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ABSTRACT 

Coordinating conjunctions have been a major source of ambiguity 

in Natural Language statements and the concern has been a major 

research focus in English Linguistics. Natural Language is also 

the most common form of expressing the requirements for an 

envisioned software system. These requirement documents also 

suffer from similar concern of coordination ambiguity. Presence 

of nocuous coordination ambiguity is a major concern for the 

requirements analysts. In this paper, we explore the applicability 

of constituency test for identifying coordinating conjunction 

instances in the requirements documents.  We show through our 

study how identification of nocuous and innocuous coordinating 

conjunctions can be improved using semantic similarity heuristics 

and machine learning.  Our study indicates that Naïve Bayes 

classifier outperforms other machine learning algorithms. 

Categories and Subject Descriptors 

D.2.1 [Software Engineering]: Requirements/Specifications – 

tools; I.2.7 [Artificial Intelligence]: Natural Language processing 

– text analysis. 

General Terms 

Languages, Documentation, Experimentation 

Keywords 

Coordination Ambiguity, Conjunctions, Constituency Test, 

Requirements Specifications, Machine Learning. 

1. INTRODUCTION 
Natural Language (NL) is the most common and the most 

preferred form of expressing the requirements for an envisioned 

software system. The fact that NL is understood by all the 

stakeholders involved in software development and is quite 

expressive makes NL a suitable choice for documenting the 

requirements specifications. However, NL is inherently 

ambiguous in nature. NL statements often lead to different 

interpretations by different readers. Ambiguity concern is more 

intensified in context of software development [1]. Requirements 

for the software correspond to a certain business domain and the 

requirements specifications make extensive use of domain-

relevant terms. The software development team may not be 

familiar and conversant with the business domain relevant terms. 

Such ambiguities are often either overlooked or lead to more 

misunderstandings while documenting and reviewing the 

requirements specifications. These specifications are large in size, 

thereby making the ambiguity problem in requirements more 

intractable. We are motivated by this industry problem of 

ambiguities in requirements specifications. We are interested in 

training the machine learning classifier for automatic 

identification of ambiguous requirements. Our focus in this paper 

is to address the concern of coordination ambiguity arising due to 

the use of ‘and’ and ‘or’. Coordination ambiguity arises due to 

the complex syntactic structure linking together two or more 

elements through coordinating conjunctions like and, or, but, for, 

yet etc. Coordination ambiguity is known to be a pernicious 

source of structural ambiguity in English [2]. Though not all 

statements making use of coordinating conjunctions are 

interpreted differently by different readers, yet a small portion of 

coordinating statements can potentially be interpreted differently 

and can be thought of as instances of nocuous ambiguity [3]. 

Coordination ambiguity concern has been researched extensively 

in English linguistics by several authors like [4], [5], [6], [7] etc. 

The authors have suggested algorithms and heuristics to identify 

coordination ambiguities. Corpus-based distributional heuristics 

have been used to detect coordination ambiguities for 

requirements specifications too [8], [9]. 

In this paper, we present an approach for identifying and learning 

the instances of nocuous coordinating ambiguity from 

requirements corpus. We have isolated nocuous coordination 

ambiguity instances from innocuous instances by making use of 

constituency test for coordinating conjunctions. A constituent, in 

syntactic analysis, refers to a group of words that function as a 

single unit [10]. In our study, we have used word-based similarity 

heuristics to perform the constituency test. The labeled instances 

of nocuous and innocuous coordination ambiguities have been 

used to learn the nocuous ones using (ML) classification 

algorithms. The count of coordinating statements is relatively low 

as compared to the size of requirements corpus. Our evaluation 

study is, therefore, based on semi-supervised learning [11]. We 

have explored following questions in our study: 

1. Which ML algorithm is best suited for identifying nocuous   

coordination ambiguities? 

2. Which heuristics serve best to identify nocuous coordination 

ambiguities? 
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3. Are distributional heuristics for identifying nocuous 

coordination ambiguity instances helpful in context of 

requirements specifications? 

The rest of the paper is organized as follows: section 2 presents an 

overview of coordination ambiguity; current state-of-art in 

English linguistics and its application to NL requirements 

specifications. Section 3 discusses our approach including the 

heuristics used and an overview of the ML algorithms used. In 

section 4, we present our evaluation study along with results and 

observations. Section 5 finally presents the conclusion.  

