Machine Learning for Constituency Test of Coordinating
Conjunctions in Requirements Specifications

Richa Sharma Jaspreet Bhatia K.K. Biswas
School of IT School of IT Dept. of Computer Science and Engg.
Indian Institute of Technology, Delhi Indian Institute of Technology, Delhi Indian Institute of Technology, Delhi
India India India

sricha@gmail.com

ABSTRACT

Coordinating conjunctions have been a major source of ambiguity
in Natural Language statements and the concern has been a major
research focus in English Linguistics. Natural Language is also
the most common form of expressing the requirements for an
envisioned software system. These requirement documents also
suffer from similar concern of coordination ambiguity. Presence
of nocuous coordination ambiguity is a major concern for the
requirements analysts. In this paper, we explore the applicability
of constituency test for identifying coordinating conjunction
instances in the requirements documents. We show through our
study how identification of nocuous and innocuous coordinating
conjunctions can be improved using semantic similarity heuristics
and machine learning. Our study indicates that Naive Bayes
classifier outperforms other machine learning algorithms.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications —
tools; 1.2.7 [Artificial Intelligence]: Natural Language processing
— text analysis.

General Terms
Languages, Documentation, Experimentation

Keywords
Coordination Ambiguity, Conjunctions, Constituency Test,
Requirements Specifications, Machine Learning.

1. INTRODUCTION

Natural Language (NL) is the most common and the most
preferred form of expressing the requirements for an envisioned
software system. The fact that NL is understood by all the
stakeholders involved in software development and is quite
expressive makes NL a suitable choice for documenting the
requirements specifications. However, NL is inherently
ambiguous in nature. NL statements often lead to different
interpretations by different readers. Ambiguity concern is more
intensified in context of software development [1]. Requirements

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

RAISE’14, June 3, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2846-3/14/06...$15.00
http://dx.doi.org/10.1145/2593801.2593806

jaspreet2709@gmail.com

25

kkb@cse.iitd.ac.in

for the software correspond to a certain business domain and the
requirements specifications make extensive use of domain-
relevant terms. The software development team may not be
familiar and conversant with the business domain relevant terms.
Such ambiguities are often either overlooked or lead to more
misunderstandings while documenting and reviewing the
requirements specifications. These specifications are large in size,
thereby making the ambiguity problem in requirements more
intractable. We are motivated by this industry problem of
ambiguities in requirements specifications. We are interested in
training the machine learning classifier for automatic
identification of ambiguous requirements. Our focus in this paper
is to address the concern of coordination ambiguity arising due to
the use of ‘and’ and ‘or’. Coordination ambiguity arises due to
the complex syntactic structure linking together two or more
elements through coordinating conjunctions like and, or, but, for,
yet etc. Coordination ambiguity is known to be a pernicious
source of structural ambiguity in English [2]. Though not all
statements making use of coordinating conjunctions are
interpreted differently by different readers, yet a small portion of
coordinating statements can potentially be interpreted differently
and can be thought of as instances of nocuous ambiguity [3].
Coordination ambiguity concern has been researched extensively
in English linguistics by several authors like [4], [5], [6], [7] etc.
The authors have suggested algorithms and heuristics to identify
coordination ambiguities. Corpus-based distributional heuristics
have been used to detect coordination ambiguities for
requirements specifications too [8], [9].

In this paper, we present an approach for identifying and learning
the instances of nocuous coordinating ambiguity from
requirements corpus. We have isolated nocuous coordination
ambiguity instances from innocuous instances by making use of
constituency test for coordinating conjunctions. A constituent, in
syntactic analysis, refers to a group of words that function as a
single unit [10]. In our study, we have used word-based similarity
heuristics to perform the constituency test. The labeled instances
of nocuous and innocuous coordination ambiguities have been
used to learn the nocuous ones using (ML) classification
algorithms. The count of coordinating statements is relatively low
as compared to the size of requirements corpus. Our evaluation
study is, therefore, based on semi-supervised learning [11]. We
have explored following questions in our study:

1. Which ML algorithm is best suited for identifying nocuous

coordination ambiguities?

Which heuristics serve best to identify nocuous coordination
ambiguities?

3. Are distributional heuristics for identifying nocuous
coordination ambiguity instances helpful in context of
requirements specifications?

