
Manipulating Word Lattices to Incorporate Human Corrections

Yashesh Gaur1, Florian Metze1, and Jeffrey P. Bigham1,2

1Language Technologies Institute, Carnegie Mellon University
2Human Computer Interaction Institute, Carnegie Mellon University

{yashesh, fmetze, jbigham}@cs.cmu.edu

Abstract
Automatic Speech Recognition (ASR) is not perfect and

even advanced statistical models make errors that render its out-
put difficult to understand. We are therefore interested in hav-
ing Humans correct ASR output efficiently. A naive approach,
in which Humans manually “edit” the ASR output, may work
when the recognition is done offline, but fails in on-line scenar-
ios when Humans cannot keep up. To address this problem, our
prior work introduced an approach that combines ASR and key-
word search (KWS) to allow Humans to simply type corrections
for the errors they observe, while the system positioned each
correction using KWS and then “stitches” in the correction. In
this paper, we present an improved “stitching” algorithm that
works at the lattice level (rather than on the first-best string).
We show that this algorithm drastically improves the word error
rate (WER) of a TED system when applied to a new corpus of
CS lectures that has not been carefully prepared for ASR exper-
iments. We also show that the system can fix annoying repeat
errors from just a single correction, making it suitable for post-
processing of large amounts of data from limited corrections.
Index Terms: speech recognition, human computation, word
lattices, keyword spotting.

1. Introduction
Automatic Speech Recognition (ASR) has received consider-
able attention from the research community for the past several
decades, and its performance continues to improve [1, 2, 3].
However, even today’s state-of-the-art ASRs produce unaccept-
able errors, especially in noisy environments or in the presence
of many out of vocabulary words.

A use case that is very important and challenging is real-
time captioning. The goal of real-time captioning is to convert
aural speech to visual text with a very low latency. It provides
immediate access to spoken content in lectures/talks and is a
crucial accommodation for Deaf and Hard of Hearing (DHH).
The most popular real-time (and reliable) captioning service is
Communications Access Real-time Translation (CART), where
extensively trained stenographers type on specialized keyboards
and are able to caption up to 231 words per minute [4] with ac-
curacy generally above 95%. However, stenographers are ex-
pensive and must booked well in advance. Consequently, they
can not be used to caption for events that have been scheduled
at the last minute or learning opportunities like discussions after
the class. ASR, on the other hand, is relatively inexpensive and
can provide on demand captioning but it still can’t generate very
high fidelity captions in real world scenarios. This is especially
true for speech that has specialized content, e.g. a classroom
computer science lectures about operating systems. The reasons
for the unsatisfactory ASR performance are many. Poor micro-
phones, noise from audience, reverberation and echo from the

classroom/hall are some of them. More importantly, such talks
are usually decoded using off an shelf recognizer. Such recog-
nizers work with a generic language model (LM) as it is difficult
to create adapted LMs for every class and/or discipline [5, 6].
Often the dictionary of recognizers do not contain the technical
jargon that is found in abundance in such talks. Therefore, they
get recognized incorrectly every time. These words, as our anal-
ysis will later show, contain important meaning and are salient
features of the talk/lecture.

In our previous work, we introduced a new approach to
real-time captioning that combines human effort with machine
intelligence to generate captions with improved quality. This
approach allowed humans to simply type in corrections for the
errors that they observed in the ASR caption stream. The sys-
tem used KWS to find the most suitable place for the correction
in the caption and then “stitch” it in. This saved the human
workers the substantial time required to position the correction
correctly in the output stream, making them more efficient. The
“stitching” approach we used was limited to replacing and in-
serting words in the ASR hypothesis. This paper presents a new
stitching approach that incorporates human corrections directly
into the word lattices generated by the recognizer. This new
stitching mechanism yields better post correction transcripts. It
is also able to correct mistakes that the human did not explicitly
fix, but which follow from word lattice once the corrections are
considered.

