
Machine Learning for Constituency Test of Coordinating

Conjunctions in Requirements Specifications
Richa Sharma

School of IT
Indian Institute of Technology, Delhi

India

sricha@gmail.com

Jaspreet Bhatia
School of IT

Indian Institute of Technology, Delhi
India

jaspreet2709@gmail.com

K.K. Biswas
Dept. of Computer Science and Engg.
Indian Institute of Technology, Delhi

India

kkb@cse.iitd.ac.in

ABSTRACT

Coordinating conjunctions have been a major source of ambiguity

in Natural Language statements and the concern has been a major

research focus in English Linguistics. Natural Language is also

the most common form of expressing the requirements for an

envisioned software system. These requirement documents also

suffer from similar concern of coordination ambiguity. Presence

of nocuous coordination ambiguity is a major concern for the

requirements analysts. In this paper, we explore the applicability

of constituency test for identifying coordinating conjunction

instances in the requirements documents. We show through our

study how identification of nocuous and innocuous coordinating

conjunctions can be improved using semantic similarity heuristics

and machine learning. Our study indicates that Naïve Bayes

classifier outperforms other machine learning algorithms.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications –

tools; I.2.7 [Artificial Intelligence]: Natural Language processing

– text analysis.

General Terms

Languages, Documentation, Experimentation

Keywords

Coordination Ambiguity, Conjunctions, Constituency Test,

Requirements Specifications, Machine Learning.

1. INTRODUCTION
Natural Language (NL) is the most common and the most

preferred form of expressing the requirements for an envisioned

software system. The fact that NL is understood by all the

stakeholders involved in software development and is quite

expressive makes NL a suitable choice for documenting the

requirements specifications. However, NL is inherently

ambiguous in nature. NL statements often lead to different

interpretations by different readers. Ambiguity concern is more

intensified in context of software development [1]. Requirements

for the software correspond to a certain business domain and the

requirements specifications make extensive use of domain-

relevant terms. The software development team may not be

familiar and conversant with the business domain relevant terms.

Such ambiguities are often either overlooked or lead to more

misunderstandings while documenting and reviewing the

requirements specifications. These specifications are large in size,

thereby making the ambiguity problem in requirements more

intractable. We are motivated by this industry problem of

ambiguities in requirements specifications. We are interested in

training the machine learning classifier for automatic

identification of ambiguous requirements. Our focus in this paper

is to address the concern of coordination ambiguity arising due to

the use of ‘and’ and ‘or’. Coordination ambiguity arises due to

the complex syntactic structure linking together two or more

elements through coordinating conjunctions like and, or, but, for,

yet etc. Coordination ambiguity is known to be a pernicious

source of structural ambiguity in English [2]. Though not all

statements making use of coordinating conjunctions are

interpreted differently by different readers, yet a small portion of

coordinating statements can potentially be interpreted differently

and can be thought of as instances of nocuous ambiguity [3].

Coordination ambiguity concern has been researched extensively

in English linguistics by several authors like [4], [5], [6], [7] etc.

The authors have suggested algorithms and heuristics to identify

coordination ambiguities. Corpus-based distributional heuristics

have been used to detect coordination ambiguities for

requirements specifications too [8], [9].

In this paper, we present an approach for identifying and learning

the instances of nocuous coordinating ambiguity from

requirements corpus. We have isolated nocuous coordination

ambiguity instances from innocuous instances by making use of

constituency test for coordinating conjunctions. A constituent, in

syntactic analysis, refers to a group of words that function as a

single unit [10]. In our study, we have used word-based similarity

heuristics to perform the constituency test. The labeled instances

of nocuous and innocuous coordination ambiguities have been

used to learn the nocuous ones using (ML) classification

algorithms. The count of coordinating statements is relatively low

as compared to the size of requirements corpus. Our evaluation

study is, therefore, based on semi-supervised learning [11]. We

have explored following questions in our study:

1. Which ML algorithm is best suited for identifying nocuous

coordination ambiguities?

2. Which heuristics serve best to identify nocuous coordination

ambiguities?

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

RAISE’14, June 3, 2014, Hyderabad, India.

Copyright 2014 ACM 978-1-4503-2846-3/14/06… $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

RAISE’14, June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2846-3/14/06...$15.00
http://dx.doi.org/10.1145/2593801.2593806

25

3. Are distributional heuristics for identifying nocuous

coordination ambiguity instances helpful in context of

requirements specifications?

