
Using Grammatical Knowledge Patterns for

Structuring Requirements Specifications

Jaspreet Bhatia
1
, Richa Sharma

1
, Kanad K. Biswas

2
, Smita Ghaisas

3

1
School of IT, Indian Institute of Technology-Delhi, India

2
Dept of Computer Science & Engg, Indian Institute of Technology-Delhi, India

3
Tata Research Development & Design Centre, Pune, India

{siy117528, anz087535, kkb} @ cse.iitd.ernet.in, smita.ghaisas@tcs.com

Abstract—Natural Language is the general norm for

representing requirements in industry. Such representation of

requirements cannot be subjected to automated reasoning and is,

often, ambiguous and inconsistent. Structuring the natural

language requirements can significantly improve reasoning the

requirements as well as reusing them in related future projects.

We present a novel automated approach to utilize Grammatical

Knowledge Patterns for structuring the natural language

requirements in the form of Frames.

Index Terms-Requirements Engineering, Grammatical

Knowledge Patterns, Frames, Structuring Requirements, Natural

Language Processing, Natural Language Patterns, Reuse

I. INTRODUCTION

One of the issues involved with requirements specifications

in Natural Language (NL) is that the document cannot be put

to automated reasoning and reuse. The other issue is that NL is

inherently ambiguous. This concern has been researched and,

several other formal forms of representing requirements have

been proposed like tables or templates [1], logical expressions

and controlled natural language [2]. These approaches are,

however, less preferred for representing the requirements as

these are not understood by all stakeholders or requirements

engineers and, are difficult to write. Additionally, these

involve some effort and learning curve, which the practitioners

tend to resist when under pressure of delivery deadlines in

their projects. Natural language, on the other hand, is

understood by all and is easier to write. Therefore, natural

language still remains the preferred mode for representing the

requirements.

In this paper, we propose an approach to process the

requirements expressed in natural language and structure them

automatically into frames [3] using Grammatical Knowledge

Patterns (GKP) [4]. The structured requirements in the form of

frames can be used for 3 r’s, namely reasoning, refining the

requirements and reusing directly in part or as whole in

different projects belonging to similar kinds of domains.

Reasoning these structured requirements can help uncover

various defects such as ambiguities, incompleteness, and

inconsistency in the requirements. Our objective behind

identifying GKPs and structuring them based on the patterns is

to come up with a representation for requirements that can

capture the semantics of the requirement statements. We

present a detailed overview of GKP and frame structures in

subsequent sections.
The paper is organized as follows: Section II gives an

overview of Knowledge Patterns and frames along with the
related work. Section III presents our approach followed by the
case study in section IV. In section V, we present discussion
and conclusion.

II. BACKGROUND

A. Knowledge Patterns

According to [4], knowledge patterns are “words, word

combinations, or paralinguistic features which frequently

indicate conceptual relations”. The authors present three types

of patterns:

 Lexical Patterns: These are words that indicate a relation.

For example, “is a” can indicate hypernymy relation.

 Grammatical Patterns: These are combinations of part of-

speech. The NOUN+VERB pattern can indicate the

function relation as in: The CPU performs the processing.

 Paralinguistic Patterns: These patterns include

punctuation, parenthesis, text structure, etc.

B. Frames

According to Minsky [3], “A frame is a data structure for

representing a stereotyped situation. Attached to each frame

are several kinds of information.”
Frames can be used to represent knowledge as structured

objects. Frames divide knowledge into sub-structures, which
can be connected together as required, to form the complete
idea. Each frame has associated with it a set of slots, which can
be filled by values, procedures, or pointers to other frames [3].
These slots contain declarative as well as procedural
information about the frame object. It has been argued in
literature that frames are a concise way of representing
knowledge in an Object Oriented manner and, are an efficient
means for reasoning [5].

C. Related Work

Knowledge Patterns have been used for identification of
concepts and conceptual relations. [4, 6] have used lexical
patterns for identifying hypernymy relation. [7] have used

978-1-4799-0948-3/13/$31.00 c© 2013 IEEE RePa 2013, Rio de Janeiro, Brasil31

knowledge patterns for construction of ontologies. Ohnishi et
al. have used formal model to build a database of requirements
[8]. Their model comprises of noun frames, case frames, and
function frames. They have also developed query languages to
query the database of requirements.