2. Related Work
Humans are very good at converting speech to text and tak-
ing help from them to produce or correct speech transcriptions
seems intuitive. In recent years, human computation via crowd-
sourcing has become a popular and inexpensive means to tran-
scribe audio. [7] used it to transcribe podcasts, [8] used it to
collect data from speech dialog systems and [9, 10] have used
it to transcribe conversational speech. Crowdsourcing has also
been used to correct/edit transcripts from classroom lectures
[11]. These approaches, however, are meant to work in an of-
fline setup and consequently can not be used for real-time cap-
tioning because humans can not keep up with natural speaking
rates. [12] tries to address this issue by synchronously coordi-
nating a group of humans to caption different parts of the audio,
which are stitched together to yield complete transcripts with
latency of less than 5 seconds. However, the coordination re-
quired is unwieldy in practice.

In our previous work [13], we presented an approach for
a human powered system for the purpose of real-time caption-
ing. As opposed to [12], our approach can work with a sin-
gle human who does not directly produce work but “oversees”
the real-time ASR to quickly identify and correct its mistakes.
Prior approaches have had humans manually edit the hypoth-



Figure 1: System Architecture: Speech and ASR captions are
streamed to the overseer in real-time. Corrections are entered
by the overseer if mistakes are observed. KWS quickly finds the
time at which correction word must have been spoken and then
passes it to the stitcher, which stitches the correction into the
ASR captions/lattice.

esis from the ASR to produce correct captions. This is only
faster than typing from scratch for low word error rates, due to
the time required to both type and position a correction in the
output stream []. Our approach eliminates the slow positioning
process and instead uses KWS techniques [14] to predict where
the entered correction word(s) were spoken and stitch them into
the hypothesis as the correct location.

The goal of Keyword Search (KWS), also known as Key-
word Spotting or Spoken Term detection, is to determine when
a given search term was spoken. Popular ways to implement
it are to search through the phonetic/syllable/word lattices pro-
duced by the ASR system. Hence, we ensure that our search
goes beyond the 1-best hypothesis. Moreover, KWS can also
detect words that are out of vocabulary and is therefore not con-
strained by ASR’s dictionary. Figure 1 shows the architecture
of our system. Audio is fed to an online ASR. The audio and
the ASR captions play in front of the human. The human looks
out for mistakes in the captions and enters the corresponding
correction if one is required. The correction is fed to the KWS
module which tries to detect the word in the recently decoded
speech. The time-stamps of the detection are then sent to the
“stitcher” module which tries to stitch the correction in. Pre-
viously this module worked by replacing and inserting words
in the ASR hypothesis. In this paper, we go beyond this sim-
plistic scheme by stitching the correction into the word lattice
generated by the ASR.

3. Manipulating Word Lattices
Our prior word-based stitching technique reduced WER by
about 50% [13], assuming all corrections were provided. The
reason for such a poor performance can be attributed to both
poor detection by keyword spotting and poor stitching. In our
approach, detection and stitching are independent steps, so that
we are relying on a state-of-the-art Open Source solution for
detection keywords [14] and focus our efforts on developing
the stitching technique described in this paper. Still, manual er-
ror analysis suggests that further improvements can be achieved
with improved keyword spotting. One of our observations early
on is that to get better stitching results, we need to stitch the
word into the lattice rather than replace words in the final tran-
script. The manner in which stitching is done would depend
on if the correction word is already present in the lattice at the
correct position but couldn’t be part of the final path or if it is

absent from the lattice altogether. In the following sub-sections
we describe these schemes in detail.

Data: lattice, correction, startTime, endTime,
searchBuffer=ε, insertBuffer=δ

Result: lattice with correction stitched in.
S = all states in lattice;
SR = all states in S s.t. s.time ∈ [startTime, endTime];
foreach s ∈ SR do

A = {arcs that emit from s};
foreach a ∈ A do

if a.word is keyword then
boost the acoustic weight of arc a;

end
end

end
if keyword is not found then

Sstart = {s s.t. s ∈ S and s.time ∈
[startTime− δ, startTime + δ]};
Send = {s s.t. s ∈ S and s.time ∈
[endTime− δ, endTime + δ]};
foreach (s1, s2) s.t. s1 ∈ Sstart and s2 ∈ Send do

a = new arc;
a.word = correction;
boost acoustic score of a;
add a to lattice with from s1 to s2;

end
end
Rescore the lattice using LM to assign graph costs to
new arcs;