The rest of the paper is organized as follows: section 2 presents an
overview of coordination ambiguity; current state-of-art in
English linguistics and its application to NL requirements
specifications. Section 3 discusses our approach including the
heuristics used and an overview of the ML algorithms used. In
section 4, we present our evaluation study along with results and
observations. Section 5 finally presents the conclusion.

2. COORDINATION AMBIGUITY
2.1 Background

Ambiguity is a pervasive problem in NL. Coordinating structures
are widely acknowledged for syntactic ambiguity in NL
statements. Identifying the scope of coordinating structures and
associated modifying as well as modified attachments is a
challenge that has been addressed in various ways like lexical
similarity and structural parallelism [12], syntactic and lexical
cues [4], [6], distributional heuristics [8]. Semantic similarity
based heuristics for detecting coordination ambiguity has been
explored in [9]. We first present a brief overview of these
approaches towards resolving coordination ambiguity in English
Linguistics in the following sub-section followed by adoption of
some of these approaches for NL requirements.

2.2 Current State-of-art in English
Linguistics

Coordinating structures can occur between two or more nouns (or
phrases) (NP), verbs (or phrases) (VP), two adjectives (JJ) and
two sentences. Study of coordinating structures has shown that
these structures can be ambiguous due to the scope of attachment
of the coordinating terms or units with other structural units
present in a NL statement. For example:

(1) This role is a combination of three roles — Analyst, Regional
Manager and Reviewer.

In the above requirements statement, there can be following two
interpretations for coordinating terms — Manager and Reviewer:

1. (Regional (Manager and Reviewer))
2. ((Regional Manager) and Reviewer)

Therefore, the above statement can be referred to as an instance of
nocuous ambiguity as it can be interpreted differently by different
readers. However, coordination between sentences referred to as
S-conjunction is not ambiguous for it connects two independent
sentences. For example:

(2) If the Call Period has passed and there are no subsequent
Call Periods, then Call Option field will default to ‘No’

In this statement, coordinating conjunction, ‘and’ connects two
independent statements:

S1: the Call Period has passed
S2: there are no subsequent Call Periods

Therefore, statements of above type are not ambiguous. Research
efforts for disambiguating coordinating structures have focused on
the type (1) statements. Identifying potentially ambiguous
coordinating structures has been of interest to English linguists.
Wu et al. [4] have suggested linguistic and syntactic rules to
disambiguate the coordinating structures in a statement. They

26

have devised algorithms to automate the suggested rules. They
have been able to get an accuracy of 85.3% while disambiguating
(NP1 and NP2 + NP3) coordinating structure and, an accuracy of
87.7% with (adjective + NP1 and NP2) structure. Goldberg [5]
has shown the use of unsupervised statistical model for detecting
ambiguous coordination with noun phrases of the form (NP1
preposition NP2 and NP3). Her model performs with an accuracy
of 72% for un-annotated 1988 Wall Street Journal text. Resnik [2]
has explored syntactic structure of the form (NP1 and NP2 + N3).
Resnik has considered semantic similarity between the
coordinating terms in order to resolve the coordination ambiguity.
The approach has been shown to work with an accuracy of 72%.
Recently, Brouwer et al. [7] have explored the role of syntactic
and lexical probabilities specified in Probabilistic Context Free
Grammar to account for NP coordination preference. Banik [8]
has analyzed VP coordination and quantifier scope in Lexicalized
Tree Adjoining Grammar for simple sentences.

2.3 Related work for NL Requirements

The concern of coordination ambiguity in NL requirements has
been explored by Chantree et al. [3], [8] and Yang et al. [9].
Chantree et al. have investigated the role of distributional
similarity between the head words involved in coordination by
comparing the rankings provided by the Sketch Engine' [13],
which obtains the information about distribution of the headwords
from British National Corpus’> (BNC). They have suggested
Distributional Similarity, Collocation Frequency and other
heuristics — all based on the rankings provided by Sketch Engine,
which draws distribution information from BNC. The
distributional similarity and coordination match heuristics have
provided an accuracy of 75% for innocuous ambiguities in their
study. Yang et al. have studied the role of local collocation
frequency and the semantic similarity measure suggested by
Resnik [2] in addition to the heuristics suggested by Chantree et
al. in [3]. Yang et al. have worked on identifying nocuous
ambiguity using LogitBoost algorithm. Their study has shown a
precision of 75%.