2. COORDINATION AMBIGUITY 

2.1 Background 
Ambiguity is a pervasive problem in NL. Coordinating structures 

are widely acknowledged for syntactic ambiguity in NL 

statements. Identifying the scope of coordinating structures and 

associated modifying as well as modified attachments is a 

challenge that has been addressed in various ways like lexical 

similarity and structural parallelism [12], syntactic and lexical 

cues [4], [6], distributional heuristics [8]. Semantic similarity 

based heuristics for detecting coordination ambiguity has been 

explored in [9]. We first present a brief overview of these 

approaches towards resolving coordination ambiguity in English 

Linguistics in the following sub-section followed by adoption of 

some of these approaches for NL requirements. 

2.2 Current State-of-art in English 

Linguistics 
Coordinating structures can occur between two or more nouns (or 

phrases) (NP), verbs (or phrases) (VP), two adjectives (JJ) and 

two sentences. Study of coordinating structures has shown that 

these structures can be ambiguous due to the scope of attachment 

of the coordinating terms or units with other structural units 

present in a NL statement. For example: 

(1) This role is a combination of three roles – Analyst, Regional 

Manager and Reviewer. 

In the above requirements statement, there can be following two 

interpretations for coordinating terms – Manager and Reviewer: 

1. (Regional (Manager and Reviewer)) 

2. ((Regional Manager) and Reviewer) 

Therefore, the above statement can be referred to as an instance of 

nocuous ambiguity as it can be interpreted differently by different 

readers. However, coordination between sentences referred to as 

S-conjunction is not ambiguous for it connects two independent 

sentences. For example: 

(2) If the Call Period has passed and there are no subsequent 

Call Periods, then Call Option field will default to ‘No’ 

In this statement, coordinating conjunction, ‘and’ connects two 

independent statements: 

S1: the Call Period has passed 

S2: there are no subsequent Call Periods 

Therefore, statements of above type are not ambiguous. Research 

efforts for disambiguating coordinating structures have focused on 

the type (1) statements. Identifying potentially ambiguous 

coordinating structures has been of interest to English linguists. 

Wu et al. [4] have suggested linguistic and syntactic rules to 

disambiguate the coordinating structures in a statement. They 

have devised algorithms to automate the suggested rules. They 

have been able to get an accuracy of 85.3% while disambiguating 

(NP1 and NP2 + NP3) coordinating structure and, an accuracy of 

87.7% with (adjective + NP1 and NP2) structure. Goldberg [5] 

has shown the use of unsupervised statistical model for detecting 

ambiguous coordination with noun phrases of the form (NP1 

preposition NP2 and NP3). Her model performs with an accuracy 

of 72% for un-annotated 1988 Wall Street Journal text. Resnik [2] 

has explored syntactic structure of the form (NP1 and NP2 + N3). 

Resnik has considered semantic similarity between the 

coordinating terms in order to resolve the coordination ambiguity. 

The approach has been shown to work with an accuracy of 72%. 

Recently, Brouwer et al. [7] have explored the role of syntactic 

and lexical probabilities specified in Probabilistic Context Free 

Grammar to account for NP coordination preference. Banik [8] 

has analyzed VP coordination and quantifier scope in Lexicalized 

Tree Adjoining Grammar for simple sentences. 

2.3 Related work for NL Requirements 
The concern of coordination ambiguity in NL requirements has 

been explored by Chantree et al. [3], [8] and Yang et al. [9]. 

Chantree et al. have investigated the role of distributional 

similarity between the head words involved in coordination by 

comparing the rankings provided by the Sketch Engine1 [13], 

which obtains the information about distribution of the headwords 

from British National Corpus2 (BNC). They have suggested 

Distributional Similarity, Collocation Frequency and other 

heuristics – all based on the rankings provided by Sketch Engine, 

which draws distribution information from BNC. The 

distributional similarity and coordination match heuristics have 

provided an accuracy of 75% for innocuous ambiguities in their 

study. Yang et al. have studied the role of local collocation 

frequency and the semantic similarity measure suggested by 

Resnik [2] in addition to the heuristics suggested by Chantree et 

al. in [3]. Yang et al. have worked on identifying nocuous 

ambiguity using LogitBoost algorithm. Their study has shown a 

precision of 75%. 