Algorithm 1: Lattice Stitcher

3.1. Correction word present in the lattice

ASR lattices contain a lot more information than the best path
and it is likely that we will find our correction word(s) already
present in the lattices. These corrections couldn’t make it to
the best path because their acoustic and graph costs were not
strong enough. After we get a detection from the KWS system
(in terms of start timing and the duration of the keyword), we
iterate through the lattice and try to find the arcs that correspond
to our correction word. We only consider an arc if it represents
the correction word and its begin and end timestamps are within
a reasonable range of the time stamps given by the KWS sys-
tem. We boost the acoustic costs of these arcs by a reasonable
margin making sure that the new best path would pass through
one of these transitions. We leave the graph costs of these transi-
tions untouched which ensures that a correct transition is chosen
amongst the transitions whose acoustic costs were just boosted.

3.2. Correction word absent from the lattice

There will be cases when the correction word is absent from the
lattice, but KWS will find and return approximate start and end
time stamps for it. In such cases, our stitching scheme will need
to add appropriate arcs/transitions with reasonable weights into
the lattices such that when the lattice is re-scored, the correction
word is present in the lattice. Hence, when no arcs correspond-
ing to our correction word are found in the lattice, we consider
the start and end time produced by the KWS and try to predict
the states which might act as the start state and end state for
the new arcs. We tried 2 different approaches here. Our first
approach was to try and estimate different start and end states



and then introduce arcs arcs between every pair of the above
start and end state. The second approach takes all the states
whose time stamp lies between the start and end time returned
by the KWS system in introduced arcs between every state pair
i and j such that time(i) < time(j). Although the second
approach introduces more arcs than the first one, we found the
first one worked better. Hence, we decided to continue with this
method. The acoustic scores in the arcs introduced was chosen
to be the maximum acoustic score observed in the lattice. The
graph costs were left blank. The lattice was latter re-scored us-
ing a language model which assigned appropriate LM costs to
the newly introduced transitions.

4. Experimental Setup
To evaluate the performance of our stitching technique, we per-
formed two sets of experiments, using Kaldi’s keyword search
implementation [14] for spotting keywords.

Our first experiment is performed on the TEDLIUM dataset
[15] using a Kaldi [16] system trained with PDNN [17] and
using the standard TEDLIUM language model. The goal for
this experiment is to investigate the improvement when going
from word-based stitching to lattice-based stitching. The base-
line WER is 19.2% on the TED development data. TED talks
resemble classroom settings to some extent, but the language
model matches the test data quite well.

The second experiment thus uses an Eesen-based [18] TED
system with a pruned “Cantab” language model [19], tested on
a corpus of Stanford CS classes, for which we have generated
reference alignments from available transcripts 1. This setup re-
sembles a real use case, because no adaptation of the system to
the target domain has been performed. The system has a base-
line WER of 15.6% on the TED development data, and has been
trained with the Connectionist Temporal Classification (CTC)
criterion. The keyword search implementation has been carried
over from Kaldi.

In both cases, the results are reported for a simulation ex-
periment where corrections were simulated to be coming from a
human who is able to report all the incorrectly recognized words
within 10 seconds.

The out-of-vocabulary (OOV) rate for the TED test set is
virtually 0%, while for the Stanford CS test set it is 3.4%, both
with a vocabulary size of about 150 k words.

5. Results and Discussion
Table 1 shows the reduced WER after applying our stitching
algorithm. We also compare it with our previous stitching algo-
rithm which worked on a sentence level.

Table 1: WER on TEDLIUM for Kaldi ASR baseline, WER after
stitching based on word level replacement, and stitching based
on lattice manipulation.