The rest of the paper is organized as follows: section 2 presents an

overview of coordination ambiguity; current state-of-art in

English linguistics and its application to NL requirements

specifications. Section 3 discusses our approach including the

heuristics used and an overview of the ML algorithms used. In

section 4, we present our evaluation study along with results and

observations. Section 5 finally presents the conclusion.

2. COORDINATION AMBIGUITY

2.1 Background
Ambiguity is a pervasive problem in NL. Coordinating structures

are widely acknowledged for syntactic ambiguity in NL

statements. Identifying the scope of coordinating structures and

associated modifying as well as modified attachments is a

challenge that has been addressed in various ways like lexical

similarity and structural parallelism [12], syntactic and lexical

cues [4], [6], distributional heuristics [8]. Semantic similarity

based heuristics for detecting coordination ambiguity has been

explored in [9]. We first present a brief overview of these

approaches towards resolving coordination ambiguity in English

Linguistics in the following sub-section followed by adoption of

some of these approaches for NL requirements.

2.2 Current State-of-art in English

Linguistics
Coordinating structures can occur between two or more nouns (or

phrases) (NP), verbs (or phrases) (VP), two adjectives (JJ) and

two sentences. Study of coordinating structures has shown that

these structures can be ambiguous due to the scope of attachment

of the coordinating terms or units with other structural units

present in a NL statement. For example:

(1) This role is a combination of three roles – Analyst, Regional

Manager and Reviewer.

In the above requirements statement, there can be following two

interpretations for coordinating terms – Manager and Reviewer:

1. (Regional (Manager and Reviewer))

2. ((Regional Manager) and Reviewer)

Therefore, the above statement can be referred to as an instance of

nocuous ambiguity as it can be interpreted differently by different

readers. However, coordination between sentences referred to as

S-conjunction is not ambiguous for it connects two independent

sentences. For example:

(2) If the Call Period has passed and there are no subsequent

Call Periods, then Call Option field will default to ‘No’

In this statement, coordinating conjunction, ‘and’ connects two

independent statements:

S1: the Call Period has passed

S2: there are no subsequent Call Periods

Therefore, statements of above type are not ambiguous. Research

efforts for disambiguating coordinating structures have focused on

the type (1) statements. Identifying potentially ambiguous

coordinating structures has been of interest to English linguists.

Wu et al. [4] have suggested linguistic and syntactic rules to

disambiguate the coordinating structures in a statement. They

have devised algorithms to automate the suggested rules. They

have been able to get an accuracy of 85.3% while disambiguating

(NP1 and NP2 + NP3) coordinating structure and, an accuracy of

87.7% with (adjective + NP1 and NP2) structure. Goldberg [5]

has shown the use of unsupervised statistical model for detecting

ambiguous coordination with noun phrases of the form (NP1

preposition NP2 and NP3). Her model performs with an accuracy

of 72% for un-annotated 1988 Wall Street Journal text. Resnik [2]

has explored syntactic structure of the form (NP1 and NP2 + N3).

Resnik has considered semantic similarity between the

coordinating terms in order to resolve the coordination ambiguity.

The approach has been shown to work with an accuracy of 72%.

Recently, Brouwer et al. [7] have explored the role of syntactic

and lexical probabilities specified in Probabilistic Context Free

Grammar to account for NP coordination preference. Banik [8]

has analyzed VP coordination and quantifier scope in Lexicalized

Tree Adjoining Grammar for simple sentences.

2.3 Related work for NL Requirements
The concern of coordination ambiguity in NL requirements has

been explored by Chantree et al. [3], [8] and Yang et al. [9].

Chantree et al. have investigated the role of distributional

similarity between the head words involved in coordination by

comparing the rankings provided by the Sketch Engine1 [13],

which obtains the information about distribution of the headwords

from British National Corpus2 (BNC). They have suggested

Distributional Similarity, Collocation Frequency and other

heuristics – all based on the rankings provided by Sketch Engine,

which draws distribution information from BNC. The

distributional similarity and coordination match heuristics have

provided an accuracy of 75% for innocuous ambiguities in their

study. Yang et al. have studied the role of local collocation

frequency and the semantic similarity measure suggested by

Resnik [2] in addition to the heuristics suggested by Chantree et

al. in [3]. Yang et al. have worked on identifying nocuous

ambiguity using LogitBoost algorithm. Their study has shown a

precision of 75%.