III. OUR APPROACH

In this section, we discuss how we have identified the
GKPs and populated frames for each GKP. Grammatical
Patterns have been studied extensively in English Linguistics
[9]. However, to the best of our knowledge, these patterns have
not been used for understanding semantics of requirements.
Our contribution lies in applying GKPs to structure the
requirements. Requirements for a software system, irrespective
of any domain, represent the behaviour of the real time system
for which software system is being developed. Behaviour is
captured through verbs in any natural language statement.
Verbs representing various actions are related to actor(s) or the
object(s) affected by the action. GKPs capture such an essence
in the statement. Therefore, we concluded that GKPs are
comparatively more suitable to categorize requirement
statements; extract the semantic information and store the
semantic information in the form of frames.

We studied requirements specifications from medical,
insurance, loan, academics, library and control system domains
to get varied kind of writing patterns. Our approach is divided
into two phases - the Learning phase and the Automation &
Testing phase. An overview is presented below:

A. Learning Phase

We took a subset of 25 requirements documents in this
phase and performed following steps:

1) GKP Identification: In this phase, we perform lexical

 and syntactic analysis of requirements statements using the

Stanford POS Tagger [10] and Stanford Parser [11]

respectively. The POS tagger attaches a parts-of-speech tag to

each word and, the Parser gives the dependency tags for the

statement. We manually analyzed all the tagged and parsed

statements. This helped us in identifying GKPs in the

requirements statements. We chose the following linguistic

properties for identification of GKPs:

 Structure of sentence: Active or Passive.

 Special Parts of speech (e.g.: Preposition, Markers,

Conjunctions etc)

 Precondition Keywords (e.g.: after, before, if etc.)
From the set of documents, we picked up 70 statements of

active voice GKP and 40 statements with passive voice GKP.
Most of the statements usually had one conjunction between
nouns (20 statements); conjunction between verbs (25
statements); 26 statements have prepositions; 45 statements
have precondition to them and 27 statements are marked by the
presence of markers. Each of these statements respectively
follow similar grammatical pattern. This study encouraged us
to propose GKPs that are summarized in table I. Below is the
detailed description of these patterns:

a) Active Voice: A statement in active voice always

follows the form:

<subject> <main verb> <object>

We use dependency tags in the parser output to extract the
pattern stated above.

b) Passive Voice : A statement in passive voice always

follows the form:

<form of TO BE> <verb in PAST

PARTICIPLE>

It is observed that any verb in passive statement is always
tagged as “verb in past participle” form and, this verb is
preceded by an auxiliary verb of the form of <to be>. The
forms of <to be> can be {is, are, am , was, were, has been,
have been, had been, will be, will have been, being}.

c) Conjunction: We observed that in context of

requirements statements, coordinating conjunctions are usually

present between two verbs, or two nouns. We have identified

the corresponding patterns for coordinating conjunctions (eg.

and, nor, but, or, yet, so etc) as indicated in table – I.

d) Preposition: A preposition links nouns, pronouns and

phrases to other words or phrases. The word that the

preposition introduces (eg: copy of book, “of” here introduces

the object “book”) is called the preposition object. There are

around 150 prepositions in English, but we observed that only

a limited set of prepositions (eg: by,as,after,at, on , with, but

and above) is used in context of requirements documents. The

corresponding pattern is mentioned in table- I.

e) Precondition: A precondition is mostly on the main

action being performed in the requirement statement.

Requirement statement with precondition can be partitioned

into two clauses - one the precondition clause and the other the

dependent clause. We noticed that such preconditions can be

identified using the patterns as indicated in table – I.

f) Marker: Markers are linking words or linking phrases

that bind together a piece of writing. Marker patterns show

that the marker keywords can connect any two clauses,

dependent or independent. The marker keywords that we

found in requirements documents are: “because”, “and”, “but”,

“or”. The corresponding pattern is mentioned in table- I.

2) Frame Structures: Based on the identified GKPs, we

 categorize the requirements statements as shown in figure 1.