Error ASR word lattice
Captions stitcher stitcher

WER 19.2 % 9.6 % 4.33 %
Substitution 12.8 % 3.1 % 1.9 %

Insertion 2.3 % 1.7 % 1.5%
Deletion 4.1 % 4.8 % 0.8 %

1introduction to computer science – programming paradigms.
http://see.stanford.edu/see/lecturelist.aspx?coll=2d712634-2bf1-4b55-
9a3a-ca9d470755ee

0

1 hour

1 hour
XML
parser

HTML

URL
RSS

Figure 2: Pattern of out-of-vocabulary (OOV) word occurrences
and repetitions in a typical lecture from the Stanford computer
science course: about 60% of OOV tokens repeat, showing up
as horizontal lines in this plot. The 5 most repeated OOV words
are labeled, and correspond to the primary content of the lec-
ture

Table 2: WER on Stanford CS for Eesen ASR baseline, WER
post stitching based on lattice manipulation.

Error TEDLIUM based Post
recognizer Corrections

WER 35.0 % 17.9 %
Substitution 21.4 % 9.3 %

Insertion 7.7 % 5.2 %
Deletion 5.9 % 3.2 %

Table 1 shows that the lattice stitching algorithm provides
a significant improvement over our previous word-based ap-
proach, and is able to reduce deletions in particular.

Table 2 shows the results on the Stanford CS corpus. Again,
there is a significant reduction of errors, although the over-
all efficacy of the approach is less. Our analysis shows that
timing information found in lattices that have been generated
with a CTC acoustic model is less reliable than timing informa-
tion from “conventional” acoustic models that have been trained
with a frame-based criterion and do not include the “blank”
symbol, resulting in less effective “stitching”. A detailed de-
scription of the CTC loss function during training can be found
in [20], while [18] discusses the Weighted Finite State Trans-
ducer (WFST) based decoding approach that we are using here.

Figure 2 shows the recurring pattern of out of vocabulary
(OOV) words in one of the lectures from the Stanford computer
science talks. These OOV words carry the essence of the lec-
ture. Our approach is particularly fruitful in this scenario be-
cause the human has to enter the OOV only once and our sys-
tem keeps searching for the OOV word repeatedly potentially
correcting the mistake even before it has been spotted. More im-
portantly, this is done without regenerating the language model
and the decoding graph.

6. Conclusion and Future Work
This paper describes a new lattice-based “stitching” algorithm,
which can be used to correct ASR output from sparse user “cor-
rections.” We are currently working on an in-depth analysis of
the differences between lattices generated with a CTC acoustic



model and those that have been generated with a DNN. Early
results indicate that we will be able to further reduce the er-
ror rate on CTC acoustic models. This is attractive because
CTC acoustic models employ context independent (CI) pho-
netic states, and no sub-phonetic states (conventional models
use begin-, middle-, and end-states), which should allow for bet-
ter confidence measures and thus better keyword search. They
are also about 2 times faster during decoding (not including
skipping frames), and use significantly less memory because
of the smaller CI search graph. These experiments should be
concluded within the next few weeks.

7. Acknowledgements
This work was supported by National Science Foundation
Award #IIS-1218209.

8. References
[1] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kings-
bury, “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” Signal
Processing Magazine, IEEE, vol. 29, no. 6, pp. 82–97, Nov 2012.

[2] M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, and M. Fed-
erico, “Report on the 10th iwslt evaluation campaign,” in
Proc. IWSLT, Heidelberg; Germany, 2013, http://www.eu-
bridge.eu/87 282.php.

[3] J. Glass, T. J. Hazen, S. Cyphers, I. Malioutov, D. Huynh, and
R. Barzilay, “Recent Progress in the MIT Spoken Lecture Pro-
cessing Project,” in Proc. Interspeech, 2007. [Online]. Available:
http://groups.csail.mit.edu/sls/publications/2007/Interspeech07-
glass-lecture.pdf

[4] C. Jensema, R. McCann, and S. Ramsey, “Closed-captioned tele-
vision presentation speed and vocabulary,” American Annals of
the deaf, vol. 141, no. 4, pp. 284–292, 1996.

[5] H. Yamazaki, K. Iwano, K. Shinoda, S. Furui, and H. Yokota,
“Dynamic language model adaptation using presentation slides
for lecture speech recognition,” in In Proc. INTERSPEECH, 2007,
pp. 2349–2352.

