
 1

Distributed mediation of ambiguous context in aware environments
Anind Dey1, 2, Jennifer Mankoff2, Gregory Abowd3 and Scott Carter2

ABSTRACT
Many context -aware services make the assumption that the
context they use is completely accurate. However, in
reality, both sensed and interpreted context is often
ambiguous. A challenge facing the development of realistic
and deployable context -aware services, therefore, is the
ability to handle ambiguous context. In this paper, we
describe an architecture that supports the building of
context -aware services that assume context is ambiguous
and allows for mediation of ambiguity by mobile users in
aware environments. We illustrate the use of our
architecture and evaluate it through three example context -
aware services, a word predictor system, an In/Out Board,
and a reminder tool.

Keywords: context -aware computing, ambiguity, aware
environments, ubiquitous computing, mediation, error handling.
INTRODUCTION
A characteristic of an aware, sensor-rich environment is
that it senses and reacts to context, information sensed
about the environment’s mobile occupants and their
activities, by providing context -aware services that
facilitate the occupants in their everyday actions.
Researchers have been building tools and architectures to
facilitate the creation of these context -aware services by
providing ways to more easily acquire, represent and
distribute sensed data [16]. Our experience shows that
though sensing is becoming more cost-effective and
ubiquitous, the interpretation of sensed data as context is
still imperfect and will likely remain so for some time. A
challenge facing the development of realistic and
deployable context -aware services, therefore, is the ability
to handle imperfect, or ambiguous, context. This paper
presents a runtime architecture that supports programmers
in the development of multi-user, interactive, distributed
applications that use ambiguous data.

Researchers in aware environments have used techniques
from the artificial intelligence (AI) community, including
Bayesian networks and neural networks [7,17], to deal with
imperfect context. However, the techniques cannot remove
all the ambiguity in the sensed data, leaving it up to the
aware environment programmer and occupants to deal
with. To alleviate this problem, we propose to leverage off
any useful AI techniques for reducing the ambiguity and
involve end users in removing any remaining ambiguity,
through a process called mediation [14].

In graphical user interface (GUI) design, mediation refers
to the dialogue between the user and computer that resolves
questions about how the user’s input should be interpreted
in the presence of ambiguity. A common example of
mediation in recognition-based GUIs is the n-best list.
Ambiguity arises when a recognizer is uncertain as to the
current interpretation of the user’s input, as defined by the
user’s intent. An application can choose to ignore the
ambiguity and just take some action (e.g. act on the most
likely choice), or can use mediation techniques to ask the
user about her actual intent. Ambiguous context, from an
aware environment, can produce errors similar to those in
recognition-based interfaces.

In previous work, we presented an architecture for the
development of context -aware services, that assumed
context to be unambiguous [8]. We also developed an
architecture to support the mediation of ambiguity in
recognition-based GUI interfaces [14]. While we build on
this past work, our contribution in this paper is to solve the
additional architectural requirements (justified in the next
section) that arise as a result of requesting highly mobile
users to mediate ambiguous context in distributed,
interactive sensing environments. We support:

• Timely delivery and update of ambiguous events
across an interactive distributed system;

• Storage of ambiguous context for use at a later
time;

• Delivery of ambiguous context to multiple
applications that may or may not be able to
support mediation;

• Pre-emption of mediation by another application
or component;

• Applications or services in requesting that another
application or service mediate; and,

• Distributed feedback about ambiguity to users in
an aware environment.

Our runtime architecture addresses these issues and
supports our goal of building more realistic context -aware
applications that can handle ambiguous data through
mediation.

Overview
We begin by presenting a motivating example used to
illustrate the requirements of mediation in a context -aware
setting. In the next section, we present brief overviews of

 2 EECS Department
UC Berkeley

Berkeley, CA 94720-1776

{jmankoff, sacarter}@cs.Berkeley.edu

3College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280

abowd@cc.gatech.edu

1Intel Research, Berkeley
Intel Corporation

Berkeley, CA 94720-1776
anind@intel-research.net

Submitted to UIST 2002

 2

previous work that we have extended. We show how they
were combined to deal with ambiguous context, and
describe additional architectural mechanisms that were
developed for the requirements unique to mediation of
context in a distributed setting. Our next section
demonstrates how our architecture and these mechanisms
support the implementation of our motivating example. We
then evaluate the architecture by describing what was
required on the part of a programmer to modify two
existing context -aware applications to support mediation.
We complete our evaluation by describing how our
architecture supports experimenting with multiple
mediators, in the context of the motivating example,
implemented entirely with our architecture. We conclude
the paper with related work and a discussion of further
challenges in mediating interactions in context -aware
applications.

MOTIVATING EXAMPLE
We have developed three applications as demonstrations of
our architecture. One in particular, a context -aware
communication system, the Communicator, will be used to
illustrate key points throughout this paper, and we
introduce it here.

The Communicator is designed for people with motor and
speech impairments. For these people, exemplified by
Stephen Hawking, computers can provide a way to
communicate with the world and increase both
independence and freedom. Many people with severe motor
impairments can control only a single switch, triggered by a
muscle that is less spastic or paralyzed than others. This
switch is used to scan through screen elements, such as the
keys of a soft keyboard. Input of this sort is very slow and
is often enhanced by word prediction.

Figure 1 (a) Communicator and (b) partner interfaces.