Fig. 1. Categorization of Requirement Statements

32

TABLE I: SUMMARY OF THE PATTERNS

Pattern name Pattern

ACTIVE_VOICE <subject> <main verb> <object>

PASSIVE_VOICE <form of TO BE > <verb in PAST PARTICIPLE>

CONJ_VERB <clause> <verb_1> <CONJUNCTION> <verb_2> <clause>

CONJ_NOUN <clause> <noun_1> <CONJUNCTION> <noun_2> <clause>

PREPOSITION <clause><NOUN/PRONOUN/PHRASE><PREPOSITION<PREPOSITION

OBJECT> <clause>

PRECONDITION <AFTER/ ON/ONCE/ HAVING> <Precondition clause> <Dependent clause>

<IF> <Precondition clause> <THEN> <Dependent clause>

<HAVING><verb in PAST PARTICIPLE><Precondition clause> <Dependent
clause>

MARKER <clause> <MARKER_KEYWORD> <clause>

Every statement in the requirements specification

documents belongs to either of the following categories: Single
category (Active or Passive voice); Multiple categories (Active
or Passive) with one or more of (Conjunction, Preposition,
Precondition and Marker). For each of the leaf level category in
Fig. 1, we have defined a frame structure, with frame keys that
capture semantics of the respective statement. Corresponding to
these keys, we determine the parser dependency tags that can
be used to automatically extract the values for the frame keys
from the requirement statements. Each requirement statement
can be a simple statement or complex statement. Simple
statements will be in either active voice or passive voice.
Complex statements are characterized by the presence of
simple statements along with one or more of these elements -
conjunction, preposition, precondition or marker. Separate
frames are designed for each of these elements. Frames for
complex statements are simply union of frames for simple
statements and the frames for elements present in complex
statements. Following tables illustrate the frame keys and the
corresponding dependency tags for a few elements.

TABLE II. FRAME STRUCTURE - ACTIVE VOICE

FRAME KEY DEPENDENCY TAGS

Actor SUBJ(- , actor)

Modifiers of actor AMOD (actor, ?)

Action ROOT

Object DOBJ (action, object)

Object Modifier AMOD/ADVMOD (obj , modifier)

TABLE III. FRAME STRUCTURE - PASSIVE VOICE

FRAME KEY DEPENDENCY TAGS

Actor AGENT(- , actor)

Modifiers of actor AMOD (actor, ?)

Action ROOT

Object NSUBJPASS

Object Modifier DOBJ (action, object)

TABLE IV. FRAME STRUCTURE - CONJUNCTION BETWEEN VERBS

FRAME KEY DEPENDENCY TAGS

Conjunction CONJ_ conj, PARATAXIS

Terms in Conjunction CONJ_*

Actor for verb 1 NSUBJ / AGENT(VERB1, ?)

Actor for verb 2 NSUBJ / AGENT(VERB2, ?)

Object for verb 1 DOBJ / NSUBJPASS(VERB1, ?)

Object for verb 2 DOBJ / NSUBJPASS(VERB2, ?)

TABLE V. FRAME STRUCTURE - PREPOSITION

FRAME KEY DEPENDENCY TAGS

Preposition PREP_prep

Preposition Object POBJ, PREP_*

Modifiers AMOD, ADVMOD,NUM

B. Automation and Testing Phase

In this phase, we developed algorithms to automate the
process of GKP identification and populating the frame
elements based on our observations during learning phase. The
algorithm of GKP is based on string matching. We are using
the dependency tags provided by the Stanford Parser and the
parts-of-speech tags provided by the Stanford Tagger to
populate frames. We manually analyzed the outputs to validate
our algorithm against the expected output. The testing outputs
were used to refine our algorithm.

IV. CASE STUDY

Owing to space constraint, we illustrate our approach

through two sample requirements statements from the

requirements corpus we studied. Consider the statement:

S1: Based on the surveyor recommendations and

observations a claim is marked as payable.

Truncated output of the Stanford Dependency Parser:

nn(recommendations-5, surveyor-4)

pobj(marked-11, recommendations-5)

conj_and(recommendations-5, observations-7)

pobj(marked-11, observations-7)

nsubjpass(marked-11, claim-9)

root(ROOT-0, marked-11)
acomp(marked-11, payable-13)

Output of Stanford POS tagger:

Based/VBN on/IN the/DT surveyor/JJ
recommendations/NNS and/CC observations/NNS a/DT
claim/NN is/VBZ marked/VBN as/IN payable/JJ

In this statement, the tagger output indicates the presence

of passive voice pattern: <is/VBZ marked/VBN> and,
conjunction between nouns:

33

<surveyor/JJ recommendations/NNS and/CC

observations/NNS>

Therefore, the frame for this statement corresponds to the
union of passive voice frame and the frame for conjunction
between two nouns as shown in the table VI.

TABLE VI. EXAMPLE – S1

FRAME KEY VALUES FROM STATEMENT

Passive voice keys

Actor MISSING

Action Marked

Object Claim

Object Modifier -

Other modifiers payable

Conjunction keys(between noun With Adjective)

Conjunction And

Conjunction between Recommendations, observations

Modifier of noun 1 Surveyor

Modifier of noun 2 -

One more example illustrating our approach:
S2: After checking the blood sugar level, the doctor

prescribes the diagnosis.
This statement is an instance of active voice pattern and the

precondition pattern. The corresponding frame structure for S2
is presented in table VII.