3. OUR APPROACH

Ambiguity concern, as suggested in [1], becomes more intensified
in requirements documents owing to the presence of domain-
related context as well as the use of technical words that slightly
differ from routine conversational language. The syntactic and
lexical cues as suggested in earlier works on coordination
ambiguity also do not hold much relevance for requirements
specifications. We encountered various instances of coordinating
terms where distributional similarity heuristics as well as lexical
and syntactic cues were of no help. Instead, semantic similarity
owing to either domain-relevance or technical-relevance hinted
towards coordinating constituent. Let us consider one such
interesting example from our dataset:

(3) retrieve and edit

Here, the coordinating units or terms — ‘retrieve’ and ‘edit’ are not
found to be related according to BNC distribution frequency.
However, both of these coordinating terms are frequently used in
requirements specifications to specify how a particular entity
details should be updated. These are reported semantically similar

! http://www.sketchengine.co.uk

2 http://natcorp.ox.ac.uk

by the semantic similarity heuristics. Therefore, we have explored
semantic similarity based heuristics in our study.

Our approach is based on the considering coordination ambiguity
as a semantic property of NL statements. In [14], the author
discusses nature of ambiguity ranging from lexical to syntactic
and semantic challenges. The author argues that an expression is
ambiguous if it is associated with more than one region of the
meaning space. Applying the same theory to coordinating
structures, we can safely assume that a coordinating expression
will not lead to ambiguity if the coordinating units, i.e. the words
or phrases to the left and right of ‘and’ and ‘or’ convey more or
less the same meaning. Consequently, these units conjoined by
‘and’ and ‘or’ act as a constituent. In our approach, we have made
use of semantic similarity measures for coordinating terms to
identify coordinating constituents. We argue that higher the score
of similarity between coordinating units, the more are the chances
of these units of acting as a ‘constituent’; and, when the
coordinating units act as a constituent, the scope of the
coordinating terms becomes less ambiguous within the sentence.
Let us consider the corresponding statement to the example (3) to
understand this point:

The GUI should allow administrator to ‘retrieve and edit’

existing painting information.

All the subjects involved in the study marked the above statement
as unambiguous. The viewpoint of the subjects states:

(1) administrator only retrieves and edits, i.e. ‘retrieve and
edit’ act as constituent and, therefore the scope of both
retrieve and edit extends to the actor administrator.

(i) Similarly, the scope of actions: ‘retrieve’ and ‘edit’
extends to the object: ‘existing painting information’.

Our study is focused on finding the suitable similarity heuristics
that prove useful in identifying coordinating constituents. We
have considered coordinating structures of the form: (NP1 and/or
NP2), (VP1 and/or VP2) and (JJ1 and/or JJ2) in our study. We
present below a brief overview of the semantic similarity
heuristics that we have used.

3.1 Semantic Similarity Heuristics
3.1.1 Path Length (path)

Path Length heuristic is a simple node-counting scheme in
hierarchical dictionary structure. We have used the WordNet
implementation of this heuristic as available in
Wordnet::Similarity package [17].

The similarity score is inversely proportional to the number of
nodes along the shortest path between the concepts. The shortest
possible path occurs when the two concepts are the same and, the
corresponding path length is 1 in that case. Consequently, the
maximum similarity value is 1.

3.1.2 jen

The relatedness measure, suggested by Jiang and Conrath [18], is
defined as:

jen=1/jcn_distance,

where, IC(conceptl) + IC(concept2) - 2 *
IC(LCS)

jen_distance =

27

Here, IC refers to the information content of the coordinating
terms and LCS refers to the Least Common Subsumer of the
coordinating terms.

3.1.3 lin

The similarity heuristic, as proposed by Lin [19], defines the score
of relatedness as:

lin =2 *IC(LCS) / (IC(conceptl) + IC(concept2)),

where, IC is the information content of the coordinating terms and
LCS is the Least Common Subsumer. The relatedness value
provided by this heuristic is always greater-than or equal-to zero
and less-than or equal-to one.

3.1.4 res

For Resnik measure [2], the relatedness value is equal to the
information content (IC) of the Least Common Subsumer (LCS)
of the two coordinating units, i.e. the most informative subsumer,
Le:

res =1C (LCS)

3.1.5 wup

The heuristic, proposed by Wu and Palmer [20], measures the
relatedness score of two terms by considering the depths of the
two concepts (sl and s2) in the WordNet taxonomies, along with
the depth of the LCS.

wup = 2*depth(LCS) / (depth(s1) + depth(s2)).

