
Page 1 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

The Junior Woodchuck 
Manual  

of 
Processing Programming  

for  
Android Devices 

The Image  The Code 

 

void setup( )  
{ 
   s ize( 400, 600 );  
   background( 0, 0 ,  200 );    // blue 
  f i ll( 200, 0, 0  ) ;                                  //red 
} 
 
void draw( )  
{ 
     el lipse( mouseX,     mouseY,  
                               pmouseX, pmouseY );    
}  

 

Page 2 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Chapter 3 
Forests and Trees ??? 

The Image  The Code 

 

void setup( )  
{ 
   s ize( 400, 600 );  
   smooth( );  
   background( 200, 200 ,  0  ) ;  
   f i ll( 0,  200, 0 );  
} 
 
void draw( )  
{ 
     f il l( random(256),  
                   random(256),  
                   random(256) );  
     el lipse( mouseX,   mouseY, 
                     pmouseX, pmouseY );  
} 
 

 
You can, if you wish, spend the next few weeks making drawings like you 
did in the first class.  However, you will miss out on at least two of the big 
advantages of programming with Processing – animation and games.   
 
If you want to add animation to your program and use that to make a 
computer game, more work is necessary.  The first thing we need to do is 
to add some “structure” to your code so it is easier for you to write, 
debug, and modify to make it better. 
 
Let’s get started. 

Page 3 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Section 1 
 
Functions Give Us a Map... 
 
 

The Image  The Code 

void setup()
{
 size(400, 600);
 smooth();
 strokeWeight(5);
 background(200, 200 , 0);
 fill(0, 200, 0);
}

void draw()
{
 stroke(mouseX, mouseY, pmouseX);
 line(mouseX, mouseY,
 pmouseX, pmouseY);
}

Page 4 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

 
We begin with functions. You used Processing’s functions in our first
class to draw your images. The “deal” with Processing was that
Processing wrote the functions and you used them.

For a few special functions we can turn the deal around. We can write
functions and Processing will use them.

The first one of these special functions is the setup() function. The
parentheses are required and they must be empty.

 The name must be spelled exactly as shown including the case of the
letters. There cannot be any capital or upper case letter.

If we write the function, setup() in our code, Processing will look for
it, find it, and run it setup()!

You may be asking, “what does setup() do?

The answer is, “anything we tell it to do” which is great. Usually we
use setup() to “set the stage” of our program.

Let’s look at the setup() function that is at the beginning of this
section on page 3:

void setup()
{
 size(400, 600);
 smooth();
 strokeWeight(5);
 background(200, 200 , 0);
 fill(0, 200, 0);
}

This setup() function tells Processing to do the following:

1. make the window 400 pixels wide and 600 pixels high
2. turn on smoothing so the jagged lines do not look so bad
3. make the lines 5 pixels wide
4. make the background a sorta’ ugly yellow
5. make the fill color a shade of green
6.

Page 5 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Since this program has a setup() function, Processing will look for it,
find it, and do these for tasks first. Processing does them only one
time.

You can use the setup() function to do whatever you want to do to get
your program ready to run.

Look very carefully at the way the setup() function is written.

The rules for having a setup() function that Processing will use are:

- it must be named setup()
- it must have an opening { after the parentheses
- it must have a closing } at the end of the function 

If you follow these rules, you are set.

There is another function that Processing will use if we write it. This
is the draw() function.

Again, The parentheses are required and they must be empty.

The rules are the same for writing this function:

- it must be named draw()
- it must have an opening { after the parentheses
- it must have a closing } at the end of the function 

 
What we write inside the { } is what we want Processing to draw.

You may be thinking, “Wait a minute – we drew stuff last time without
all of this function stuff – what’s the deal?”

The “deal” is that Processing is using or running, or as most programmer
say, executing our draw() function 60 times a second.

That’s right, it is doing whatever we tell it to do 60 times every
second.

This is our “animation engine” – we use this to move things in the
window. The draw() function drives the animation.

Page 6 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

But before we can explain how this works, we need to add one more
tool to our toolbox – variables.