3. OUR APPROACH
Ambiguity concern, as suggested in [1], becomes more intensified

in requirements documents owing to the presence of domain-

related context as well as the use of technical words that slightly

differ from routine conversational language. The syntactic and

lexical cues as suggested in earlier works on coordination

ambiguity also do not hold much relevance for requirements

specifications. We encountered various instances of coordinating

terms where distributional similarity heuristics as well as lexical

and syntactic cues were of no help. Instead, semantic similarity

owing to either domain-relevance or technical-relevance hinted

towards coordinating constituent. Let us consider one such

interesting example from our dataset:

(3) retrieve and edit

Here, the coordinating units or terms – ‘retrieve’ and ‘edit’ are not

found to be related according to BNC distribution frequency.

However, both of these coordinating terms are frequently used in

requirements specifications to specify how a particular entity

details should be updated. These are reported semantically similar

1 http://www.sketchengine.co.uk

2 http://natcorp.ox.ac.uk

26

by the semantic similarity heuristics. Therefore, we have explored

semantic similarity based heuristics in our study.

Our approach is based on the considering coordination ambiguity

as a semantic property of NL statements. In [14], the author

discusses nature of ambiguity ranging from lexical to syntactic

and semantic challenges. The author argues that an expression is

ambiguous if it is associated with more than one region of the

meaning space. Applying the same theory to coordinating

structures, we can safely assume that a coordinating expression

will not lead to ambiguity if the coordinating units, i.e. the words

or phrases to the left and right of ‘and’ and ‘or’ convey more or

less the same meaning. Consequently, these units conjoined by

‘and’ and ‘or’ act as a constituent. In our approach, we have made

use of semantic similarity measures for coordinating terms to

identify coordinating constituents. We argue that higher the score

of similarity between coordinating units, the more are the chances

of these units of acting as a ‘constituent’; and, when the

coordinating units act as a constituent, the scope of the

coordinating terms becomes less ambiguous within the sentence.

Let us consider the corresponding statement to the example (3) to

understand this point:

The GUI should allow administrator to ‘retrieve and edit’

existing painting information.

All the subjects involved in the study marked the above statement

as unambiguous. The viewpoint of the subjects states:

(i) administrator only retrieves and edits, i.e. ‘retrieve and

edit’ act as constituent and, therefore the scope of both

retrieve and edit extends to the actor administrator.

(ii) Similarly, the scope of actions: ‘retrieve’ and ‘edit’

extends to the object: ‘existing painting information’.

Our study is focused on finding the suitable similarity heuristics

that prove useful in identifying coordinating constituents. We

have considered coordinating structures of the form: (NP1 and/or

NP2), (VP1 and/or VP2) and (JJ1 and/or JJ2) in our study. We

present below a brief overview of the semantic similarity

heuristics that we have used.

3.1 Semantic Similarity Heuristics

3.1.1 Path Length (path)
Path Length heuristic is a simple node-counting scheme in

hierarchical dictionary structure. We have used the WordNet

implementation of this heuristic as available in

Wordnet::Similarity package [17].

The similarity score is inversely proportional to the number of

nodes along the shortest path between the concepts. The shortest

possible path occurs when the two concepts are the same and, the

corresponding path length is 1 in that case. Consequently, the

maximum similarity value is 1.

3.1.2 jcn
The relatedness measure, suggested by Jiang and Conrath [18], is

defined as:

jcn = 1 / jcn_distance,

where, jcn_distance = IC(concept1) + IC(concept2) - 2 *

IC(LCS)

Here, IC refers to the information content of the coordinating

terms and LCS refers to the Least Common Subsumer of the

coordinating terms.

3.1.3 lin
The similarity heuristic, as proposed by Lin [19], defines the score

of relatedness as:

lin = 2 * IC(LCS) / (IC(concept1) + IC(concept2)),

where, IC is the information content of the coordinating terms and

LCS is the Least Common Subsumer. The relatedness value

provided by this heuristic is always greater-than or equal-to zero

and less-than or equal-to one.

3.1.4 res
For Resnik measure [2], the relatedness value is equal to the

information content (IC) of the Least Common Subsumer (LCS)

of the two coordinating units, i.e. the most informative subsumer,

i.e:

res = IC (LCS)

3.1.5 wup
The heuristic, proposed by Wu and Palmer [20], measures the

relatedness score of two terms by considering the depths of the

two concepts (s1 and s2) in the WordNet taxonomies, along with

the depth of the LCS.

wup = 2*depth(LCS) / (depth(s1) + depth(s2)).