3.1.6 Ich

The relatedness measure, as proposed by Leacock and Chodrow
[21], is defined as:

lch = -log (length / (2 * D)),

where, length refers to the shortest path between the two concepts
obtained by using node-counting and, D refers the maximum
depth of the taxonomy in which the concepts are found.

3.1.7 lesk

The lesk measure works by finding overlaps between the
definitions of the two concepts as provided by the WordNet
dictionary. The relatedness score is the sum of the squares of the
overlap lengths. It is based on an algorithm proposed in [22] for
word sense disambiguation. For example, a single word overlap
results in a score of 1. Two single-words overlap results in a score
of 2. A two word overlap (i.e., two consecutive words) results in a
score of 4. A three word overlap results in a score of 9.

3.1.8 hso
The hso heuristic, proposed by Hirst and St-Onge [23], is based
on finding the lexical chains linking the two word senses.

3.1.9 Gloss Vector (vec)

The Gloss Vector [24] measure works by forming second-order
co-occurrence vectors from the glosses or WordNet definitions of
concepts. The relatedness of the two concepts is determined as the
cosine of the angle between their gloss vectors. In order to get
around the data sparsity issues presented by extremely short
glosses, this measure augments the glosses of concepts with
glosses of adjacent concepts as defined by WordNet relations
head.

3.1.10 Gloss Vector — pairwise (vpair)

The pair-wise Gloss Vector measure is quite similar to the regular
Gloss Vector measure, except that it augments the glosses of
concepts with adjacent glosses. The regular Gloss Vector measure
first combines the adjacent glosses to form one large ‘super-gloss’
and creates a single vector corresponding to each of the two
concepts from the two ’super-glosses’. The pair-wise Gloss
Vector measure, on the other hand, forms separate vectors
corresponding to each of the adjacent glosses, i.e. it does not form
a single super gloss.

3.1.11 Distributional Similarity (distr)

Distributional Similarity refers to the similarity score of the
coordinating units based on the frequency with which the two
units appear together in a corpus. This heuristic is same as that
has been used in [3] and we have calculated it in the similar
manner for our dataset of coordinating structures. To compute the
value of this heuristic, we search for one of the root words of the
coordinating terms in the BNC using the Sketch Engine’s Word
Sketch facility [13] and note the rankings of the other head word
in the list of matches that is returned. We perform similar
procedure of rank-recording with the root word of the other
coordinating term and use higher of the two rankings as our
heuristic value.

3.2 Semi-supervised Learning

We are interested in automatic classification of the requirements
statements into potentially ambiguous (nocuous) and
unambiguous (innocuous) categories. The ML classification
algorithms can provide the foundation for the purpose of our
study. ML algorithms can be classified into two broad categories:
supervised and unsupervised learning. Supervised algorithms
make use of the guiding function that maps inputs to desired
outputs (also referred to as labels, because these are often
provided by human experts labeling the training set). On the other
hand, unsupervised learning models a set of inputs by grouping or
clustering common instances/patterns.

We have used semi-supervised learning (SSL), as suggested for
smaller training sets in [11], for our study. Using labels for
supervised study proves useful in the presence of large amount of
labeled data. But, statements with potentially ambiguous
coordinating structures are only a small fraction of large-sized
documents having few thousand statements. SSL is considered
halfway between supervised and unsupervised learning. Of the
various approaches for SSL described in [16], one of the
approaches that we found applicable to our study considers SSL
as supervised learning with additional information on distribution
of the training-set. In our evaluation study, we have worked with a
confidence function (for labels) to decide nocuous and innocuous
labels for our dataset of ambiguous requirements statements. The
input to the classifier is a feature vector corresponding to the
coordinating structure present in a statement. This feature vector
is composed of the computed values for the heuristics presented in
section 3.1. The values for similarity heuristics have been
obtained using the scripts available from the link to similarity
project of University of Minnesota.’. In addition to the confidence
function, we have obtained additional information for suitable
heuristics to be used for the study by making use of attribute

3 http://maraca.d.umn.edu/cgi-bin/similarity/similarity.cgi

28

evaluator. The feature or attribute evaluator assists in finding the
best heuristic contributing more towards training the classifier for
classifying nocuous and innocuous instances of ambiguity. We
have also performed a validation check for these more suited
features or attributes for classification. We have carried out
unsupervised clustering with features identified using evaluator to
verify that actually two (or, at the most three) -clusters
corresponding to nocuous and innocuous instances of ambiguity
are obtained. If we get two or at the most three clusters, then it
indicates that features or attributes (heuristics in our case)
identified by the evaluator provide results closer to the labeled
data.