The Communicator, shown in Figure 1, is based on a word
predictor, that attempts to predict what word a user is
typing from the letters that have been typed so far. The
non-speaking individual uses the interface shown Figure
1a. The keyboard layout shown was chosen for optimal
efficiency for scanning users. Text is displayed to the
(abled) communication partner at top, reversed for easy
readability by someone facing the user, across a flat display
and in a separate interface (Figure 1b). Word predictors are
very inaccurate, and because of this, they usually display a
list of possible predictions that the user scans through for

the correct choice, often to no avail. Word prediction is
especially difficult to use for spoken communication
because the speed of conversational speech often reaches
120 words per minute (wpm) or more, while users of word
prediction rarely go above 10 wpm.

The goal of the Communicator is to facilitate
conversational speech through improved word prediction.
We augment word prediction by using a third party
intelligent system, the Remembrance Agent [18], to select
conversation topics, or vocabularies, based on contextual
information including recent words used, a history of the
user’s previous conversations tagged with location and time
information, the current time and date and the user’s
current location. These vocabularies help to limit the set of
predicted words to those that are more relevant and thus
improve prediction. For example, when in a bank, words
such as "finance" and "money" should be given priority
over other similar words. This has been shown to be
effective for predicting URLs in the Netscape™ and
Internet Explorer™ web browsers and, in theory, for non-
speaking individuals [12,15]. Our goal was build an
application to support context -aware word prediction for
non-speaking individuals.

Unfortunately, it is hard to accurately predict the topic of a
user’s conversation, and because of this, the vocabulary
selection process is ambiguous. We experimented with
several mediation strategies, ranging from simply selecting
the top choice vocabulary to stopping the conversation in
order to ask the user which vocabulary is correct.

REQUIREMENTS
The focus of this paper is to support programmers in
building realistic context -aware applications by first
addressing the architectural issues needed to support
mediation of ambiguous input. The first two issues are
obvious: there must exist a system that is able to capture
context and deliver it to interested consumers, and there
must be mediation techniques for managing ambiguity.
These issues were dealt with in our previous work. In the
following subsections we discuss the interesting additional
challenges that arise from mediating ambiguous context, all
of which are supported by the architecture presented here.

Context Acquisition and Mediation
One common characteristic of context -aware applications is
the use of sensors to collect data. In the Communicator,
location and time information is used to help improve word
prediction. A user’s location can be sensed using Active
Badges, radar, video cameras or GPS units. All of these
sensors have some degree of ambiguity in the data they
sense. A vision system that is targeted to identify and locate
users based on the color of the clothing they wear will
produce inaccurate results if multiple users are wearing the
same color of clothing. The ambiguity problem is made
worse when applications derive implicit higher-level
context from sensor data. For example, an application may
infer that a meeting is occurring when a number of users
moving into the same room in a given time interval.

Displayed text for
communication
partner

Vocabularies
to be mediated

Displayed text in progress
for communicator

(a) (b)

 3

However, there may be other explanations for this
phenomenon, including random behavior, lunchtime or the
workday has started and multiple people are arriving at
their desk. Even with the use of sophisticated Bayesian
networks or other AI techniques, low- and high-level
inferences are not always correct, resulting in ambiguity.
Distribution

Most context -aware applications are distributed across
multiple computing devices. Applications or system
components that are interested in context (often called
subscribers) are running on devices that are remote from
components that are gathering context. The component
gathering the context may not be the component that
mediates it, since it may not have an interface. In the
Communicator, the user’s interface and the communication
partner’s interface are running on separate devices. It is
important to minimize the number and duration of network
calls in an interactive distributed system, and thus it is
important to only send the information absolutely needed
for mediation to only those components that are performing
the mediation.
Storage

Because context -aware systems are often distributed and
asynchronous, and because sensor data may be used by
multiple applications, it is beneficial to store data being
gathered by sensors. The Communicator takes advantage of
stored information by accessing past conversations that
match the user’s current location and time. Storing context
data allows applications that were not running at the time
the data was collected to access and use this historical data.
When that data is ambiguous, several versions must be
saved, making the storage requirements prohibitive.
Interesting issues to address are when should we store data
(before or after ambiguity is resolved) and what should we
store (ambiguous or unambiguous context).
Multiple Subscription Types

In many context -aware systems, multiple subscribers are
interested in a single piece of sensed input. An interesting
issue is how to allow individual components to “opt in” to
ambiguous context while allowing others to “opt out”.
Some components may wish to deal with ambiguity while
others may not. For example, non-interactive components
such as a data logging system may not have any way to
interact with users and therefore may not support
mediation. Other components, like the Communicator
interface, may only wish to receive unambiguous data. In
the same manner, a logging system might wish to only
record data that is certain. A second issue to deal with is
allowing components to deal with ambiguous data while
not requiring them to perform mediation. Later in the
paper, we will discuss a word predictor widget in the
Communicator that has this same property.

Pre-emption of Mediation

In our system, multiple, completely unrelated components
may subscribe to the same ambiguous data source. Both

Communicator interfaces have the ability to mediate
ambiguous vocabularies, for example. An important
concern to resolve is what to do when these components
start to mediate that data at the same point in time.