3. OUR APPROACH 
Ambiguity concern, as suggested in [1], becomes more intensified 

in requirements documents owing to the presence of domain-

related context as well as the use of technical words that slightly 

differ from routine conversational language. The syntactic and 

lexical cues as suggested in earlier works on coordination 

ambiguity also do not hold much relevance for requirements 

specifications. We encountered various instances of coordinating 

terms where distributional similarity heuristics as well as lexical 

and syntactic cues were of no help. Instead, semantic similarity 

owing to either domain-relevance or technical-relevance hinted 

towards coordinating constituent. Let us consider one such 

interesting example from our dataset: 

(3) retrieve and edit  

Here, the coordinating units or terms – ‘retrieve’ and ‘edit’ are not 

found to be related according to BNC distribution frequency. 

However, both of these coordinating terms are frequently used in 

requirements specifications to specify how a particular entity 

details should be updated. These are reported semantically similar 

                                                                 

1 http://www.sketchengine.co.uk 

2 http://natcorp.ox.ac.uk 
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by the semantic similarity heuristics. Therefore, we have explored 

semantic similarity based heuristics in our study.  

Our approach is based on the considering coordination ambiguity 

as a semantic property of NL statements. In [14], the author 

discusses nature of ambiguity ranging from lexical to syntactic 

and semantic challenges. The author argues that an expression is 

ambiguous if it is associated with more than one region of the 

meaning space. Applying the same theory to coordinating 

structures, we can safely assume that a coordinating expression 

will not lead to ambiguity if the coordinating units, i.e.  the words 

or phrases to the left and right of ‘and’ and ‘or’ convey more or 

less the same meaning. Consequently, these units conjoined by 

‘and’ and ‘or’ act as a constituent. In our approach, we have made 

use of semantic similarity measures for coordinating terms to 

identify coordinating constituents. We argue that higher the score 

of similarity between coordinating units, the more are the chances 

of these units of acting as a ‘constituent’; and, when the 

coordinating units act as a constituent, the scope of the 

coordinating terms becomes less ambiguous within the sentence. 

Let us consider the corresponding statement to the example (3) to 

understand this point: 

The GUI should allow administrator to ‘retrieve and edit’ 

existing painting information. 

All the subjects involved in the study marked the above statement 

as unambiguous. The viewpoint of the subjects states: 

(i) administrator only retrieves and edits, i.e. ‘retrieve and 

edit’ act as constituent and, therefore the scope of  both 

retrieve and edit extends to the actor administrator.  

(ii) Similarly, the scope of actions: ‘retrieve’ and ‘edit’ 

extends to the object: ‘existing painting information’. 

Our study is focused on finding the suitable similarity heuristics 

that prove useful in identifying coordinating constituents. We 

have considered coordinating structures of the form: (NP1 and/or 

NP2), (VP1 and/or VP2) and (JJ1 and/or JJ2) in our study.  We 

present below a brief overview of the semantic similarity 

heuristics that we have used. 

3.1 Semantic Similarity Heuristics 

3.1.1 Path Length (path) 
Path Length heuristic is a simple node-counting scheme in 

hierarchical dictionary structure. We have used the WordNet 

implementation of this heuristic as available in 

Wordnet::Similarity package [17]. 

The similarity score is inversely proportional to the number of 

nodes along the shortest path between the concepts. The shortest 

possible path occurs when the two concepts are the same and, the 

corresponding path length is 1 in that case. Consequently, the 

maximum similarity value is 1.  

3.1.2 jcn 
The relatedness measure, suggested by Jiang and Conrath [18], is 

defined as: 

jcn = 1 / jcn_distance,  

where,   jcn_distance = IC(concept1) + IC(concept2) - 2 * 

IC(LCS) 

Here, IC refers to the information content of the coordinating 

terms and LCS refers to the Least Common Subsumer of the 

coordinating terms. 

3.1.3 lin 
The similarity heuristic, as proposed by Lin [19], defines the score 

of relatedness as: 

lin  = 2 * IC(LCS) / (IC(concept1) + IC(concept2)),  

where, IC is the information content of the coordinating terms and 

LCS is the Least Common Subsumer. The relatedness value 

provided by this heuristic is always greater-than or equal-to zero 

and less-than or equal-to one.  