We have made use of Naive Bayes, K-nearest neighbors (K-NN),
Random Tree and Random Forest algorithms in our study. Naive
Bayes classifier is a probabilistic classifier based on applying
Bayes' theorem with strong (naive) independence assumption. It
assumes that the presence or absence of a particular feature is
unrelated to the presence or absence of any other feature, given
the class variable. Despite this assumption, Naive Bayes
classifiers can be trained very efficiently in a supervised learning
setting. K-NN is an instance-based classifier that learns by
relating the unlabeled to the labeled training set according to some
distance or similarity function. Random tree algorithm works by
constructing multiple decision trees randomly, where each node of
the tree records class distributions. Random forest algorithm is an
ensemble learning method for classification (and regression) that
operates by constructing a multitude of decision trees during
training and outputting the class that is the mode of the classes
output by individual trees.

3.3 Evaluation Metrics

For evaluation of our approach, we use three metrics: Precision,
Recall and F-Measure. Precision is the fraction of predicted
ambiguous statements that are relevant, while recall is the fraction
of ambiguous statements that are retrieved. F-measure is a
measure of a test's accuracy. It considers both the precision and
the recall of the test to compute the score. F-Measure score can be
interpreted as a weighted average of the precision and recall,
where it reaches its best value at 1 and worst score at 0.

Precision= True Positive / (True Positive + False Positive)
Recall = True Positive / (True Positive + False Negative)
F-Measure = 2 * (Precision * Recall) (Precision + Recall)

We have used cross validation technique with 10 folds as
recommended in [15] for our evaluation study. Cross-Validation
is a statistical method of evaluating and comparing learning
algorithms by dividing data into two segments: one used to learn
or train a model and the other used to validate the model. We have
used Weka* tool for our study.

Of these three metrics, recall plays an important role in our study
as our goal is to identify the nocuous ambiguities from the
requirements specifications. Once automatically identified, these
ambiguous statements can be presented to the domain experts for
necessary corrections.

* http://www.cs.waikato.ac.nz/ml/weka/

4. EVALUATION STUDY

We carried out our evaluation study on requirements corpus from
various domains like medical, academics, human-resource and
finance. We extracted the statements containing ‘and’ and ‘or’
from this corpus. Though the count of such statements is
proportionately less (nearly 20.8%), nevertheless, the ambiguity
concern posed by them needs to be addressed. We present below
the details of our dataset used for evaluation study.

4.1 Dataset and Methodology

We extracted 647 such statements from a corpus of 3100
statements having coordinating conjunctions ‘and’ and ‘or’. As
discussed in section 2.1, S-conjunctions are not nocuous in
nature; therefore we removed such statements with S-
conjunctions. S-conjunctions contributed to 26% of the total 647
statements having coordinating structures. Manual analysis of the
set of 647 statements indicated that searching for ‘and’ and ‘or’
has yielded in few statements having correlating conjunctions like
‘either-or’ and ‘both-and’; these constructs are also not
ambiguous. Therefore, we dropped nearly 36 such statements
from the set of 647 extracted statements. We also dropped
statements having phrases (158 statements) to either side of the
coordinating conjunctions. The reason for dropping such
statements is that the heuristics used in our study to identify
coordinating constituent are word-based similarity measures. The
presence of phrases was verified by the subjects involved in
annotation task during discussions and, the decision to drop any
such statement was taken unanimously. An example of such a
statement is:

(4) Such issues in requirements included the draft Web Form XYZ
and several other documents.

Here, ‘and’ conjoins two phrases, namely: ‘the draft Web Form
XYZ’ and ‘several other documents’. The idea of pre-processing
the dataset before proceeding with the study was to ensure that we
have instances of those coordinating structures that conjoin two
words (nouns, adjectives or verbs) and are potentially ambiguous.
The exercise of pre-processing the dataset resulted in 284
potentially ambiguous statements out of 647 statements.