Forced mediation

There are cases where a subscriber does not wish to
mediate ambiguous data itself, but may still wish to exert
some control over the timing of when another subscriber
completes mediation. One way of doing this is allowing it
to request immediate mediation by others. In the
Communicator, when a conversation ends, a component
responsible for managing past conversations wants to store
this conversation in an appropriate vocabulary. This
component does not have an interface, so it requests that
the application mediate the possible vocabularies.
Feedback

When distributed sensors collect context about a user, a
context -aware system needs to be able to provide feedback
about the ambiguous context to her, particularly when the
consequences are important to her. In a typical aware
environment, users are mobile and may interact with
multiple devices throughout their interaction with the
environment. For this reason, the architecture needs to
support the use of remote feedback, providing feedback
(visual or aural, in practice) on a device that may be remote
from both the subscribing component and the sensing
component. Take the previous example of a user’s motion
being monitored by a video camera to provide identity and
location-based services. As the user moves down a hallway,
a device on the wall may display a window or use
synthesized speech to indicate who the video camera
system thinks the user is. This device is neither a subscriber
of the context nor the context sensor, but simply has the
ability to provide useful feedback to users about the state of
the system. We will present an implemented example of
feedback in our discussion of the reminder application.

In the next section, we will discuss the architecture we
designed and implemented to deal with these requirements.

MEDIATING AMBIGUOUS CONTEXT
We built support for mediation by extending an existing
toolkit, the Context Toolkit [8]. The Context Toolkit is a
software toolkit for building context -aware services that
support mobile users in aware environments. There are two
basic building blocks that are relevant to this discussion:
context widgets and context interpreters. Figure 2 shows
the relationship between context components and
applications.

Context widgets, presented elsewhere [8] and based on an
analogy to GUI widgets, are responsible for collecting
contextual information about the environment and its
occupants. They provide a uniform interface to components
or applications that use the context, hiding the details of the
underlying context -sensing mechanism(s). These widgets
allow the use of heterogeneous sensors that sense redundant
input, regardless of whether that input is implicit or

 4

explicit. Widgets maintain a persistent record of all the
context they sense. They allow applications and other
widgets to both query and subscribe to the context
information they maintain.

Interpreter

InterpreterWidget

Sensor
Context

Architecture

ApplicationApplication

Interpreter

InterpreterWidget

Sensor
Context

Architecture

ApplicationApplication

Figure 2 Context Toolkit components: arrows indicate data flow.

A context interpreter is used to abstract or interpret context.
For example, a context widget may provide location
context in the form of latitude and longitude, but an
application may require the location in the form of a street
name. A context interpreter may be used to provide this
abstraction. A more complex interpreter may take context
from many widgets in a conference room to infer that a
meeting is taking place. Both interpreters and widgets are
sources of ambiguous data.

Modifications for Mediation
In order to explain how we met the requirements given in
the previous section, we must first introduce the basic
abstractions we use to support mediation. We chose to base
our work on the abstractions first presented in the OOPS
toolkit [14], a GUI toolkit that provides support for
building interfaces that make use of recognizers that
interpret user input. We chose OOPS because it explicitly
supports mediation of single - user, single application, non-
distributed, ambiguous desktop input, a restricted version
of our problem.

OOPS provides an internal model of recognized input. This
model encapsulates information about ambiguity and the
relationships between input and interpretations of that input
that are produced by recognizers in a graph (See Figure 3).
The graph keeps track of source events, and their
interpretations (which are produced by one or more
recognizers).

Figure 3 An event graph representing predicted words from context.

Like OOPS, our toolkit automatically identifies ambiguity
in the graph and intervenes between widgets and
interpreters and the application by passing the directed
graph to a mediator. A mediator displays a portion of the
graph to the user. Based on the user’s response, the
mediator accepts or rejects events in the graph. Once the
ambiguity is resolved (all events in the graph are accepted
or rejected), the toolkit allows processing of the input to
continue as normal. Figure 4 shows the resulting changes.

The gray boxes indicate components that have been added
to the Context Toolkit architecture illustrated in Figure 2 to
support mediation of ambiguous context.

Subsystem

Application

Mediation
Subsystem

Check for ambiguity,
Mediate until resolved

Mediator Mediator Mediator

Interpreter

InterpreterWidget

Sensor
Context

Architecture

Mediation
Subsystem

Application

…
Subsystem

Application

Mediation
Subsystem

Check for ambiguity,
Mediate until resolved

Mediator Mediator Mediator

Interpreter

InterpreterWidget

Sensor
Context

Architecture

Mediation
Subsystem

Application

Mediation
Subsystem

Application

…

Figure 4 The architecture for the extended Context Toolkit. Everything in
the gray box is new.

Example
Before discussing the additional changes necessary to
support the requirements listed above, we illustrate the use
of ambiguous hierarchical events in the Context Toolkit
with an example. In the Communicator system, time and
location information is used to choose relevant
vocabularies. An intelligent recognition system provides
the most likely vocabularies and then these are interpreted
into the words the user is most likely to be typing. The set
of vocabularies and the set of words are stored as sets of
alternatives with associated confidences (a fairly common
representation). Each of these alternatives becomes an
ambiguous event in our system. The result is a directed
graph, like that shown in Figure 3.

Often only one path through this graph is correct from the
user’s perspective (e.g. mall & Wednesday à shopping à
clothes). We call this situation ambiguous and mediation is
used to resolve the ambiguity. In particular, a mediator will
display feedback about one or more interpretations to the
user, who will then select one or repeat her input.

Now suppose an application subscribes to this data. All
three of the applications we present later make use of
location data.

