Using Grammatical Knowledge Patterns for
Structuring Requirements Specifications

Jaspreet Bhatia', Richa Sharma', Kanad K. Biswas®, Smita Ghaisas’
"School of IT, Indian Institute of Technology-Delhi, India
? Dept of Computer Science & Engg, Indian Institute of Technology-Delhi, India
? Tata Research Development & Design Centre, Pune, India
{siy117528, anz087535, kkb} @ cse.iitd.ernet.in, smita.ghaisas@tcs.com

Abstract—Natural Language is the general norm for
representing requirements in industry. Such representation of
requirements cannot be subjected to automated reasoning and is,
often, ambiguous and inconsistent. Structuring the natural
language requirements can significantly improve reasoning the
requirements as well as reusing them in related future projects.
We present a novel automated approach to utilize Grammatical
Knowledge Patterns for structuring the natural language
requirements in the form of Frames.

Index  Terms-Requirements Engineering, Grammatical
Knowledge Patterns, Frames, Structuring Requirements, Natural
Language Processing, Natural Language Patterns, Reuse

I. INTRODUCTION

One of the issues involved with requirements specifications
in Natural Language (NL) is that the document cannot be put
to automated reasoning and reuse. The other issue is that NL is
inherently ambiguous. This concern has been researched and,
several other formal forms of representing requirements have
been proposed like tables or templates [1], logical expressions
and controlled natural language [2]. These approaches are,
however, less preferred for representing the requirements as
these are not understood by all stakeholders or requirements
engineers and, are difficult to write. Additionally, these
involve some effort and learning curve, which the practitioners
tend to resist when under pressure of delivery deadlines in
their projects. Natural language, on the other hand, is
understood by all and is easier to write. Therefore, natural
language still remains the preferred mode for representing the
requirements.

In this paper, we propose an approach to process the
requirements expressed in natural language and structure them
automatically into frames [3] using Grammatical Knowledge
Patterns (GKP) [4]. The structured requirements in the form of
frames can be used for 3 r’s, namely reasoning, refining the
requirements and reusing directly in part or as whole in
different projects belonging to similar kinds of domains.
Reasoning these structured requirements can help uncover
various defects such as ambiguities, incompleteness, and
inconsistency in the requirements. Our objective behind
identifying GKPs and structuring them based on the patterns is
to come up with a representation for requirements that can

978-1-4799-0948-3/13/$31.00 © 2013 IEEE

31

capture the semantics of the requirement statements. We
present a detailed overview of GKP and frame structures in
subsequent sections.

The paper is organized as follows: Section II gives an
overview of Knowledge Patterns and frames along with the
related work. Section III presents our approach followed by the
case study in section IV. In section V, we present discussion
and conclusion.

II. BACKGROUND

A. Knowledge Patterns

According to [4], knowledge patterns are “words, word
combinations, or paralinguistic features which frequently
indicate conceptual relations”. The authors present three types
of patterns:

e  Lexical Patterns: These are words that indicate a relation.
For example, “is a” can indicate hypernymy relation.

e  Grammatical Patterns: These are combinations of part of-
speech. The NOUN+VERB pattern can indicate the
function relation as in: The CPU performs the processing.

e  Paralinguistic  Patterns:  These patterns include
punctuation, parenthesis, text structure, etc.

B. Frames

According to Minsky [3], “A frame is a data structure for
representing a stereotyped situation. Attached to each frame
are several kinds of information.”

Frames can be used to represent knowledge as structured
objects. Frames divide knowledge into sub-structures, which
can be connected together as required, to form the complete
idea. Each frame has associated with it a set of slots, which can
be filled by values, procedures, or pointers to other frames [3].
These slots contain declarative as well as procedural
information about the frame object. It has been argued in
literature that frames are a concise way of representing
knowledge in an Object Oriented manner and, are an efficient
means for reasoning [5].

C. Related Work

Knowledge Patterns have been used for identification of
concepts and conceptual relations. [4, 6] have used lexical
patterns for identifying hypernymy relation. [7] have used

RePa 2013, Rio de Janeiro, Brasil



knowledge patterns for construction of ontologies. Ohnishi et
al. have used formal model to build a database of requirements
[8]. Their model comprises of noun frames, case frames, and
function frames. They have also developed query languages to
query the database of requirements.