We presented the set of these potentially ambiguous statements to
seven subjects for annotating the statements as having nocuous or
innocuous ambiguity. We chose subjects from varying
background to ensure unbiased labeling. Two of the subjects are
software professionals, one teaches Software Engineering and one
is an English linguist. Rest of the subjects includes master
students of Software Engineering. Since manual annotation is a
subjective matter, therefore it could be a potential threat to the
validity of our results. We mitigated this threat in two ways. First,
we explained nocuous and innocuous ambiguity to the subjects in
a meeting. We ensured that subjects are familiar and comfortable
with the annotation task by performing a validity check. We
requested the subjects to label a random sample of 50 statements
and, resolved the doubts and queries of the subjects in that
meeting. Performing peer review of these annotations indicated
that the subjects are comfortable with the annotation task. Second,
we used confidence function to decide final labels for the training
dataset.

Since we have limited set of labeled training set for learning, we
adopted semi-supervised method of learning and training the
classifier as discussed in section 3.2. We first designed a

29

confidence function to decide whether a statement should be
marked as innocuously ambiguous or as a nocuous statement. We
took the counts of nocuous and innocuous labels for each
statement and divided that count by the total number of subjects.
If the resultant value is above a threshold value, then we consider
the statement as potentially ambiguous (nocuous). We observed
that keeping threshold at 57% yields better results. Our approach
of final labeling is illustrated through table — 1:

Table 1. Identifying nocuous and innocuous labels

Coordinating
Structure Judgments
Sample scenarios Nocuous Innocuous >57%
preparation and 4 3 YES
submission
number and license 5 2 YES
ferms and 2 5 NO
conditions
retrieve and view 0 7 NO

Our approach of labeling is similar to the one followed in [9].
However, we differ in our approach from them in two ways. The
authors in [9] have judged ambiguities on three criterions: high
attachment of modifier, low attachment of modifier and
ambiguous. On the contrary, our judging criterion is whether the
coordinating units can be considered as a constituent or not. If the
coordinating units cannot be considered as a constituent, then we
have an instance of nocuous ambiguity else it is an instance of
innocuous ambiguity. Second, we have further improved our
learning by identifying the heuristics that yield in better
classification and clustering. As discussed in section 3.2, we have
used attribute evaluator algorithm (Gain Ratio Attribute Evaluator
in our case) to identify the most contributing heuristics towards
clustering and classification of our dataset of requirements
statements. We found that ‘jen’ and ‘lin’ heuristics are top
ranking features for classifying the requirements. These heuristics
are then followed by ‘wup’ and ‘res’. We also validated these
observations by performing unsupervised clustering (using the top
ranking heuristics). We evaluated the clusters using ‘Expectation-
Maximization’ (EM) and ‘Simple K-Means’. The results of
unsupervised clustering further strengthened our observations
regarding better heuristics to use for learning and training the
classifiers. Table 2 summarizes our observations of unsupervised
clustering:

Table 2. Unsupervised Clustering

. Number of Degree of
Algorithm Clusters Belongingness
(42%, 45% and
EM 3 10%)
Simple K-Means 2 (34% and 63%)

4.2 Results and Observations
We present the results and observations in terms of the research
questions we mentioned in the introduction section:

1. Which ML algorithm is best suited for identifying nocuous
coordination ambiguities?

- Naive Bayes algorithm is best suited for identifying the
nocuous coordination ambiguities as indicated through

evaluation metrics presented in table 3. Since Naive Bayes
algorithm gives us a recall of 90.4% and we are interested in
having higher recall, therefore it is best suited for our goal.
Naive Bayes algorithm is based on the assumption that
presence or absence of a particular feature is unrelated to the
presence or absence of any other feature. The algorithm has
been proved to be quite efficient in supervised setting with
feature-independence assumption and also, even when the
features do not follow conditional independence assumption
[25]. Our observation that Naive Bayes outperforms other
classifiers in our case because the heuristics that form feature
vector in our case are independent of each other..

Table 3. Classification Results using all Heuristics

except distr

Classifier Precision Recall F-Measure
Naive Bayes 0.387 0.904 0.542
K-NN 0.469 0.51 0.488
Random Tree 0.486 0.519 0.502
R;é‘i‘;“ 0.464 0.433 0.448

Which heuristics serve best to identify nocuous coordination
ambiguities?