Subscribers to the ambiguous location data may then:

1) Wait until all the ambiguity has been resolved before
taking any action on a location update; or,
2) Take action on the ambiguous data by:

a) Asking for a user to help mediate the data;
b) Picking one of the alternatives (usually the one with

the highest confidence) and performing an action with it; or
c) Performing some higher-level inference (such as the

word a user is typing) with its own ambiguity. This
increases the depth and complexity of the event graph.
Modifications for New Requirements
The previous subsections described the basic abstractions
used to support mediation: widgets, interpreters,
applications, mediators and the event graph. We now
explain the additional architectural mechanisms needed to

shopping movieshopping movie

buy clothes watch timesbuy clothes watch times

Wed. 1pm mallWed. 1pm malltime & location

vocabularies

words

 5

support the unique problems faced by mediation of
ambiguous context, introduced above.

Distribution
The original OOPS toolkit was designed to support
mediation in non-distributed GUI applications. It always
passed a pointer to the entire graph to mediators.

In order to support appropriate response times in the
distributed environment of the Context Toolkit, only those
portions of the event graph that have subscribers are passed
across the network. Otherwise, each time a new event is
added or an existing event is accepted or rejected, every
component interested in the ambiguous context would have
to be notified. In a distributed system, this would impede
our ability to deliver context in a timely fashion, as is
required to provide feedback and action on context.

No single component contains the entire graph being used
to represent ambiguity of a particular piece of context. The
graph is, instead, distributed across multiple components
(widgets and interpreters) and copies of particular graph
levels are provided to applications, as needed. Each event
or element in the graph has a list of its source events
(parent(s)) and a list of its interpretations (children). Rather
than having the lists contain full representations of the
sources and interpretations, the lists instead contain event
proxies. An event proxy consists of an event id, the status
(accepted, rejected or undetermined) of the event and
communication information (hostname, port number,
component name) for the component that produced the
event and contains its full representation. Because
components mostly care about the status of their sources
and interpretations, the proxies allow components to
operate as if they had local access to the entire graph and to
request information about parts of the event graph that they
don’t have locally.

Storage
As described above, storage of context data is a useful
feature of a context -aware architecture. However, when
context is ambiguous, it is not immediately obvious what
should be stored and when. One option is to store all data,
regardless of whether it is ambiguous or not. This option
provides a history of user mediation and system ambiguity
that could be leveraged at some later time to create user
models and improve recognizers’ abilities to produce
interpretations. We chose to implement a less complex
option: By default, every widget stores only unambiguous
data. Another dimension of storage relates to when data is
stored. Since we are storing unambiguous data only, we
store context data only after it has been mediated.

The reason for our choices is two-fold: storage is simpler to
understand and we gain the benefits offered by knowledge
of ambiguity during the mediation process, just not at some
arbitrary time after mediation (when the record of
ambiguity has been discarded). In any case, it would be
relatively simple to modify the architecture to support the
second option as a default.

Multiple Subscription Types
Because multiple components may be interested in the
same piece of context, and some may be interested in
ambiguous data while others are not, components need a
way of specifying whether they want to handle ambiguous
data. In our architecture, they simply set a Boolean flag to
specify this.

Components that accept ambiguous data are not required to
perform mediation. They can take any action they wish
with the unmediated data. Components that accept
unambiguous data also are not required to perform
mediation, but they must wait until another component
does (or force mediation, as described below) before they
receive the data.

In either case, when a component successfully mediates
data, other components interested in the data are notified.
The architecture keeps track of all the recipients of the
ambiguous data and updates them. As well, it keeps track
of any components waiting for unambiguous versions of
the data and passes the mediated data to them. Finally it
notifies the components that produced the ambiguous data
who can use the data to improve their ability to produce
new data.

Pre-Emption of Mediation
Because multiple components may subscribe to the same
ambiguous data, mediation may actually occur
simultaneously in these components. If multiple
components are mediating at once, the first one to succeed
“interrupts” the others and updates them. This is handled
automatically by the architecture when the successful
mediator accepts or rejects data. The architecture notifies
any other recipients about the change in status. Each
recipient determines if the updated data is currently being
mediated locally. If so, it informs the relevant mediators
that they have been pre-empted and should stop mediating.
Past work did not handle mediation in multiple distributed
components. Other strategies for handling simultaneous
mediation are discussed in the future work section.

Forced Mediation
In cases where a subscriber of ambiguous context is unable
to or does not want to perform mediation, it can request that
another component perform it. The subscriber simply
passes the set of ambiguous events it wants mediated to a
remote component and asks that remote component to
perform mediation. If the remote component is unable to do
so, it notifies the requesting component. Otherwise, it
performs mediation and updates the status of these events,
allowing the requesting component to take action.

Feedback
Since context data may be gathered at locations remote
from where the active application is executing and at times
remote from when the user is interacting with the active
application, there is a need for distributed feedback services
that are separate from applications. To support distributed
feedback, we have extended context widgets to support
feedback and actuation via output services. Output services

 6

are quite generic and can range from sending a message to
a user to rendering some output to a screen to modifying
the environment. Some existing output services render
messages as speech; send email or text messages to
arbitrary display devices; and control appliances such as
lights and televisions. Any application or component can
request that an output service be executed, allowing any
component to provide feedback to a user.