3.1.4 res 
For Resnik measure [2], the relatedness value is equal to the 

information content (IC) of the Least Common Subsumer (LCS) 

of the two coordinating units, i.e. the most informative subsumer, 

i.e: 

res = IC (LCS) 

3.1.5 wup 
The heuristic, proposed by Wu and Palmer [20], measures the 

relatedness score of two terms by considering the depths of the 

two concepts (s1 and s2) in the WordNet taxonomies, along with 

the depth of the LCS.  

wup = 2*depth(LCS) / (depth(s1) + depth(s2)).  

3.1.6 lch 
The relatedness measure, as proposed by Leacock and Chodrow 

[21], is defined as: 

lch = -log (length / (2 * D)),  

where, length refers to the shortest path between the two concepts 

obtained by using node-counting and, D refers the maximum 

depth of the taxonomy in which the concepts are found.  

3.1.7 lesk 
The lesk measure works by finding overlaps between the 

definitions of the two concepts as provided by the WordNet 

dictionary. The relatedness score is the sum of the squares of the 

overlap lengths. It is based on an algorithm proposed in [22] for 

word sense disambiguation. For example, a single word overlap 

results in a score of 1. Two single-words overlap results in a score 

of 2. A two word overlap (i.e., two consecutive words) results in a 

score of 4. A three word overlap results in a score of 9.  

3.1.8 hso 
The hso heuristic, proposed by Hirst and St-Onge [23], is based 

on finding the lexical chains linking the two word senses.  

3.1.9 Gloss Vector (vec) 
The Gloss Vector [24] measure works by forming second-order 

co-occurrence vectors from the glosses or WordNet definitions of 

concepts. The relatedness of the two concepts is determined as the 

cosine of the angle between their gloss vectors. In order to get 

around the data sparsity issues presented by extremely short 

glosses, this measure augments the glosses of concepts with 

glosses of adjacent concepts as defined by WordNet relations 

head. 
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3.1.10 Gloss Vector – pairwise (vpair) 
The pair-wise Gloss Vector measure is quite similar to the regular 

Gloss Vector measure, except that it augments the glosses of 

concepts with adjacent glosses. The regular Gloss Vector measure 

first combines the adjacent glosses to form one large ‘super-gloss’ 

and creates a single vector corresponding to each of the two 

concepts from the two ’super-glosses’. The pair-wise Gloss 

Vector measure, on the other hand, forms separate vectors 

corresponding to each of the adjacent glosses, i.e. it does not form 

a single super gloss.  

3.1.11 Distributional Similarity (distr) 
Distributional Similarity refers to the similarity score of the 

coordinating units based on the frequency with which the two 

units appear together in a corpus. This heuristic is same as that 

has been used in [3] and we have calculated it in the similar 

manner for our dataset of coordinating structures. To compute the 

value of this heuristic, we search for one of the root words of the 

coordinating terms in the BNC using the Sketch Engine’s Word 

Sketch facility [13] and note the rankings of the other head word 

in the list of matches that is returned. We perform similar 

procedure of rank-recording with the root word of the other 

coordinating term and use higher of the two rankings as our 

heuristic value.  

3.2 Semi-supervised Learning 
We are interested in automatic classification of the requirements 

statements into potentially ambiguous (nocuous) and 

unambiguous (innocuous) categories. The ML classification 

algorithms can provide the foundation for the purpose of our 

study. ML algorithms can be classified into two broad categories: 

supervised and unsupervised learning. Supervised algorithms 

make use of the guiding function that maps inputs to desired 

outputs (also referred to as labels, because these are often 

provided by human experts labeling the training set). On the other 

hand, unsupervised learning models a set of inputs by grouping or 

clustering common instances/patterns.    