TABLE VII. EXAMPLE – S2

FRAME KEY VALUES FROM STATEMENT

Active/passive voice keys

Actor Doctor

Modifiers of actor -

Action Prescribes

Object Diagnosis

Precondition keys

Precondition after

Precondition on action Prescribes

Action to be performed as

precondition

checking

Object of Precondition Level

We present below the inferences that can be drawn for the

sample statements S1 and S2:
1. S1 (Passive Voice and Conjunction between Nouns) - The

frame structure in table VI suggests that the adjective

surveyor is associated with the noun recommendations.

However, the user could have meant to associate the

adjective with both the terms joined by the conjunction.

The frame structure also indicates that actor is missing. In

this example, the developer would certainly need to know

who will mark the claim as payable.

2. S2 (Active Voice and Precondition) - We observed from

the frame structure (table VII) that in such statements with

preconditions, some information is intentionally or

unintentionally omitted from the requirement statement

and is assumed to come from the other part (dependent or

independent phrase) of the statement. In S2, it is not

mentioned clearly who checks the blood sugar level (it

could be a doctor, a nurse, a lab technician etc), but since

the actor of the second phrase is the doctor, developers

tend to assume that he only checks the blood sugar level.

The knowledge stored in the frames can further be reused

in related domain. For example, claim processing for burglary,

fire or motor accident etc is not different from each other.

Once the analyst is able to store corrected and refined

processing for one type of claim, then this stored knowledge

can be put to use for other claim processing as well.

V. DISCUSSION AND CONCLUSION

The paper proposes to utilize GKPs and Frame structures to
preprocess requirement statements and, structure them in a
formal form that can be reasoned with and, is amenable to
reuse. The advantage of our approach is that the identification
of patterns and structuring them into frames is automated and
does not require any extra manual effort. These frames can
further be used for querying, reasoning and reusing in a related
domain. Another advantage of our approach is that it is generic
across different domains. Our frames capture all the syntactic
structures present in a requirements statement. The accuracy of
our methodology is limited by the correctness of the results
provided by the Tagger and the Parser. Nevertheless, the results
using Stanford tagger and parser are quite satisfactory.

We believe that our approach will substantially improve
software requirements analysis and consequently, will lead to
improved software development. We further aim to identify
GKPs at a more granular level and improve the frame structure
accordingly. We are also working on developing query
interface for the frames.

REFERENCES

[1] C. Denger, D.M.Berry and E.Kamsties, "Higher quality requirements

specifications through natural language patterns,", Proceedings, IEEE

International Conference on Software: Science, Technology and
Engineering (SwSTE 03), pp.80-90, 4-5 Nov. 2003.

[2] N. E. Fuchs and R.Schwitter, “Attempto Controlled Natural Language
for Requirements Specifications”, Proceedings, 7th International Logic

Programming Symposium. Workshop Logic Programming

Environments, 1995, pp.25--32

[3] M. Minsky, “A Framework for Representing Knowledge”, J. Haugeland,

Ed., Mind Design, MIT Press, 1981.

[4] E. Marshman, T. Morgan and I. Meyer, “French patterns for expressing

concept relations”, Terminology, 8 (1), 2002.

[5] R. E. Fikes and T. Kehler, “The role of frame-based representation in
knowledge representation and reasoning”, Communications of the

ACM 28(9), pp.904-920, 1985.

[6] M. A. Hearst, “Automatic acquisition of hyponyms from large text

corpora”, Proceedings, 14th conference on Computational linguistics -

Volume 2 (COLING '92), Vol. 2. Association for Computational
Linguistics, Stroudsburg, PA, USA, pp.539-545.

[7] M.-Ponsoda, Elena, and G. A. de Cea. "Using natural language patterns
for the development of ontologies.", Researching Specialized

Languages 47 (2011).

[8] A. Ohnishi, “Software Requirements Specification Database Based on
Requirements Frame Model”, ICRE’96, Proceedings of the 2nd

International Conference on RE.

[9] S. Hunston and G. Francis, "Pattern Grammar: A Corpus-Driven

Approach to the Lexical Grammar of English", Computational

Linguistics, Volume 27,no 2.

[10] K. Toutanova, D. Klein, C. Manning, and Y. Singer, “Feature-Rich Part-

of-Speech Tagging with a Cyclic Dependency Network”. In Proceedings

of HLT-NAACL 2003, pp. 252-259.

[11] M. C. de Marneffe, B. MacCartney and C. D. Manning, “Generating

Typed Dependency Parses from Phrase Structure Parses”, In LREC
2006.

34