In this section, we described modifications to the Context
Toolkit that will allow for human-driven distributed
mediation of imperfectly sensed and interpreted context. In
the next two sections, we demonstrate how the architectural
solutions provided by the modified Context Toolkit were
used to implement our motivating example and to modify
two existing applications so that they can support mediation
for ambiguity.

USE OF ARCHITECTURE
In this section, we use the Communicator to illustrate the
runtime behavior of the architecture. We also use it to show
how, in practice, a programme r designing a context -aware
application uses the architecture.

Figure 5 Architecture for the Communicator System

Runtime description of Communicator architecture
In order to illustrate how the toolkit works at runtime, we
first need to describe some details of the Communicator
system. Figure 5 shows the architecture described below.

Applications and widgets
The Communicator makes direct use of data from three
widgets: a soft keyboard, a word predictor and a vocabulary
selector. The keyboard widget produces unambiguous data
and simply lets other components know what the user is
typing. The word predictor widget produces ambiguous
data and uses the current context to predict what word the
user is trying to type. It uses a unigram, frequency-based
method common in simple word predictors, as well as a
history of recent words. It subscribes to the keyboard to get
the current prefix (the letters of the current word that have
been typed so far). As each letter is typed, it suggests the
most likely completions. The word predictor also uses
weighted vocabularies to make its predictions. It subscribes
to the vocabulary widget to get a list of ambiguous,
probable vocabularies and uses the probability associated
with each suggested vocabulary to weight the words from
that vocabulary. As described earlier, the vocabulary

widget uses the Remembrance Agent [18] to suggest
relevant, yet ambiguous vocabularies for the current
conversation.

If the person the user is communicating with also has a
display available, a companion application can be run. This
application presents an interface (see Figure 1), showing
the unambiguous words selected by the user and the current
set of ambiguous vocabularies.

In summary, this application uses two unambiguous
widgets (GPS and keyboard), and two widgets that generate
ambiguous data, one based on a third party recognizer
(vocabulary), and one based on an in-house recognizer
(word). Unlike typical context -aware systems, ambiguity in
our systems is retained, and, in some cases, displayed to the
user.

Mediation
Ambiguous information generated in our system includes
potential vocabularies and potential words. The architecture
allows a component to mediate ambiguous context, use it as
is, or use it once something else has mediated it. All three
cases exist in this system. The application mediates both
ambiguous words and vocabularies. The word predictor
uses ambiguous vocabularies. The vocabulary widget uses
unambiguous words after the user has mediated them. The
word mediator is graphical and it displays ambiguous
words as buttons in a horizontal list, shown in situ near the
bottom of Figure 1a. A word may be selected by the user or
ignored. The mediator replaces all the displayed words
whenever it receives new words from the word predictor.

Figure 6 Screenshots of mediators (a) choice mediator for words or
vocabularies and (b) required mediator for vocabularies.

We experimented with four different strategies for
mediating ambiguous vocabularies. The first simply
accepts the vocabulary with the highest probability without
user input (equivalent to no mediation at all). The second
(see Figure 6a) displays the choices similarly to words, and
allows the user to ignore them. The last two require the user
to choose a vocabulary at different points in the
conversation (Figure 6b). The third requires a choice when
a new conversation starts and new ambiguous vocabularies
are suggested. The fourth displays the vocabulary choices,
but only requires that the user choose one when a
conversation has ended. The mediated vocabulary name is
used to append the current conversation to the appropriate
vocabulary file, which then improves future vocabulary and
word prediction. These approaches demonstrate a range of
methods whose appropriateness is dependent on recognizer
accuracy. The architecture easily supports this type of

(a)

(b)

Communicator

Word
Mediator

Vocabulary
Mediator

Forced Vocabulary
Mediator

Word
Predictor
Widget

Companion

Vocabulary
Mediator

Keyboard
Widget

GPS
Widget

Vocabulary
Widget

ambiguous data
unambiguous data

 7

experimentation by allowing programmers to easily swap
mediators.

Event Graph
We will now describe how the architecture works from a
system perspective. When all of the widgets and user
interfaces are started, the word predictor generates an initial
set of guesses of likely words, based on an "empty" prefix
from the keyboard widget.

The source event (the empty prefix) is sent to the word
predictor for interpretation and the interpretations
(predicted words) are passed to a handler in the user
interface (UI), which immediately routes them to the word
mediator for display because they are ambiguous. The user
may select one, in which case, the mediator accepts that
word and rejects all of the others. The toolkit then proceeds
to notify the interpretations’ and source event’s producers
(word predictor and keyboard widgets, respectively), and
all the recipients. The word predictor adds the accepted
word to a "recent words” list used to enhance prediction.
The Communicator UI and the companion application’s UI
(Figure 1) display the word to the user and companion,
respectively.

If the user types a letter with the soft keyboard, that letter is
passed to the Communicator UI (which displays it at the
bottom) and to the word predictor. The word predictor uses
that and all subsequent letters as sources of its predictions
and once again the user may resolve the predictions by
selecting a word.

 (a) (b) (c)

Figure 7 (a) Sample event graph and distribution across components (c).
Events exist both in the components that created them and the (b)
components they were sent to (e.g. the “money” word event exists in the
Word Predictor Widget and the Communicator interface).