We have used semi-supervised learning (SSL), as suggested for 

smaller training sets in [11], for our study. Using labels for 

supervised study proves useful in the presence of large amount of 

labeled data. But, statements with potentially ambiguous 

coordinating structures are only a small fraction of large-sized 

documents having few thousand statements. SSL is considered 

halfway between supervised and unsupervised learning. Of the 

various approaches for SSL described in [16], one of the 

approaches that we found applicable to our study considers SSL 

as supervised learning with additional information on distribution 

of the training-set. In our evaluation study, we have worked with a 

confidence function (for labels) to decide nocuous and innocuous 

labels for our dataset of ambiguous requirements statements. The 

input to the classifier is a feature vector corresponding to the 

coordinating structure present in a statement. This feature vector 

is composed of the computed values for the heuristics presented in 

section 3.1. The values for similarity heuristics have been 

obtained using the scripts available from the link to similarity 

project of University of Minnesota.3. In addition to the confidence 

function, we have obtained additional information for suitable 

heuristics to be used for the study by making use of attribute 

                                                                 

3 http://maraca.d.umn.edu/cgi-bin/similarity/similarity.cgi 

evaluator. The feature or attribute evaluator assists in finding the 

best heuristic contributing more towards training the classifier for 

classifying nocuous and innocuous instances of ambiguity. We 

have also performed a validation check for these more suited 

features or attributes for classification. We have carried out 

unsupervised clustering with features identified using evaluator to 

verify that actually two (or, at the most three) clusters 

corresponding to nocuous and innocuous instances of ambiguity 

are obtained. If we get two or at the most three clusters, then it 

indicates that features or attributes (heuristics in our case) 

identified by the evaluator provide results closer to the labeled 

data. 

We have made use of Naïve Bayes, K-nearest neighbors (K-NN), 

Random Tree and Random Forest algorithms in our study. Naïve 

Bayes classifier is a probabilistic classifier based on applying 

Bayes' theorem with strong (naive) independence assumption. It 

assumes that the presence or absence of a particular feature is 

unrelated to the presence or absence of any other feature, given 

the class variable. Despite this assumption, Naive Bayes 

classifiers can be trained very efficiently in a supervised learning 

setting. K-NN is an instance-based classifier that learns by 

relating the unlabeled to the labeled training set according to some 

distance or similarity function. Random tree algorithm works by 

constructing multiple decision trees randomly, where each node of 

the tree records class distributions. Random forest algorithm is an 

ensemble learning method for classification (and regression) that 

operates by constructing a multitude of decision trees during 

training and outputting the class that is the mode of the classes 

output by individual trees. 

3.3 Evaluation Metrics 
For evaluation of our approach, we use three metrics: Precision, 

Recall and F-Measure. Precision is the fraction of predicted 

ambiguous statements that are relevant, while recall is the fraction 

of ambiguous statements that are retrieved. F-measure is a 

measure of a test's accuracy. It considers both the precision and 

the recall of the test to compute the score. F-Measure score can be 

interpreted as a weighted average of the precision and recall, 

where it reaches its best value at 1 and worst score at 0.  

Precision= True Positive / (True Positive + False Positive)  

Recall = True Positive / (True Positive + False Negative) 

F-Measure = 2 * (Precision * Recall) (Precision + Recall) 

We have used cross validation technique with 10 folds as 

recommended in [15] for our evaluation study. Cross-Validation 

is a statistical method of evaluating and comparing learning 

algorithms by dividing data into two segments: one used to learn 

or train a model and the other used to validate the model. We have 

used Weka4 tool for our study.  

Of these three metrics, recall plays an important role in our study 

as our goal is to identify the nocuous ambiguities from the 

requirements specifications. Once automatically identified, these 

ambiguous statements can be presented to the domain experts for 

necessary corrections.  

                                                                 

4 http://www.cs.waikato.ac.nz/ml/weka/ 
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4. EVALUATION STUDY 
We carried out our evaluation study on requirements corpus from 

various domains like medical, academics, human-resource and 

finance. We extracted the statements containing ‘and’ and ‘or’ 

from this corpus. Though the count of such statements is 

proportionately less (nearly 20.8%), nevertheless, the ambiguity 

concern posed by them needs to be addressed. We present below 

the details of our dataset used for evaluation study. 

4.1 Dataset and Methodology 
We extracted 647 such statements from a corpus of 3100 

statements having coordinating conjunctions ‘and’ and ‘or’. As 

discussed in section 2.1, S-conjunctions are not nocuous in 

nature; therefore we removed such statements with S-

conjunctions. S-conjunctions contributed to 26% of the total 647 

statements having coordinating structures. Manual analysis of the 

set of 647 statements indicated that searching for ‘and’ and ‘or’ 

has yielded in few statements having correlating conjunctions like 

‘either-or’ and ‘both-and’; these constructs are also not 

ambiguous. Therefore, we dropped nearly 36 such statements 

from the set of 647 extracted statements. We also dropped 

statements having phrases (158 statements) to either side of the 

coordinating conjunctions. The reason for dropping such 

statements is that the heuristics used in our study to identify 

coordinating constituent are word-based similarity measures. The 

presence of phrases was verified by the subjects involved in 

annotation task during discussions and, the decision to drop any 

such statement was taken unanimously. An example of such a 

statement is: 

(4) Such issues in requirements included the draft Web Form XYZ 

and several other documents. 