3.1.6 lch
The relatedness measure, as proposed by Leacock and Chodrow

[21], is defined as:

lch = -log (length / (2 * D)),

where, length refers to the shortest path between the two concepts

obtained by using node-counting and, D refers the maximum

depth of the taxonomy in which the concepts are found.

3.1.7 lesk
The lesk measure works by finding overlaps between the

definitions of the two concepts as provided by the WordNet

dictionary. The relatedness score is the sum of the squares of the

overlap lengths. It is based on an algorithm proposed in [22] for

word sense disambiguation. For example, a single word overlap

results in a score of 1. Two single-words overlap results in a score

of 2. A two word overlap (i.e., two consecutive words) results in a

score of 4. A three word overlap results in a score of 9.

3.1.8 hso
The hso heuristic, proposed by Hirst and St-Onge [23], is based

on finding the lexical chains linking the two word senses.

3.1.9 Gloss Vector (vec)
The Gloss Vector [24] measure works by forming second-order

co-occurrence vectors from the glosses or WordNet definitions of

concepts. The relatedness of the two concepts is determined as the

cosine of the angle between their gloss vectors. In order to get

around the data sparsity issues presented by extremely short

glosses, this measure augments the glosses of concepts with

glosses of adjacent concepts as defined by WordNet relations

head.

27

3.1.10 Gloss Vector – pairwise (vpair)
The pair-wise Gloss Vector measure is quite similar to the regular

Gloss Vector measure, except that it augments the glosses of

concepts with adjacent glosses. The regular Gloss Vector measure

first combines the adjacent glosses to form one large ‘super-gloss’

and creates a single vector corresponding to each of the two

concepts from the two ’super-glosses’. The pair-wise Gloss

Vector measure, on the other hand, forms separate vectors

corresponding to each of the adjacent glosses, i.e. it does not form

a single super gloss.

3.1.11 Distributional Similarity (distr)
Distributional Similarity refers to the similarity score of the

coordinating units based on the frequency with which the two

units appear together in a corpus. This heuristic is same as that

has been used in [3] and we have calculated it in the similar

manner for our dataset of coordinating structures. To compute the

value of this heuristic, we search for one of the root words of the

coordinating terms in the BNC using the Sketch Engine’s Word

Sketch facility [13] and note the rankings of the other head word

in the list of matches that is returned. We perform similar

procedure of rank-recording with the root word of the other

coordinating term and use higher of the two rankings as our

heuristic value.

3.2 Semi-supervised Learning
We are interested in automatic classification of the requirements

statements into potentially ambiguous (nocuous) and

unambiguous (innocuous) categories. The ML classification

algorithms can provide the foundation for the purpose of our

study. ML algorithms can be classified into two broad categories:

supervised and unsupervised learning. Supervised algorithms

make use of the guiding function that maps inputs to desired

outputs (also referred to as labels, because these are often

provided by human experts labeling the training set). On the other

hand, unsupervised learning models a set of inputs by grouping or

clustering common instances/patterns.

We have used semi-supervised learning (SSL), as suggested for

smaller training sets in [11], for our study. Using labels for

supervised study proves useful in the presence of large amount of

labeled data. But, statements with potentially ambiguous

coordinating structures are only a small fraction of large-sized

documents having few thousand statements. SSL is considered

halfway between supervised and unsupervised learning. Of the

various approaches for SSL described in [16], one of the

approaches that we found applicable to our study considers SSL

as supervised learning with additional information on distribution

of the training-set. In our evaluation study, we have worked with a

confidence function (for labels) to decide nocuous and innocuous

labels for our dataset of ambiguous requirements statements. The

input to the classifier is a feature vector corresponding to the

coordinating structure present in a statement. This feature vector

is composed of the computed values for the heuristics presented in

section 3.1. The values for similarity heuristics have been

obtained using the scripts available from the link to similarity

project of University of Minnesota.3. In addition to the confidence

function, we have obtained additional information for suitable

heuristics to be used for the study by making use of attribute

3 http://maraca.d.umn.edu/cgi-bin/similarity/similarity.cgi

evaluator. The feature or attribute evaluator assists in finding the

best heuristic contributing more towards training the classifier for

classifying nocuous and innocuous instances of ambiguity. We

have also performed a validation check for these more suited

features or attributes for classification. We have carried out

unsupervised clustering with features identified using evaluator to

verify that actually two (or, at the most three) clusters

corresponding to nocuous and innocuous instances of ambiguity

are obtained. If we get two or at the most three clusters, then it

indicates that features or attributes (heuristics in our case)

identified by the evaluator provide results closer to the labeled

data.

