mid n} \)
- \(\sigma_1, \sigma_2 \in \Sigma \ (\sigma \neq \sigma_2) \rightarrow K_n(\sigma_1, \sigma_2) = 2^{n-2}n^{\mid\Sigma\mid n}(n+1)/n \)
- \(\sigma \in \Sigma \rightarrow K_n(\varepsilon, \sigma) = 2^{n-2}n^{\mid\Sigma\mid n}(n+1)/n \)
- \(\sigma \in \Sigma \rightarrow K_n(\varepsilon, \sigma\sigma) = 2^{n-2}n^{\mid\Sigma\mid n}(2/n+2/n^*((n-1)/n) + ((n-1)/n)^2) \)
- \(\sigma_1, \sigma_2 \in \Sigma, \ (\sigma_1 \neq \sigma_2) \rightarrow K_n(\varepsilon, \sigma_1\sigma_2) = K_n(\varepsilon, \sigma_2\sigma_1) = 2^{n-2}n^{\mid\Sigma\mid n}(n+1)/n \)
- \(K_n(\sigma, \sigma\sigma) = 2^{n-2}n^{\mid\Sigma\mid n}(1+(2n-1)/n^2) \)
(More) Closed Form Results

- $K_n(\sigma_1, \sigma_2 \sigma_1) = 2^{n-2} n^{\left\lfloor \frac{\Sigma}{n} \right\rfloor} \frac{2}{(n^2)} + \frac{2(n-1)}{n^2} + \frac{2*(n-1)}{n^2} + \left(\frac{(n-1)}{n} \right)^2$
- $K_n(\sigma_1, \sigma_2 \sigma_2) = 2^{n-2} n^{\left\lfloor \frac{\Sigma}{n} \right\rfloor} \frac{2}{n^2} + \frac{(n-1)}{n^2} + \frac{2(n-1)}{n^2} + \left(\frac{(n-1)}{n} \right)^2$
- $K_n(\sigma_1, \sigma_1 \sigma_2) = 2^{n-2} n^{\left\lfloor \frac{\Sigma}{n} \right\rfloor} \frac{(n+1)}{n}$
- $K_n(\sigma_1 \sigma_2, \sigma_2 \sigma_1) = 2^{n-2} n^{\left\lfloor \frac{\Sigma}{n} \right\rfloor} \frac{(1-1/n^2- 1/n^3 + 3/n)}{n}$
- $K_n(\sigma_1 \sigma_1, \sigma_2 \sigma_2) = 2^{n-2} n^{\left\lfloor \frac{\Sigma}{n} \right\rfloor} \frac{(1-1/n^2-1/n^3 + 3/n)}{n}$
- $K_n(\sigma_1 \sigma_2, \sigma_2 \sigma_2) = 2^{n-2} n^{\left\lfloor \frac{\Sigma}{n} \right\rfloor} \frac{2(n^2)}{n^2} + \frac{2(n-1)}{n^2} + \left(\frac{(n-1)(n+1)}{n} \right)^2$
- $K_n(\sigma_1 \sigma_1, \sigma_1 \sigma_2) = 2^{n-2} n^{\left\lfloor \frac{\Sigma}{n} \right\rfloor} \frac{(n+1)}{n}$
- $K_n(\sigma_2^k \sigma_1, \sigma_2^j) = 2^{n-2} n^{\left\lfloor \frac{\Sigma}{n} \right\rfloor} \frac{(n+1)}{n}$
- Also Note: $K_n(x,y) \leq K_n(xz, yz)$
Algorithm to Compute K_n Efficiently Given Short String x and y

Idea: Start with a completely uninitialized semi-automata M (only distinguished state is q_0). Run M on x and y until we finish or until we reach an undefined transition on both x and y. For each possible transition fix that transition, mark any new states and recursively run M on the remainder of the strings.

Note this algorithm takes exponential time on $|x|$ and $|y|$, but shows that $K_n(x, y)$ can be easily computed if $|x|, |y| \ll n$
Computing $K_n(x,y)$ requires reading in x,y completely

Let $\Sigma = \{0,1\}$

Pf:
Consider $x = 1^{n+n!}$, $y = 1^n$

Given a semi-automaton M with n states, reading in 1^n places on some state q_i, on some cycle of 1 transitions (by the pigeon hole principle). This cycle has length $L \leq n$. Reading in $1^{n!}$ starting at q_i takes us around the cycle $n!/L$ times and ends at q_i again.