Here, ‘and’ conjoins two phrases, namely: ‘the draft Web Form 

XYZ’ and ‘several other documents’.  The idea of pre-processing 

the dataset before proceeding with the study was to ensure that we 

have instances of those coordinating structures that conjoin two 

words (nouns, adjectives or verbs) and are potentially ambiguous. 

The exercise of pre-processing the dataset resulted in 284 

potentially ambiguous statements out of 647 statements.  

We presented the set of these potentially ambiguous statements to 

seven subjects for annotating the statements as having nocuous or 

innocuous ambiguity. We chose subjects from varying 

background to ensure unbiased labeling. Two of the subjects are 

software professionals, one teaches Software Engineering and one 

is an English linguist. Rest of the subjects includes master 

students of Software Engineering. Since manual annotation is a 

subjective matter, therefore it could be a potential threat to the 

validity of our results. We mitigated this threat in two ways. First, 

we explained nocuous and innocuous ambiguity to the subjects in 

a meeting. We ensured that subjects are familiar and comfortable 

with the annotation task by performing a validity check. We 

requested the subjects to label a random sample of 50 statements 

and, resolved the doubts and queries of the subjects in that 

meeting. Performing peer review of these annotations indicated 

that the subjects are comfortable with the annotation task. Second, 

we used confidence function to decide final labels for the training 

dataset.  

Since we have limited set of labeled training set for learning, we 

adopted semi-supervised method of learning and training the 

classifier as discussed in section 3.2. We first designed a 

confidence function to decide whether a statement should be 

marked as innocuously ambiguous or as a nocuous statement. We 

took the counts of nocuous and innocuous labels for each 

statement and divided that count by the total number of subjects. 

If the resultant value is above a threshold value, then we consider 

the statement as potentially ambiguous (nocuous). We observed 

that keeping threshold at 57% yields better results. Our approach 

of final labeling is illustrated through table – 1:      

Table 1. Identifying nocuous and innocuous labels 

Coordinating 

Structure 
Judgments 

Sample scenarios Nocuous Innocuous > 57% 

preparation and 

submission 
4 3 YES 

number and license 5 2 YES 

terms and 

conditions 
2 5 NO 

retrieve and view 0 7 NO 

 

Our approach of labeling is similar to the one followed in [9]. 

However, we differ in our approach from them in two ways. The 

authors in [9] have judged ambiguities on three criterions: high 

attachment of modifier, low attachment of modifier and 

ambiguous. On the contrary, our judging criterion is whether the 

coordinating units can be considered as a constituent or not. If the 

coordinating units cannot be considered as a constituent, then we 

have an instance of nocuous ambiguity else it is an instance of 

innocuous ambiguity. Second, we have further improved our 

learning by identifying the heuristics that yield in better 

classification and clustering. As discussed in section 3.2, we have 

used attribute evaluator algorithm (Gain Ratio Attribute Evaluator 

in our case) to identify the most contributing heuristics towards 

clustering and classification of our dataset of requirements 

statements. We found that ‘jcn’ and ‘lin’ heuristics are top 

ranking features for classifying the requirements. These heuristics 

are then followed by ‘wup’ and ‘res’. We also validated these 

observations by performing unsupervised clustering (using the top 

ranking heuristics). We evaluated the clusters using ‘Expectation-

Maximization’ (EM) and ‘Simple K-Means’. The results of 

unsupervised clustering further strengthened our observations 

regarding better heuristics to use for learning and training the 

classifiers. Table 2 summarizes our observations of unsupervised 

clustering: 

Table 2. Unsupervised Clustering 

Algorithm 
Number of 

Clusters 

Degree of 

Belongingness 

EM 3 
( 42%, 45% and 

10% ) 

Simple K-Means 2 ( 34% and 63% ) 

4.2 Results and Observations 
We present the results and observations in terms of the research 

questions we mentioned in the introduction section: 

1. Which ML algorithm is best suited for identifying nocuous   

coordination ambiguities? 