Meanwhile, the vocabulary widget attempts to find relevant
vocabularies every time the user enters a new word or the
user changes location. These ambiguous vocabularies are
received by the word predictor widget, which then predicts
new words (see Figure 7). The potential vocabularies are
displayed by a vocabulary mediator in both the
Communicator UI and the companion’s UI. If either person
selects a vocabulary, the architecture notifies the other
mediator that it has been pre-empted. When using the third
vocabulary mediation strategy, the vocabulary widget
forces mediation to request selection of a vocabulary at the

end of a conversation (signaled by a long break in keyboard
use). The architecture passes this request on to each
subscriber to see if it can perform mediation.

The Communicator receives the request and creates the
dialog box mediator shown in Figure 6b. The user interacts
with the mediator and selects a vocabulary. The event
hierarchy is updated, and the vocabulary widget is notified
that an event it created has been accepted. The widget
writes the conversation out to disk in the appropriate
vocabulary file.

Writing a Program
Two features define an application in our system: the data it
subscribes to, and the mediators it uses. From the
programmer’s perspective, a new context -aware system
may entail the creation of an application, mediators and
widgets (the last two only if mediators and widgets from
the available library of components is not sufficient).
Figure 8 illustrates the demands on a programmer when
creating each of these components from scratch.
Application:
 Specify whether to handle ambiguous data or not
 Create subscriptions to widgets
 Retrieve data from storage, if necessary
 Install mediators
 Handle results of subscriptions
Mediator:
 Produce some feedback about the data being mediated
 Request info about data’s parents or children, if needed for
 mediation
 Allow the user to interact
 Accept or Reject events based on user interaction (i.e. mediate)
 Take mediator-specific action if pre-empted or if forced to mediate
Widget:
 Specify the data you provide
 If ambiguous data, create an event graph to send to subscribers
 Garbage collect and perform widget-specific actions on mediated data
Figure 8 Steps for building system components

The programmer can create subscriptions1 in the
initialization code of the application. No distinction is made
between subscribing to ambiguous or unambiguous
context. Any subscription data that arrives is left for the
programmer to handle, as this is application-specific. The
programmer also specifies whether the application wishes
to receive ambiguous data using a simple Boolean flag. In
the Communicator, the flag is set to false, meaning that it
will only receive unambiguous data. The word prediction
widget sets this flag to true, since it is able to use the
likelihood of ambiguous vocabularies to improve its
prediction accuracy. If an application needs access to
historical context, it simply asks the relevant widget for it.
Information retrieved from storage is never ambiguous, as
stated earlier.

The programmer also specifies which mediators to install
during initialization, thus allowing him to experiment with
mediators directly. The programmer may wish to extend an
existing mediator (from our library of mediators) in some

1 Note that italics are used to highlight the architectural

issues that impact program design.

Keyboard

Companion

Communicator

money moviemoney movie

GPSmall

Vocabularyshopping moviesshopping movies

Word
Predictor

m om o

money moviemoney movie

mall

shopping movies

m om o

shopping movies

shopping movies

 8

way to be more specific to his application. In the case of
the Communicator, this means modifying a reusable
graphical mediator to extract the names of vocabularies or
words from the ambiguous events in order to display
meaningful choices to the user.

Each mediator must support the acquisition of user
feedback about ambiguous data. This is usually done
through the application’s user interface. If this is not
appropriate, the mediator can ask another component, such
as the data’s producer, to present feedback to the user.
Remote feedback is used in the reminder application we
discuss in the next section.

When an event is accepted or rejected by the user, the
mediator updates the local part of the event graph and
notifies any recipients and the event producer that the event
was accepted. Due to the issues involved in distribution
described earlier, only a portion of the event hierarchy sent
to a mediator. If necessary, a mediator may request
additional events such as the sources or interpretations of
the events it is mediating. In practice, we have found that
the events the application subscribed to are sufficient for
mediation to proceed in most cases. This is because
applications tend to subscribe to events that are of interest
to the user and appropriate to be displayed during
mediation.

A mediator must also provide code indicating what to do
when it is pre-empted by another mediator. For example,
both the Communicator UI and the companion UI include a
vocabulary mediator. If either user selects a vocabulary, the
other is pre-empted. The mediator should clean things up
visually and notify the user that someone else has
completed mediation. The Communicator's word mediator
supports this by removing the choices it has presented to
the user.

Finally, because an unrelated subscriber may force
mediation , a mediator must provide code for when it is
asked to immediately mediate. If the mediator is able to
mediate, nothing special is required. However, if it does not
have the necessary information to resolve ambiguity itself,
it should clean up its display and pass control to the next
mediator in line. The Vocabulary widget forces the
Communicator’s vocabulary mediator to mediate when a
conversation has ended because it needs to know which
vocabulary file the conversation should be appended to.

A programmer may need to create a new widget to
encapsulate a new source of context data. The widget must
specify the type of data it produces. When it produces new
data, it notifies all subscribers. If the data is ambiguous, a
new event graph is created with the data as the root. If it is
unambiguous, no event graph is created. When the data is
mediated, the widget is notified so it can garbage collect
the event and take actions on the event (such as appending
a conversation to the appropriate vocabulary file).

Summary
We have shown how the architectural changes described in
this paper are used in practice. First we illustrated the
runtime behavior of the Communicator application. Then
we described what a programmer needs to know to create
components and applications in our architecture. Now we
discuss the impact our architecture had on the design of
three applications.

EVALUATION OF ARCHITECTURE
We evaluated our architecture by building three
applications. The first two applications were simple
modifications of existing applications to include ambiguous
sensors and mediation. The third application was built from
scratch and uses a mixture of ambiguous and unambiguous
data sources.