III. OUR APPROACH

In this section, we discuss how we have identified the
GKPs and populated frames for each GKP. Grammatical
Patterns have been studied extensively in English Linguistics
[9]. However, to the best of our knowledge, these patterns have
not been used for understanding semantics of requirements.
Our contribution lies in applying GKPs to structure the
requirements. Requirements for a software system, irrespective
of any domain, represent the behaviour of the real time system
for which software system is being developed. Behaviour is
captured through verbs in any natural language statement.
Verbs representing various actions are related to actor(s) or the
object(s) affected by the action. GKPs capture such an essence
in the statement. Therefore, we concluded that GKPs are
comparatively more suitable to categorize requirement
statements; extract the semantic information and store the
semantic information in the form of frames.

We studied requirements specifications from medical,
insurance, loan, academics, library and control system domains
to get varied kind of writing patterns. Our approach is divided
into two phases - the Learning phase and the Automation &
Testing phase. An overview is presented below:

A. Learning Phase

We took a subset of 25 requirements documents in this
phase and performed following steps:

1) GKP Identification: In this phase, we perform lexical
and syntactic analysis of requirements statements using the
Stanford POS Tagger [10] and Stanford Parser [11]
respectively. The POS tagger attaches a parts-of-speech tag to
each word and, the Parser gives the dependency tags for the
statement. We manually analyzed all the tagged and parsed
statements. This helped us in identifying GKPs in the
requirements statements. We chose the following linguistic
properties for identification of GKPs:

e  Structure of sentence: Active or Passive.

Special Parts of speech (e.g.: Preposition, Markers,
Conjunctions etc)

e Precondition Keywords (e.g.: after, before, if etc.)

From the set of documents, we picked up 70 statements of
active voice GKP and 40 statements with passive voice GKP.
Most of the statements usually had one conjunction between
nouns (20 statements); conjunction between verbs (25
statements); 26 statements have prepositions; 45 statements
have precondition to them and 27 statements are marked by the
presence of markers. Each of these statements respectively
follow similar grammatical pattern. This study encouraged us
to propose GKPs that are summarized in table 1. Below is the
detailed description of these patterns:

a) Active Voice: A statement in active voice always
follows the form:

<subject> <main verb> <object>

32

We use dependency tags in the parser output to extract the
pattern stated above.

b) Passive Voice : A statement in passive voice always
follows the form:

<form of TO BE> <verb in PAST
PARTICIPLE>

It is observed that any verb in passive statement is always
tagged as “verb in past participle” form and, this verb is
preceded by an auxiliary verb of the form of <to be> The
forms of <to be> can be {is, are, am , was, were, has been,
have been, had been, will be, will have been, being}.

¢) Conjunction: We observed that in context of
requirements statements, coordinating conjunctions are usually
present between two verbs, or two nouns. We have identified
the corresponding patterns for coordinating conjunctions (eg.
and, nor, but, or, yet, so etc) as indicated in table — I.

d) Preposition: A preposition links nouns, pronouns and
phrases to other words or phrases. The word that the
preposition introduces (eg: copy of book, “of” here introduces
the object “book”) is called the preposition object. There are
around 150 prepositions in English, but we observed that only
a limited set of prepositions (eg: by,as,after,at, on , with, but
and above) is used in context of requirements documents. The
corresponding pattern is mentioned in table- 1.

e) Precondition: A precondition is mostly on the main
action being performed in the requirement statement.
Requirement statement with precondition can be partitioned
into two clauses - one the precondition clause and the other the
dependent clause. We noticed that such preconditions can be
identified using the patterns as indicated in table — I.

f) Marker: Markers are linking words or linking phrases
that bind together a piece of writing. Marker patterns show
that the marker keywords can connect any two clauses,
dependent or independent. The marker keywords that we
found in requirements documents are: “because”, “and”, “but”,
“or”. The corresponding pattern is mentioned in table- I.

2) Frame Structures: Based on the identified GKPs, we
categorize the requirements statements as shown in figure 1.

Simple Sentences Complex sentences

Active

Passive

‘ Conjunctions ‘

Preposition Markers

| Precondition |

Fig. 1. Categorization of Requirement Statements



TABLE I: SUMMARY OF THE PATTERNS

Pattern name Pattern
ACTIVE VOICE <subject> <main verb> <object>
PASSIVE VOICE <form of TO BE > <verb in PAST PARTICIPLE>
CONJ VERB <clause> <verb 1> <CONJUNCTION> <verb 2> <clause>
CONJ NOUN <clause> <noun 1> <CONJUNCTION> <noun 2> <clause>
PREPOSITION <clause><NOUN/PRONOUN/PHRASE><PREPOSITION<PREPOSITION
OBJECT> <clause>
PRECONDITION <AFTER/ ON/JONCE/ HAVING> <Precondition clause> <Dependent clause>
<[F> <Precondition clause> <THEN> <Dependent clause>
<HAVING><verb in PAST PARTICIPLE><Precondition clause> <Dependent
clause>
MARKER <clause> <MARKER KEYWORD> <clause>
Every statement in the requirements specification TABLE V. FRAME STRUCTURE - PREPOSITION