- Naïve Bayes algorithm is best suited for identifying the 

nocuous coordination ambiguities as indicated through 
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evaluation metrics presented in table 3. Since Naïve Bayes 

algorithm gives us a recall of 90.4% and we are interested in 

having higher recall, therefore it is best suited for our goal. 

Naïve Bayes algorithm is based on the assumption that 

presence or absence of a particular feature is unrelated to the 

presence or absence of any other feature. The algorithm has 

been proved to be quite efficient in supervised setting with 

feature-independence assumption and also, even when the 

features do not follow conditional independence assumption 

[25]. Our observation that Naïve Bayes outperforms other 

classifiers in our case because the heuristics that form feature 

vector in our case are independent of each other..  

Table 3. Classification Results using all Heuristics  

except distr 

Classifier Precision Recall F-Measure 

Naïve Bayes 0.387 0.904 0.542 

K-NN 0.469 0.51 0.488 

Random Tree 0.486 0.519 0.502 

Random 

Forest 
0.464 0.433 0.448 

 

2. Which heuristics serve best to identify nocuous coordination 

ambiguities? 

- Our observations after executing attribute evaluator and 

unsupervised clustering indicate that ‘jcn’ and ‘lin’ are best 

suited to identify nocuous coordinating terms. The recall for 

ambiguous (nocuous) requirements is quite high using ‘jcn’ 

alone and using ‘jcn’ and ‘lin’ together. The best recall is 

achieved using ‘wup’, ‘jcn’ and ‘lin’ together as shown in 

table 4. The results in table 4 correspond to Naïve Bayes 

classifier only. 

Table 4. Classification Results using combination of 

Heuristics 

Heuristic Precision Recall F-Measure 

jcn 0.371 0.981 0.538 

jcn-lin 0.37 0.981 0.538 

wup-jcn-lin 0.376 0.99 0.545 

hso-wup-jcn-

lin 
0.374 0.971 0.537 

 

3. Are distributional heuristics for identifying nocuous 

coordination ambiguity instances helpful in context of 

requirements specifications? 

- We have discussed in detail in section 3 that distributional 

similarity heuristics are quite useful for identifying nocuous 

and innocuous coordination ambiguities for general purpose 

like news and discourse analysis. However, for requirements 

that pertain to a particular domain and are expressed in 

technical language, referring to a general corpus will not 

prove very beneficial. Our viewpoint is supported by our 

evaluation study where we found that distributional heuristic 

(measured over BNC) yields zero recall individually. It also 

lowers the value of recall when combined with other 

combinations of similarity heuristics. The corresponding 

results with Naïve Bayes classifier are shown in table 5: 

Table 5. Classification Results with Distributional 

Similarity Heuristics 

Classifier Precision Recall F-Measure 

Distr 0 0 0 

distr-all hesuristic 0.389 0.894 0.542 

distr-jcn-lin 0.375 0.971 0.542 

distr-wup-jcn-lin 0.374 0.971 0.542 

5. CONCLUSION 
In this paper, we have presented an approach towards identifying 

nocuous coordination ambiguities in the requirements 

specifications and we have presented results based on our 

approach. Our evaluation study indicates that constituency test for 

coordinating conjunctions serves as a relatively better tool for 

designing nocuous coordination ambiguity classifier. Our 

approach has resulted in 99% recall for nocuous coordination 

ambiguity instances using the three similarity measures, namely 

proposed by Wu and Palmer; Jiang and Conrath; and, Lin, 

together. Such a high value of recall can relieve analysts from 

reviewing the requirements specification documents repetitively 

and carefully to find ambiguous statements with coordinating 

conjunctions. Our approach can further assist analysts by 

presenting him with the identified nocuous coordination 

ambiguities, which is only a small subset of large requirements 

document. The analyst can, then, correct and refine the identified 

requirements statements without worrying for the complete 

document.  Our study also indicates that word-based similarity 

measures are relatively effective than distributional similarity 

measure for identifying nocuous coordination ambiguities in 

context of requirements specifications. We further aim to test our 

approach by using statements from a particular business domain 

as a test-set to our trained Naïve Bayes classifier. 
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