[6] C. Munteanu, G. Penn, and R. Baecker, “Web-based language
modelling for automatic lecture transcription,” in Proc. INTER-
SPEECH, 2007.

[7] J. Ogata, M. Goto, and K. Eto, “Automatic transcription for a
web 2.0 service to search podcasts,” in INTERSPEECH 2007, 8th
Annual Conference of the International Speech Communication
Association, Antwerp, Belgium, August 27-31, 2007, 2007, pp.
2617–2620.

[8] G. Parent and M. Eskenazi, “Toward better crowdsourced tran-
scription: Transcription of a year of the let’s go bus information
system data,” in Spoken Language Technology Workshop (SLT),
2010 IEEE. IEEE, 2010, pp. 312–317.

[9] M. Marge, S. Banerjee, and A. I. Rudnicky, “Using the amazon
mechanical turk for transcription of spoken language,” in Acous-
tics Speech and Signal Processing (ICASSP), 2010 IEEE Interna-
tional Conference on. IEEE, 2010, pp. 5270–5273.

[10] S. Novotney and C. Callison-Burch, “Cheap, fast and good
enough: Automatic speech recognition with non-expert tran-
scription,” in Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association
for Computational Linguistics. Los Angeles, California: Asso-
ciation for Computational Linguistics, June 2010, pp. 207–215.
[Online]. Available: http://www.aclweb.org/anthology/N10-1024

[11] H. Kolkhorst, K. Kilgour, S. Stüker, and A. Waibel, “Evaluation
of interactive user corrections for lecture transcription,” in 2012
International Workshop on Spoken Language Translation, IWSLT
2012, Hong Kong, December 6-7, 2012, 2012, pp. 217–221.

[12] W. Lasecki, C. Miller, A. Sadilek, A. Abumoussa, D. Borrello,
R. S. Kushalnagar, and J. Bigham, “Real-time captioning
by groups of non-experts,” in Proceedings of the 25th
annual ACM symposium on User interface software and
technology - UIST ’12. New York, New York, USA:
ACM Press, Oct. 2012, pp. 23–34. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2380116.2380122

[13] Y. Gaur, F. Metze, Y. Miao, and J. P. Bigham, “Using keyword
spotting to help humans correct captioning faster,” in Sixteenth
Annual Conference of the International Speech Communication
Association, 2015.

[14] J. Trmal, G. Chen, D. Povey, S. Khudanpur, P. Ghahre-
mani, X. Zhang, V. Manohar, C. Liu, A. Jansen, D. Klakow,
D. Yarowsky, and F. Metze, “A keyword search system using open
source software,” in Proc. IEEE Workshop on Spoken Language
Technology. South Lake Tahoe, NV; USA: IEEE, Dec. 2014, to
appear.

[15] A. Rousseau, P. Deléglise, and Y. Estève, “Ted-lium: an automatic
speech recognition dedicated corpus.” in LREC, 2012, pp. 125–
129.

[16] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The kaldi speech recog-
nition toolkit,” in IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Processing So-
ciety, Dec. 2011.

[17] Y. Miao, “Kaldi+pdnn: Building dnn-based ASR systems with
kaldi and PDNN,” CoRR, vol. abs/1401.6984, 2014. [Online].
Available: http://arxiv.org/abs/1401.6984

[18] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-End
Speech Recognition using Deep RNN Models and WFST-based
Decoding,” in Proc. Automatic Speech Recognition and Under-
standing Workshop (ASRU). Scottsdale, AZ; U.S.A.: IEEE, Dec.
2015, https://github.com/srvk/eesen.

[19] W. Williams, N. Prasad, D. Mrva, T. Ash, and T. Robinson,
“Scaling recurrent neural network language models,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2015 IEEE Inter-
national Conference on. Brisbane; Australia: IEEE, May 2015.

[20] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented seq
uence data with recurrent neural networks,” in Proceedings of
the 23rd international conference on Machine Learning. ACM,
2006, pp. 369–376.