We have made use of Naïve Bayes, K-nearest neighbors (K-NN),

Random Tree and Random Forest algorithms in our study. Naïve

Bayes classifier is a probabilistic classifier based on applying

Bayes' theorem with strong (naive) independence assumption. It

assumes that the presence or absence of a particular feature is

unrelated to the presence or absence of any other feature, given

the class variable. Despite this assumption, Naive Bayes

classifiers can be trained very efficiently in a supervised learning

setting. K-NN is an instance-based classifier that learns by

relating the unlabeled to the labeled training set according to some

distance or similarity function. Random tree algorithm works by

constructing multiple decision trees randomly, where each node of

the tree records class distributions. Random forest algorithm is an

ensemble learning method for classification (and regression) that

operates by constructing a multitude of decision trees during

training and outputting the class that is the mode of the classes

output by individual trees.

3.3 Evaluation Metrics
For evaluation of our approach, we use three metrics: Precision,

Recall and F-Measure. Precision is the fraction of predicted

ambiguous statements that are relevant, while recall is the fraction

of ambiguous statements that are retrieved. F-measure is a

measure of a test's accuracy. It considers both the precision and

the recall of the test to compute the score. F-Measure score can be

interpreted as a weighted average of the precision and recall,

where it reaches its best value at 1 and worst score at 0.

Precision= True Positive / (True Positive + False Positive)

Recall = True Positive / (True Positive + False Negative)

F-Measure = 2 * (Precision * Recall) (Precision + Recall)

We have used cross validation technique with 10 folds as

recommended in [15] for our evaluation study. Cross-Validation

is a statistical method of evaluating and comparing learning

algorithms by dividing data into two segments: one used to learn

or train a model and the other used to validate the model. We have

used Weka4 tool for our study.

Of these three metrics, recall plays an important role in our study

as our goal is to identify the nocuous ambiguities from the

requirements specifications. Once automatically identified, these

ambiguous statements can be presented to the domain experts for

necessary corrections.

4 http://www.cs.waikato.ac.nz/ml/weka/

28

4. EVALUATION STUDY
We carried out our evaluation study on requirements corpus from

various domains like medical, academics, human-resource and

finance. We extracted the statements containing ‘and’ and ‘or’

from this corpus. Though the count of such statements is

proportionately less (nearly 20.8%), nevertheless, the ambiguity

concern posed by them needs to be addressed. We present below

the details of our dataset used for evaluation study.

4.1 Dataset and Methodology
We extracted 647 such statements from a corpus of 3100

statements having coordinating conjunctions ‘and’ and ‘or’. As

discussed in section 2.1, S-conjunctions are not nocuous in

nature; therefore we removed such statements with S-

conjunctions. S-conjunctions contributed to 26% of the total 647

statements having coordinating structures. Manual analysis of the

set of 647 statements indicated that searching for ‘and’ and ‘or’

has yielded in few statements having correlating conjunctions like

‘either-or’ and ‘both-and’; these constructs are also not

ambiguous. Therefore, we dropped nearly 36 such statements

from the set of 647 extracted statements. We also dropped

statements having phrases (158 statements) to either side of the

coordinating conjunctions. The reason for dropping such

statements is that the heuristics used in our study to identify

coordinating constituent are word-based similarity measures. The

presence of phrases was verified by the subjects involved in

annotation task during discussions and, the decision to drop any

such statement was taken unanimously. An example of such a

statement is:

(4) Such issues in requirements included the draft Web Form XYZ

and several other documents.

Here, ‘and’ conjoins two phrases, namely: ‘the draft Web Form

XYZ’ and ‘several other documents’. The idea of pre-processing

the dataset before proceeding with the study was to ensure that we

have instances of those coordinating structures that conjoin two

words (nouns, adjectives or verbs) and are potentially ambiguous.

The exercise of pre-processing the dataset resulted in 284

potentially ambiguous statements out of 647 statements.