In/Out Board
The first application we modified is the In Out Board [8],
an application that displays the current in/out status for a
group of building occupants. In the original system, an
unambiguous location widget informed the application
when a user entered or left a room. Users indicated their
status by docking a Java iButton®.

We substituted an ambiguous location widget for the
original widget. Rather than requiring explicit action from
the user to determine in/out status, the new widget uses
historical information combined with a motion detector to
guess who is entering or leaving.

(a) (b)
Figure 9 (a) Photograph of In-Out Board physical setup; (b) In-Out Board
with transparent graphical feedback.

Because the original system did not support ambiguity, it
ignored the fact that docking an iButton® merely provides
information about user presence and not about user arrival
or departure from a room. The new widget not only
introduces this ambiguity about user state, but, in an
attempt to require less explicit user action, also introduces
additional ambiguity about the user’s identity. We added a
mediator that handles both types of ambiguity. The

iButton
dock

Display

Keyboard Speakers

Microphone

Motion

Detector

 9

mediator displays the current best guess to the user (Figure
9b), and allows her to correct it in a variety of modalities
ranging from lightweight to heavyweight, including speech,
docking her iButton®, and typing at a keyboard.

The application itself was modified as follows. A total of
twenty-two lines were changed or added. Fourteen were
minor substitutions where references were changed from
the unambiguous widget to the ambiguous one and three
were new library imports. Two new class variables were
created to hold pointers to the mediator and three lines of
code were added to instantiate the mediator and pass it one
piece of necessary information about the application, a
pointer to its user interface.

The new widget used by the In/Out Board is reusable and is
in fact used by the next application as well. The mediator
we use is an extension of a mediator from our library of
mediators, modified to display application-specific text.

CybreMinder
The second application we modified is CybreMinder [9], a
situation-aware reminder system. The original application
subscribes to every widget that is running and allows the
user to create reminders triggered by any combination of
events that these widgets might generate. For example, a
user might set up a reminder to go to a meeting when at
least three other people are present in the meeting room at
the right time. Delivery of reminders is performed
whenever the current context appears to match the triggers
specified by the user. The application assumes that the
reminder has been successfully delivered and acted upon.

We modified the delivery mechanism by adding a mediator
to remove this assumption. The mediator gives the user the
opportunity to reject a reminder within a certain time after
its delivery. This indicates that the reminder should be re-
delivered the next time the current context matches the
trigger. If the user does not reject it, the system proceeds to
change its status to ‘delivered’ just as it would have done
immediately in the original application.

The original application was modified to subscribe to all
iButton® widgets so the application would be notified
when a user docked to mediate a reminder and to install a
custom mediator. The mediator associated with
CybreMinder makes use of remote widget feedback
services to display feedback about the reminder status. It is
an extension of a timer mediator modified to display
application-specific messages. The application
modifications required the addition of 3 library imports and
27 lines of code either modified or added.

Word Predictor
Our third application, the Communicator, was built from
scratch. The system we built consists of four widgets, four
mediators, two ambiguous recognizers (one off the shelf
and the other homegrown), and two interfaces. We have
already illustrated the architecture in Figure 5 and the
application in Figure 1. This application demonstrates two
important features of the architecture. First, it shows that it

supports experimentation with mediation by making it
trivial to swap mediators in and out. Adding or replacing a
mediator only requires two lines of code. Second, it shows
that it is not difficult to build a compelling and realistic
application. The main Communicator application consists
of only 435 lines of code, the majority of which deals with
GUI issues. Only 19 lines deal with mediation and 30 deal
with context acquisition.

In Summary
We modified two existing applications and built one more
from scratch. Between them, they demonstrate all the
required features of the architecture. They use (and reuse)
four ambiguity-generating widgets. The first two
applications required minor modifications to deal with
ambiguity. The third application was built from scratch and
very little of its code was dedicated to dealing with
mediation or context acquisition. All three applications
involve distributed event hierarchies and use reusable
mediators to resolve ambiguity.

RELATED WORK AND CONCLUSIONS
Over the past several years, there have been a number of
research efforts aimed at creating a ubiquitous computing
environment, as described by Weiser [20]. Aware
environments are environments that can automatically or
implicitly sense information about their state and users who
are present and take action on this context. Past work such
as the Reactive Room [6], Neural Network House [17],
Intelligent Room [4], and KidsRoom [1] do not provide
explicit reusable support for users to handle or correct
uncertainty in the sensed data and its interpretations. A
number of architectures that facilitate the building of
context -aware services, such as those found in aware
environments, have been built [2,8,10,11,19]. As in the
case of the aware environments, a simplifying assumption
is made that the context being sensed is unambiguous.

There are exceptions to this assumption. For example, the
Remembrance Agent uses context to retrieve information
relevant to the user and explicitly addresses ambiguity in its
interface [18] by showing users multiple potentially
relevant pieces of information and letting him select those
that are interesting. Multimodal Maps, a map-based
application for travel planning, also addresses ambiguity by
using multimodal fusion to combine direct manipulation,
pen-based gestures, handwriting and speech input, and then
prompts the user for more information to remove any
remaining ambiguity [3]. QuickSet, another multi-modal
map application also prompts the user for disambiguating
information [5]. These three services demonstrate
mediation techniques that allow the user to correct
ambiguity in sensed input. They all require explicit input on
the part of the user before they take action. Our goal is to
provide an architecture that supports a variety of
techniques, ranging from implicit to explicit, that can be
applied to context -aware services. By removing the
simplifying assumption that all context is certain, we are

 10

attempting to facilitate the building of more realistic
context -aware services.