documents belongs to either of the following categories: Single
category (Active or Passive voice); Multiple categories (Active
or Passive) with one or more of (Conjunction, Preposition,
Precondition and Marker). For each of the leaf level category in
Fig. 1, we have defined a frame structure, with frame keys that
capture semantics of the respective statement. Corresponding to
these keys, we determine the parser dependency tags that can
be used to automatically extract the values for the frame keys
from the requirement statements. Each requirement statement
can be a simple statement or complex statement. Simple
statements will be in either active voice or passive voice.
Complex statements are characterized by the presence of
simple statements along with one or more of these elements -
conjunction, preposition, precondition or marker. Separate
frames are designed for each of these elements. Frames for
complex statements are simply union of frames for simple
statements and the frames for elements present in complex
statements. Following tables illustrate the frame keys and the
corresponding dependency tags for a few elements.

TABLE II. FRAME STRUCTURE - ACTIVE VOICE

FRAME KEY DEPENDENCY TAGS
Actor SUBJ( -, actor)
Modifiers of actor AMOD (actor, ?)
Action ROOT
Object DOBJ (_action, object )
Object Modifier AMOD/ADVMOD ( 0bj , modifier)

TABLE III. FRAME STRUCTURE - PASSIVE VOICE

FRAME KEY DEPENDENCY TAGS
Actor AGENT( -, actor)
Modifiers of actor AMOD (actor, ?)
Action ROOT
Object NSUBJPASS
Object Modifier DOBJ (action, object )

TABLE IV. FRAME STRUCTURE - CONJUNCTION BETWEEN VERBS

FRAME KEY DEPENDENCY TAGS
Preposition PREP prep
Preposition Object POBJ, PREP *
Modifiers AMOD, ADVMOD,NUM

B. Automation and Testing Phase

In this phase, we developed algorithms to automate the
process of GKP identification and populating the frame
elements based on our observations during learning phase. The
algorithm of GKP is based on string matching. We are using
the dependency tags provided by the Stanford Parser and the
parts-of-speech tags provided by the Stanford Tagger to
populate frames. We manually analyzed the outputs to validate
our algorithm against the expected output. The testing outputs
were used to refine our algorithm.

IV. CASE STUDY

Owing to space constraint, we illustrate our approach
through two sample requirements statements from the
requirements corpus we studied. Consider the statement:

S1: Based on the surveyor recommendations and
observations a claim is marked as payable.

Truncated output of the Stanford Dependency Parser:

nn(recommendations-5, surveyor-4)
pobj(marked-11, recommendations-5)
conj_and(recommendations-5, observations-7)
pobj(marked-11, observations-7)
nsubjpass(marked-11, claim-9)

root(ROOT-0, marked-11)

acomp(marked-11, payable-13)

Output of Stanford POS tagger:

Based/VBN on/IN the/DT surveyor/JJ
recommendations/NNS and/CC observations/NNS a/DT

Actor for verb 1
Actor for verb 2
Object for verb 1
Object for verb 2

NSUBJ / AGENT(VERBI, ?)
NSUBJ / AGENT(VERB2, ?)
DOBJ/ NSUBJPASS(VERBI, ?)
DOBJ / NSUBJPASS(VERB2, ?)

FRAME KEY DEPENDENCY TAGS claim/NN is/VBZ marked/VBN as/IN payable/JJ
Conjunction CONJ_ conj, PARATAXIS
Terms in Conjunction CONJ_* In this statement, the tagger output indicates the presence

of passive voice pattern: <is/VBZ marked/VBN> and,
conjunction between nouns:



<surveyor/JJ recommendations/NNS  and/CC
observations/NNS>

Therefore, the frame for this statement corresponds to the
union of passive voice frame and the frame for conjunction

between two nouns as shown in the table VI.

TABLE VI. EXAMPLE — S1

FRAME KEY | VALUES FROM STATEMENT
Passive voice keys

Actor MISSING
Action Marked
Object Claim

Object Modifier -

Other modifiers payable
Conjunction keys(between noun With Adjective)

Conjunction And
Conjunction between Recommendations, observations
Modlifier of noun 1 Surveyor

Modifier of noun 2 -

One more example illustrating our approach:

S2: After checking the blood sugar level, the doctor
prescribes the diagnosis.