We presented the set of these potentially ambiguous statements to

seven subjects for annotating the statements as having nocuous or

innocuous ambiguity. We chose subjects from varying

background to ensure unbiased labeling. Two of the subjects are

software professionals, one teaches Software Engineering and one

is an English linguist. Rest of the subjects includes master

students of Software Engineering. Since manual annotation is a

subjective matter, therefore it could be a potential threat to the

validity of our results. We mitigated this threat in two ways. First,

we explained nocuous and innocuous ambiguity to the subjects in

a meeting. We ensured that subjects are familiar and comfortable

with the annotation task by performing a validity check. We

requested the subjects to label a random sample of 50 statements

and, resolved the doubts and queries of the subjects in that

meeting. Performing peer review of these annotations indicated

that the subjects are comfortable with the annotation task. Second,

we used confidence function to decide final labels for the training

dataset.

Since we have limited set of labeled training set for learning, we

adopted semi-supervised method of learning and training the

classifier as discussed in section 3.2. We first designed a

confidence function to decide whether a statement should be

marked as innocuously ambiguous or as a nocuous statement. We

took the counts of nocuous and innocuous labels for each

statement and divided that count by the total number of subjects.

If the resultant value is above a threshold value, then we consider

the statement as potentially ambiguous (nocuous). We observed

that keeping threshold at 57% yields better results. Our approach

of final labeling is illustrated through table – 1:

Table 1. Identifying nocuous and innocuous labels

Coordinating

Structure
Judgments

Sample scenarios Nocuous Innocuous > 57%

preparation and

submission
4 3 YES

number and license 5 2 YES

terms and

conditions
2 5 NO

retrieve and view 0 7 NO

Our approach of labeling is similar to the one followed in [9].

However, we differ in our approach from them in two ways. The

authors in [9] have judged ambiguities on three criterions: high

attachment of modifier, low attachment of modifier and

ambiguous. On the contrary, our judging criterion is whether the

coordinating units can be considered as a constituent or not. If the

coordinating units cannot be considered as a constituent, then we

have an instance of nocuous ambiguity else it is an instance of

innocuous ambiguity. Second, we have further improved our

learning by identifying the heuristics that yield in better

classification and clustering. As discussed in section 3.2, we have

used attribute evaluator algorithm (Gain Ratio Attribute Evaluator

in our case) to identify the most contributing heuristics towards

clustering and classification of our dataset of requirements

statements. We found that ‘jcn’ and ‘lin’ heuristics are top

ranking features for classifying the requirements. These heuristics

are then followed by ‘wup’ and ‘res’. We also validated these

observations by performing unsupervised clustering (using the top

ranking heuristics). We evaluated the clusters using ‘Expectation-

Maximization’ (EM) and ‘Simple K-Means’. The results of

unsupervised clustering further strengthened our observations

regarding better heuristics to use for learning and training the

classifiers. Table 2 summarizes our observations of unsupervised

clustering:

Table 2. Unsupervised Clustering

Algorithm
Number of

Clusters

Degree of

Belongingness

EM 3
(42%, 45% and

10%)

Simple K-Means 2 (34% and 63%)

4.2 Results and Observations
We present the results and observations in terms of the research

questions we mentioned in the introduction section:

1. Which ML algorithm is best suited for identifying nocuous

coordination ambiguities?

- Naïve Bayes algorithm is best suited for identifying the

nocuous coordination ambiguities as indicated through

29

evaluation metrics presented in table 3. Since Naïve Bayes

algorithm gives us a recall of 90.4% and we are interested in

having higher recall, therefore it is best suited for our goal.

Naïve Bayes algorithm is based on the assumption that

presence or absence of a particular feature is unrelated to the

presence or absence of any other feature. The algorithm has

been proved to be quite efficient in supervised setting with

feature-independence assumption and also, even when the

features do not follow conditional independence assumption

[25]. Our observation that Naïve Bayes outperforms other

classifiers in our case because the heuristics that form feature

vector in our case are independent of each other..

Table 3. Classification Results using all Heuristics

except distr

Classifier Precision Recall F-Measure

Naïve Bayes 0.387 0.904 0.542

K-NN 0.469 0.51 0.488

Random Tree 0.486 0.519 0.502

Random

Forest
0.464 0.433 0.448

2. Which heuristics serve best to identify nocuous coordination

ambiguities?

- Our observations after executing attribute evaluator and

unsupervised clustering indicate that ‘jcn’ and ‘lin’ are best

suited to identify nocuous coordinating terms. The recall for

ambiguous (nocuous) requirements is quite high using ‘jcn’

alone and using ‘jcn’ and ‘lin’ together. The best recall is

achieved using ‘wup’, ‘jcn’ and ‘lin’ together as shown in

table 4. The results in table 4 correspond to Naïve Bayes

classifier only.