Our observations after executing attribute evaluator and
unsupervised clustering indicate that ‘jen’ and ‘lin’ are best
suited to identify nocuous coordinating terms. The recall for
ambiguous (nocuous) requirements is quite high using ‘jcn’
alone and using ‘jen’ and ‘lin’ together. The best recall is
achieved using ‘wup’, ‘jen’ and ‘lin’ together as shown in
table 4. The results in table 4 correspond to Naive Bayes
classifier only.

Table 4. Classification Results using combination of

Heuristics
Heuristic Precision Recall F-Measure
jen 0.371 0.981 0.538
jen-lin 0.37 0.981 0.538
wup-jen-lin 0.376 0.99 0.545
hso-wup-jen- 0.374 0.971 0.537
lin
Are distributional heuristics for identifying nocuous

coordination ambiguity instances helpful in context of
requirements specifications?

We have discussed in detail in section 3 that distributional
similarity heuristics are quite useful for identifying nocuous
and innocuous coordination ambiguities for general purpose
like news and discourse analysis. However, for requirements
that pertain to a particular domain and are expressed in
technical language, referring to a general corpus will not
prove very beneficial. Our viewpoint is supported by our
evaluation study where we found that distributional heuristic
(measured over BNC) yields zero recall individually. It also
lowers the value of recall when combined with other

30

combinations of similarity heuristics. The corresponding
results with Naive Bayes classifier are shown in table 5:

Table 5. Classification Results with Distributional
Similarity Heuristics

Classifier Precision Recall F-Measure
Distr 0 0 0
distr-all hesuristic 0.389 0.894 0.542
distr-jen-lin 0.375 0.971 0.542
distr-wup-jcn-lin 0.374 0.971 0.542

5. CONCLUSION

In this paper, we have presented an approach towards identifying
nocuous coordination ambiguities in the requirements
specifications and we have presented results based on our
approach. Our evaluation study indicates that constituency test for
coordinating conjunctions serves as a relatively better tool for
designing nocuous coordination ambiguity classifier. Our
approach has resulted in 99% recall for nocuous coordination
ambiguity instances using the three similarity measures, namely
proposed by Wu and Palmer; Jiang and Conrath; and, Lin,
together. Such a high value of recall can relieve analysts from
reviewing the requirements specification documents repetitively
and carefully to find ambiguous statements with coordinating
conjunctions. Our approach can further assist analysts by
presenting him with the identified nocuous coordination
ambiguities, which is only a small subset of large requirements
document. The analyst can, then, correct and refine the identified
requirements statements without worrying for the complete
document. Our study also indicates that word-based similarity
measures are relatively effective than distributional similarity
measure for identifying nocuous coordination ambiguities in
context of requirements specifications. We further aim to test our
approach by using statements from a particular business domain
as a test-set to our trained Naive Bayes classifier.

6. ACKNOWLEDGMENTS

We would like to thank Dr. Tulika Chandra, Faculty in English
Department at Shiv Nadar University for her help in our work on
coordination ambiguity.

7. REFERENCES

[1] Kamsties, E. 2001. Surfacing Ambiguity in Natural
Language Requirements. Doctoral thesis, Fraunhofer IESE,
Kaiserslauttern, Germany.

[2] Resnik, P. 1999. Semantic Similarity in a taxonomy: an
information-based measure and its application to problems of
ambiguity in natural language. Journal of Artificial

Intelligence, 11, 95-130.

Chantree, F., Nuseibeh, B., Roeck, de, A. and Willis, A.
2006. Identifying Nocuous Ambiguities in Natural Language
Requirements. In Proceedings of IEEE Conference on
Requirements Engineering (Minnesota, USA, September 11-
15, 2006). RE’06. IEEE, 59-68.

Wu, H. and Furugori, T. 1998. A Computational Method for
Resolving Ambiguities in Coordinate Structures. In
Proceedings of Pacific Asia Conference on Language,

(3]

(4]

Information and Computation (February 18-20, 1998).
PACLIC, 1998. 263-270.

Goldberg, M. 1999. An unsupervised model for statistically

determining coordinate phrase attachment. In Proceedings of

37" Annual Meeting on Association for Computational
Linguistics (Maryland, USA, June 20-26, 1999). Association
for Computational Linguistics, 610-614.

Banik, E. 2004. Semantics of VP coordination in LTAG. In
Proceedings of 7" International Workshop on Tree

Adjoining Grammar and Related Formalism (Vancouver,
Canada, May 20-22, 2004). 118-125.