This statement is an instance of active voice pattern and the
precondition pattern. The corresponding frame structure for S2
is presented in table VII.

TABLE VII. EXAMPLE — S2

FRAME KEY | VALUES FROM STATEMENT
Active/passive voice keys
Actor Doctor
Modlifiers of actor -
Action Prescribes
Object Diagnosis
Precondition keys
Precondition after
Precondition on action Prescribes
Action to be performed as checking
precondition
Object of Precondition Level

We present below the inferences that can be drawn for the
sample statements S1 and S2:
1. S1 (Passive Voice and Conjunction between Nouns) - The
frame structure in table VI suggests that the adjective
surveyor 1is associated with the noun recommendations.
However, the user could have meant to associate the
adjective with both the terms joined by the conjunction.
The frame structure also indicates that actor is missing. In
this example, the developer would certainly need to know
who will mark the claim as payable.
S2 (Active Voice and Precondition) - We observed from
the frame structure (table VII) that in such statements with
preconditions, some information is intentionally or
unintentionally omitted from the requirement statement
and is assumed to come from the other part (dependent or
independent phrase) of the statement. In S2, it is not
mentioned clearly who checks the blood sugar level (it
could be a doctor, a nurse, a lab technician etc), but since
the actor of the second phrase is the doctor, developers
tend to assume that he only checks the blood sugar level.

34

The knowledge stored in the frames can further be reused
in related domain. For example, claim processing for burglary,
fire or motor accident etc is not different from each other.
Once the analyst is able to store corrected and refined
processing for one type of claim, then this stored knowledge
can be put to use for other claim processing as well.

V. DISCUSSION AND CONCLUSION

The paper proposes to utilize GKPs and Frame structures to
preprocess requirement statements and, structure them in a
formal form that can be reasoned with and, is amenable to
reuse. The advantage of our approach is that the identification
of patterns and structuring them into frames is automated and
does not require any extra manual effort. These frames can
further be used for querying, reasoning and reusing in a related
domain. Another advantage of our approach is that it is generic
across different domains. Our frames capture all the syntactic
structures present in a requirements statement. The accuracy of
our methodology is limited by the correctness of the results
provided by the Tagger and the Parser. Nevertheless, the results
using Stanford tagger and parser are quite satisfactory.

We believe that our approach will substantially improve
software requirements analysis and consequently, will lead to
improved software development. We further aim to identify
GKPs at a more granular level and improve the frame structure
accordingly. We are also working on developing query
interface for the frames.

REFERENCES

[1] C. Denger, D.M.Berry and E.Kamsties, "Higher quality requirements
specifications through natural language patterns,"”, Proceedings, IEEE
International Conference on Software: Science, Technology and

Engineering (SWSTE 03), pp.80-90, 4-5 Nov. 2003.

N. E. Fuchs and R.Schwitter, “Attempto Controlled Natural Language
for Requirements Specifications”, Proceedings, 7" International Logic
Programming  Symposium.  Workshop  Logic =~ Programming
Environments, 1995, pp.25--32

M. Minsky, “A Framework for Representing Knowledge”, J. Haugeland,
Ed., Mind Design, MIT Press, 1981.

E. Marshman, T. Morgan and 1. Meyer, “French patterns for expressing
concept relations”, Terminology, 8 (1), 2002.

R. E. Fikes and T. Kehler, “The role of frame-based representation in
knowledge representation and reasoning”, Communications of the
ACM 28(9), pp.904-920, 1985.

M. A. Hearst, “Automatic acquisition of hyponyms from large text
corpora”, Proceedings, 14th conference on Computational linguistics -
Volume 2 (COLING '92), Vol. 2. Association for Computational
Linguistics, Stroudsburg, PA, USA, pp.539-545.

M.-Ponsoda, Elena, and G. A. de Cea. "Using natural language patterns
for the development of ontologies.", Researching Specialized
Languages 47 (2011).

A. Ohnishi, “Software Requirements Specification Database Based on
Requirements Frame Model”, ICRE’96, Proceedings of the 2nd
International Conference on RE.

S. Hunston and G. Francis, "Pattern Grammar: A Corpus-Driven
Approach to the Lexical Grammar of English", Computational
Linguistics, Volume 27,n0 2.

K. Toutanova, D. Klein, C. Manning, and Y. Singer, “Feature-Rich Part-
of-Speech Tagging with a Cyclic Dependency Network”. In Proceedings
of HLT-NAACL 2003, pp. 252-259.

M. C. de Marneffe, B. MacCartney and C. D. Manning, “Generating

Typed Dependency Parses from Phrase Structure Parses”, In LREC
2006.

[10]

(1]