Table 4. Classification Results using combination of

Heuristics

Heuristic Precision Recall F-Measure

jcn 0.371 0.981 0.538

jcn-lin 0.37 0.981 0.538

wup-jcn-lin 0.376 0.99 0.545

hso-wup-jcn-

lin
0.374 0.971 0.537

3. Are distributional heuristics for identifying nocuous

coordination ambiguity instances helpful in context of

requirements specifications?

- We have discussed in detail in section 3 that distributional

similarity heuristics are quite useful for identifying nocuous

and innocuous coordination ambiguities for general purpose

like news and discourse analysis. However, for requirements

that pertain to a particular domain and are expressed in

technical language, referring to a general corpus will not

prove very beneficial. Our viewpoint is supported by our

evaluation study where we found that distributional heuristic

(measured over BNC) yields zero recall individually. It also

lowers the value of recall when combined with other

combinations of similarity heuristics. The corresponding

results with Naïve Bayes classifier are shown in table 5:

Table 5. Classification Results with Distributional

Similarity Heuristics

Classifier Precision Recall F-Measure

Distr 0 0 0

distr-all hesuristic 0.389 0.894 0.542

distr-jcn-lin 0.375 0.971 0.542

distr-wup-jcn-lin 0.374 0.971 0.542

5. CONCLUSION
In this paper, we have presented an approach towards identifying

nocuous coordination ambiguities in the requirements

specifications and we have presented results based on our

approach. Our evaluation study indicates that constituency test for

coordinating conjunctions serves as a relatively better tool for

designing nocuous coordination ambiguity classifier. Our

approach has resulted in 99% recall for nocuous coordination

ambiguity instances using the three similarity measures, namely

proposed by Wu and Palmer; Jiang and Conrath; and, Lin,

together. Such a high value of recall can relieve analysts from

reviewing the requirements specification documents repetitively

and carefully to find ambiguous statements with coordinating

conjunctions. Our approach can further assist analysts by

presenting him with the identified nocuous coordination

ambiguities, which is only a small subset of large requirements

document. The analyst can, then, correct and refine the identified

requirements statements without worrying for the complete

document. Our study also indicates that word-based similarity

measures are relatively effective than distributional similarity

measure for identifying nocuous coordination ambiguities in

context of requirements specifications. We further aim to test our

approach by using statements from a particular business domain

as a test-set to our trained Naïve Bayes classifier.

6. ACKNOWLEDGMENTS
We would like to thank Dr. Tulika Chandra, Faculty in English

Department at Shiv Nadar University for her help in our work on

coordination ambiguity.

7. REFERENCES
[1] Kamsties, E. 2001. Surfacing Ambiguity in Natural

Language Requirements. Doctoral thesis, Fraunhofer IESE,

Kaiserslauttern, Germany.

[2] Resnik, P. 1999. Semantic Similarity in a taxonomy: an

information-based measure and its application to problems of

ambiguity in natural language. Journal of Artificial

Intelligence, 11, 95-130.

[3] Chantree, F., Nuseibeh, B., Roeck, de, A. and Willis, A.

2006. Identifying Nocuous Ambiguities in Natural Language

Requirements. In Proceedings of IEEE Conference on

Requirements Engineering (Minnesota, USA, September 11-

15, 2006). RE’06. IEEE, 59-68.

[4] Wu, H. and Furugori, T. 1998. A Computational Method for

Resolving Ambiguities in Coordinate Structures. In

Proceedings of Pacific Asia Conference on Language,

30

Information and Computation (February 18-20, 1998).

PACLIC, 1998. 263-270.

[5] Goldberg, M. 1999. An unsupervised model for statistically

determining coordinate phrase attachment. In Proceedings of

37th Annual Meeting on Association for Computational

Linguistics (Maryland, USA, June 20-26, 1999). Association

for Computational Linguistics, 610-614.

[6] Banik, E. 2004. Semantics of VP coordination in LTAG. In

Proceedings of 7th International Workshop on Tree

Adjoining Grammar and Related Formalism (Vancouver,

Canada, May 20-22, 2004). 118-125.