Brouwer, H., Fitz, H. and Hoeks, C.J.J. 2010. In Proceedings
of Workshop on Cognitive Modeling and Computational
Linguistics (Uppsala, Sweden, July 15, 2010). Association
for Computational Linguistics, 72-80.

Chantree, F., Kilgarriff, A., Roeck, de, A. and Willis, A.
2005. Disambiguating Coordinations Using Word
Distribution Information. In Proceedings of International
Conference on Recent Advances in Natural Language
Processing (Borovets, Bulgaria, September 21-23, 2005).
RANLP-2005. 59-68.

Yang, H., Willis, A., Roeck, de, A. and Nuseibeh, B. 2010.
Automatic Detection of Nocuous Coordination Ambiguities
in Natural Language Requirements. In Proceedings of 25™
IEEE/ACM International Conference on Automated
Software Engineering (Antwerp, Belgium, September 20-24,
2010). ASE-2010. ACM, 53-62.

[10] Carnie, A. 2013. Syntax: A Generative Introduction, 3
edition. Oxford: Wiley Blackwell.

[11] Kocaguneli, E., Cukic, B. and Lu, H. 2013. Predicting More
from Less: Synergies of Learning, In Proceedings of 2"
Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering (California, USA, May 25-26, 2013)
RAISE-2013, IEEE, 42-48.

[12] Kurohashi, N. and Nagao, M. 1994. A Syntactic Analysis
Method of Long Japanese Sentences Based on the Detection
of Conjunctive Structures. Computational Linguistics, 20(4),
507-534.

[13] Kilgaariff, A., Rychly, P., Smrz, P. and Tugwell, D. 2004.
The sketch engine. In Proceedings of 11" European
Association for Lexicography International Congress
(France, Europe, July 6-10, 2004) EURALEX-2004,
EURALEX.

[14] Wasow, T., Perfors. A. and Beaver, D. 2005. The Puzzle of
Ambiguity. In Orgun, O. and Sells, P. (eds) Morphology
and The Web of Grammar: Essays in Memory of Steven G.
Lapointe. CSLI Publications. 2005.

(6]

(7]

(8]

(9]

31

[15] Han, J., Kamber, M. and Pei, J. 2011. Data Mining:
Concepts and Techniques, 3™ edition, Morgan Kaufmann.

[16] Chapelle, O., Scholkopf, B. and Zien, A. 2006, Semi-
Supervised Learning, MIT Press.

[17] Patwardhan, S., Banerjee, S. and Pedersen, T. 2003. Using
measures of semantic relatedness for word sense
disambiguation. In Proceedings of the 4™ International
Conference on Intelligent Text Processing and
Computational Linguistics (Mexico City, Mexico, February
16-22,2003) CICLing 2003, 241-257.

[18] Jiang, J. and Conrath, D. 1997. Semantic Similarity based on
corpus statistics and lexical taxonomy. In Proceedings of
International Conference on Research in Computational
Linguistics (Taiwan).

[19] Lin, D. 1998. An information-theoretic definition of
similarity. In Proceedings of the 15" International
Conference on Machine Learning (Madison, WI) ICML-
1998.

[20] Wu, Z. and Palmer, M. 1994. Verb semantics and lexical
selection. In Proceedings of the 32" Annual Meeting of the
Association for Computational Linguistics, (Las Cruces,
New Mexico).

[21] Leacock, C. and Chodorow, M. 1998. Combining local
context and WordNet sense similarity for word sense
identification. In WordNet, An Electronic Lexical Database.
The MIT Press.

[22] Lesk, M.E. 1986. Automatic sense disambiguation using
machine readable dictionaries: How to tell a pine cone from
an ice cream cone. In Proceedings of the SIGDOC
Conference (Toronto, Canada, June).

[23] Hirst, G. and St-Onge, D. 1998. Lexical Chains as
representations of context for the detection and correction of
malaproprisms. In Fellbaum, C. (ed.) WordNet, An
Electronic Lexical Database. The MIT Press, Cambridge,
MA, 305-332.

[24] Patwardhan, S. 2003. Incorporating dictionary and corpus
information into a context vector measure of semantic
relatedness. Master’s Thesis, University of Minnesota,
Duluth.

[25] Zhang, H. 2004. The Optimality of Naive Bayes, In
Proceedings of the 17™ International Florida Artificial

Intelligence Research Society Conference (Florida, USA,
May 17-19, 2004) FLAIRS-2004, AAAI Press.