Hence,

$$K_n(1^{n+n!},1^n) = \frac{|\text{DFA}(n,\Sigma)|}{2}.$$

Now build a semi-automaton M' with n states having a cycle of length 2. $1^{n+n!}$, $1^{n+n!+1}$ must on different states hence,

$$K_n(1^{n+n!+1},1^n) \neq \frac{|\text{DFA}(n,\Sigma)|}{2}$$

But it is impossible to tell if $x = 1^{n+n!}$ or $x = 1^{n+n!+1}$ without reading in the entire string. \square
Computing $K_n(x,y)$ requires reading in x,y completely

Interesting Note: The proof implies that it is impossible for any DFA with less than $n+1$ states to distinguish $1^{n+n!}$ and 1^n

So if we let $S = \{1^{n+n!}\}$ and $S' = \{1^n\}$, then the minimum consistent consistent DFA must have more than n states
Modified Problem That is At Least As Hard as Factoring

Let $A(n,x) = K_n(1^{n+x},1^n)$

IMPORTANT NOTE: the input length is $O(\log n + \log x)$, while the input word have length $O(x)$, so this does not necessarily imply that computing K_n is hard.

Let $M \in \mathbb{N}$ be given, and let $n = \lceil M^{1/2} \rceil$

Note that: $A(n,M,0) = A(n,1,0)$

$K_n(1^n+M,1^n) = K_n(1^{n+1},1^n) \iff \forall j \in [2,\ldots,n], j$ does not divide M

Pf: Note that if a semi-automaton has a cycle of length 1 then it does not distinguish 1^n from 1^{n+b} for any b. Otherwise, if the semi-automaton has a 1-cycle of length greater than 1 then it must distinguish 1^n from 1^{n+1}

If there is $j \in [2,\ldots,b]$, st $j \mid M$ then consider a semi-automaton with n states and a cycle of length j. Then the semi-automaton does not distinguish between 1^{n+M} and 1^n. Hence, $K_n(1^{n+M},1^n) > K_n(1^{n+1},1^n)$.

Otherwise, if there is no $j \in [2,\ldots,b]$, st $j \mid M$, then consider any semi-automaton with n states having a cycle of length (L) greater than 1. Because L does not divide M the semi-automaton must distinguish 1^{n+M} from 1^n. Hence, $K_n(1^{n+M},1^n) = K_n(1^{n+1},1^n)$.
Modified Problem That is At Least As Hard as Factoring

Conclusion: An efficient algorithm to compute $A(n,x)$ would yield an efficient algorithm to factor any integer M. (Could simply perform binary search for the smallest factor)

In the original problem the length of the input would be x and not $\log x$, however this proof seems to indicate that the “hardness” in computing K_n does not just come from reading in the strings.
Given a fixed alphabet Σ and $x, y \in \Sigma^*$, define:

$T^{(n)}(x,y) := \{ <H>: H \text{ is a Turing Machine with } n \text{ states st. } H \text{ accepts } x \text{ and } y \}$

$K^{(TM)}_n(x,y) := |T^{(n)}(x,y)|$

Claim: $K^{(TM)}_n(x,y)$ is NOT computable.
Turing Machine Kernel is Incomputable

Suppose that there was some Turing Machine $T_{_K}$ to compute $K_n^{(TM)}(x,y)$. Then we could decide A_{TM} as follows:

$H = "On input (<M>,w)"

- Enumerate all Turing Machines with $n = |M|$ states (there are finitely many such Turing machines, and M is one of them)
- Use T_k to compute $K_n^{(TM)}(w,w)$
- Set $\text{finishedCounter} = 0$
- Run each enumerated machine on w in parallel (each one step at a time)
- If M ever Accepts/Rejects then Accept/Reject
- If some machine finishes (accepts or rejects) increment finishedCounter
- If $\text{finishedCounter} = K_n^{(TM)}(x,y)$ and M has not halted then Reject (There are only $K_n^{(TM)}(w,w)$ Turing machines with n states that accept w and hence M is not one of them). Note that $K_n^{(TM)}(x,y)$ of the Turing Machines MUST accept w after finitely many steps.

This is a contradiction: A_{TM} is not decidable. Hence, $K_n^{(TM)}(x,y)$ is not computable.