[7] Brouwer, H., Fitz, H. and Hoeks, C.J.J. 2010. In Proceedings

of Workshop on Cognitive Modeling and Computational

Linguistics (Uppsala, Sweden, July 15, 2010). Association

for Computational Linguistics, 72-80.

[8] Chantree, F., Kilgarriff, A., Roeck, de, A. and Willis, A.

2005. Disambiguating Coordinations Using Word

Distribution Information. In Proceedings of International

Conference on Recent Advances in Natural Language

Processing (Borovets, Bulgaria, September 21-23, 2005).

RANLP-2005. 59-68.

[9] Yang, H., Willis, A., Roeck, de, A. and Nuseibeh, B. 2010.

Automatic Detection of Nocuous Coordination Ambiguities

in Natural Language Requirements. In Proceedings of 25th

IEEE/ACM International Conference on Automated

Software Engineering (Antwerp, Belgium, September 20-24,

2010). ASE-2010. ACM, 53-62.

[10] Carnie, A. 2013. Syntax: A Generative Introduction, 3rd

edition. Oxford: Wiley Blackwell.

[11] Kocaguneli, E., Cukic, B. and Lu, H. 2013. Predicting More

from Less: Synergies of Learning, In Proceedings of 2nd

Workshop on Realizing Artificial Intelligence Synergies in

Software Engineering (California, USA, May 25-26, 2013)

RAISE-2013, IEEE, 42-48.

[12] Kurohashi, N. and Nagao, M. 1994. A Syntactic Analysis

Method of Long Japanese Sentences Based on the Detection

of Conjunctive Structures. Computational Linguistics, 20(4),

507-534.

[13] Kilgaariff, A., Rychly, P., Smrz, P. and Tugwell, D. 2004.

The sketch engine. In Proceedings of 11th European

Association for Lexicography International Congress

(France, Europe, July 6-10, 2004) EURALEX-2004,

EURALEX.

[14] Wasow, T., Perfors. A. and Beaver, D. 2005. The Puzzle of

Ambiguity. In Orgun, O. and Sells, P. (eds) Morphology

and The Web of Grammar: Essays in Memory of Steven G.

Lapointe. CSLI Publications. 2005.

[15] Han, J., Kamber, M. and Pei, J. 2011. Data Mining:

Concepts and Techniques, 3rd edition, Morgan Kaufmann.

[16] Chapelle, O., Scholkopf, B. and Zien, A. 2006, Semi-

Supervised Learning, MIT Press.

[17] Patwardhan, S., Banerjee, S. and Pedersen, T. 2003. Using

measures of semantic relatedness for word sense

disambiguation. In Proceedings of the 4th International

Conference on Intelligent Text Processing and

Computational Linguistics (Mexico City, Mexico, February

16-22, 2003) CICLing 2003, 241-257.

[18] Jiang, J. and Conrath, D. 1997. Semantic Similarity based on

corpus statistics and lexical taxonomy. In Proceedings of

International Conference on Research in Computational

Linguistics (Taiwan).

[19] Lin, D. 1998. An information-theoretic definition of

similarity. In Proceedings of the 15th International

Conference on Machine Learning (Madison, WI) ICML-

1998.

[20] Wu, Z. and Palmer, M. 1994. Verb semantics and lexical

selection. In Proceedings of the 32nd Annual Meeting of the

Association for Computational Linguistics, (Las Cruces,

New Mexico).

[21] Leacock, C. and Chodorow, M. 1998. Combining local

context and WordNet sense similarity for word sense

identification. In WordNet, An Electronic Lexical Database.

The MIT Press.

[22] Lesk, M.E. 1986. Automatic sense disambiguation using

machine readable dictionaries: How to tell a pine cone from

an ice cream cone. In Proceedings of the SIGDOC

Conference (Toronto, Canada, June).

[23] Hirst, G. and St-Onge, D. 1998. Lexical Chains as

representations of context for the detection and correction of

malaproprisms. In Fellbaum, C. (ed.) WordNet, An

Electronic Lexical Database. The MIT Press, Cambridge,

MA, 305-332.

[24] Patwardhan, S. 2003. Incorporating dictionary and corpus

information into a context vector measure of semantic

relatedness. Master’s Thesis, University of Minnesota,

Duluth.

[25] Zhang, H. 2004. The Optimality of Naïve Bayes, In

Proceedings of the 17th International Florida Artificial

Intelligence Research Society Conference (Florida, USA,

May 17-19, 2004) FLAIRS-2004, AAAI Press.

31