A valid question is why not use sensors that can be more
accurately interpreted. Unfortunately, in practice, due to
both social and technological issues, there are few sensors
that are both reliable and appropriate. As long as there is a
chance that the sensors may make a mistake, we need to
provide the users with techniques for correcting these
mistakes. None of the sensors we chose are foolproof
either, but the combination of all the sensors and the ability
to correct errors before applications take action is a
satisfactory and necessary alternative.

Future Work
The extended Context Toolkit supports the building of
more realistic context -aware services that are able to make
use of ambiguous context. But, we have not yet addressed
all the issues raised by this problem.

Although we have implemented a basic algorithm for
handling multiple applications attempting to mediate
simultaneously, we would like to add a more sophisticated
priority system that allows mediators to have control over
the global mediation process.

We also need to build more context -aware services using
this new architecture and put them into extended use. This
will lead to both a better understanding of how users deal
with having to mediate their implicit input and a better
understanding of the design heuristics involved in building
these context -aware services.

Finally, this work does not attempt to answer the question
of how best to handle mediation in such settings. The
design of mediation for distributed multi-user settings and
in settings with implicit input is still an open question. Our
architecture makes it easy for programmers to experiment
with different mediation techniques and we hope that it will
enable us to learn more about appropriate ways of handling
mediation.

The extended Context Toolkit supports the building of
context -aware services that deal with ambiguous context
and allow users to mediate that context. When users are
mobile in an aware environment, mediation is distributed
over both space and time. The toolkit extends the original
Context Toolkit providing mediators that provide the
timely delivery of context via partial delivery of the event
graph and distributed feedback via output services in
context widgets. We demonstrated and evaluated the use of
the extended Context Toolkit through the modification of
two example context -aware applications and the creation of
a new context -aware application. We showed that our
architecture made it relatively simple to create more
realistic context -aware applications that can handle the use
of ambiguous context.

REFERENCES
1. Bobick, A. et al. The KidsRoom: A perceptually-based

interactive and immersive story environment. PRESENCE 8, 4
(1999), 367-391.

2. Brown, P.J. The stick-e document: A framework for creating
context -aware applications, in Proc. of Electronic Publishing
(1996), 259-272.

3. Cheyer, A. & Julia, L. Multimodal maps: An agent-based
approach, in Proc. of the International Conference on
Cooperative Multimodal Communication (1995), 103-113.

4. Coen, M. The future of human-computer interaction or how I
learned to stop worrying and love my intelligent room. IEEE
Intelligent Systems 14, 2 (1999), 8-10.

5. Cohen, P.R. et al. QuickSet: Multimodal interaction for
distributed applications, in Proc. Of Multimedia ’97, 31-40.

6. Cooperstock, J. et al. Reactive environments: Throwing away
your keyboard and mouse. CACM 40, 9 (1997), 65-73.

7. Cutrell, E., Czerwinski, M. & Horvitz, E. Notification,
disruption and memory: Effects of messaging interruptions on
memory and performance. In Proc. of Interact ’01, (2001),
263-269.

8. Dey, A.K. et al. A conceptual framework and a toolkit for
supporting the rapid prototyping of context -aware
applications. Human-Computer Interaction Journal 16, 24
(2001), 97-166.

9. Dey, A.K. & Abowd, G.D. CybreMinder: A context -aware
system for supporting reminders, in Proc. of HUC 2000, 172-
186.

10. Harter, A. et al. The anatomy of a context -aware application,
in Proc. of Mobicom ’99 (1999), 59-68.

11. Hull, R., et al. Towards situated computing, in Proc. of ISWC
’97 (1997), 146-153.

12. Lesher, G. W., et al. Techniques for augmenting scanning
communication. Augmentative and Alternative
Communication 14, 81-101.

13. Lesher, G.W. & Rinkus, G.J. Domain-specific word
prediction for augmentative communications.
Proceedings of the RESNA 2002 Annual Conference,
Reno (2002).

14. Mankoff, J. et al. OOPS: A Toolkit Supporting Mediation
Techniques for Resolving Ambiguity in Recognition-Based
Interfaces. Computers and Graphics 24, 6 (2000), 819-834.

15. McKinlay, A., et al. Augmentative and alternative
communication: The role of broadband telecommunications..
IEEE Transactions on Rehabilitation Engineering. 3(3),
September 1995.

16. Moran, T.P and Paul Dourish, editors. Special Issue on
Context -Aware Computing. Human-Computer
Interaction Journal 16, 2-4 (2001), 87-420.

17. Mozer, M. C. The neural network house: An environment that
adapts to its inhabitants, in Proc. of the AAAI Spring
Symposium on Intelligent Environments (1998), 110-114.

18. Rhodes, B. The Wearable Remembrance Agent: A system for
augmented memory. Personal Technologies 1, 1 (1997), 218-
224.

19. Schilit, W.N., System architecture for context -aware mobile
computing, Ph.D. Thesis, Columbia University, May 1995.

20. Weiser, M. The computer for the 21st century. Scientific
American 265, 3 (1991), 66-75.