Here is the code that draw() function that drew the image on page
one of this chapter:

void draw()
{
 stroke(mouseX, mouseY, pmouseX);
 line(mouseX, mouseY,
 pmouseX, pmouseY);
}
 
We need to  look at  the stuff in  the parentheses.  
 
Read on…  
 

Page 7 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Section 2 
 
Variables Give us Directions 
for Using the Map… 
 
 

The Image  The Code 

void setup()
{
 size(400, 600);
 smooth();
 strokeWeight(5);
 background(200, 200 , 0);
 fill(0, 200, 0);
}

void draw()
{
 stroke(mouseX, mouseY, pmouseX);
 line(mouseX, mouseY,
 pmouseX, pmouseY);
}

Page 8 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Variables are used by programming languages to store data that changes
from time to time as our program is executed. Processing programs often
use four different kinds or types of variables. Right now, we will use
only one – the type float. A float variable can have a fractional or
decimal part such as 3.14159 or similar value.

Just like functions where Processing can write them and we can use
them, Processing has variables that it “owns” and changes and we can use
them.

In the code in the section header on the previous page we can see four
of these in use:

void draw()
{
 stroke(mouseX, mouseY, pmouseX);
 line(mouseX, mouseY,
 pmouseX, pmouseY);
}
 
We need to understand one very important fact  about how Process ing 
executes or  runs our  draw() function.    Each execution of the draw( )  
function  generates what we ca ll  a new frame.  The frame is  the drawing 
window where our  figures are displayed.   Each new frame is  a 
transparent window that is  displayed on top of or over  the prev ious 
frames.   This  is  the way cartoons were made before computers.   Unless  
we color the background of  the new frame, we can see the old  frames 
that are under the new frame.    
 
Each execution of  draw( )  assigns  new,  current values to these 
variables:  
The variables mouseX and mouseY store the pixel  location of  the mouse 
for the current frame. 
 
The variables pmouseX and pmouseY store the pixel  location of the 
mouse in  the prev ious frame. 
 
This means that the color of  the  line which is  set  by the stroke()  
function will  have these values  in the new frame: 

- red wil l be the current x coordinate locat ion of the mouse 
- green wil l be the current y coordinate location of the mouse 
- blue will  the x coordinate  location of  the mouse  in the previous  

frame. 

Page 9 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

 
The l ine will  be drawn at this  location in this frame: 

- the line wil l begin a  the current x coordinate of the mouse and 
- the current y coordinate of the mouse 
- and will  be drawn to the previous  x coordinate of the mouse and 
- the previous  y coordinate of the mouse.  

 
Processing has  other variables that we will  use very soon.    
 
 
There is another s ide to this variable story.   We can bui ld and use our 
own variables.   Here  is a program that has three variables: 
 

   // these are variables 
float x, y,  d iam; 
 
void setup( )  
{ 
     size( 400, 400 );  
     smooth( );  
     x =  200.0; 
     y  = 250.0; 
     d iam = 42.0;  
} 
 
void draw( )  
{ 
     background( 0 );    // b lack 
    f il l( 200, 0, 0  ) ;  // dark red 
    el lipse( x,  y,  diam,  diam );   
} 

 

Page 10 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

This program makes this output in  the window: 

 
The ellipse  is  located x  pixels  away from the left  edge and y  pixels  down 
from the top edge.    The el lipse  is d iam pixels  wide and high.  
 
When Processing  executes  the draw() function, it  actually  looks  up the 
values stored in the variables x,  y,  and diam and uses  those values to 
draw the ell ipse 200 pixels  away from the left  edge,  250 pixels  down 
from the top and 42 pixels wide and high.  
 
What we cannot see is  that Processing  is drawing a new frame with the 
red circ le  60 t imes a second. 
 
We can change that by alter ing or varying the value on one or both 
variables.   Let’s change the value of  x.   We will  start  with the program 
with the variable x having a  value of zero.  
 
Then in  each frame after we have drawn the circle, we will  alter the 
value of x by adding one to its  value.  Let’s look at  the code and the 
result  and then expla in how this  works.Here  is the code; 

   // these are variables 
float x, y,  d iam; 
 
void setup( )  
{ 
     size( 400, 400 );  
     smooth( );  
     x =  0.0; 
     y  = 250.0; 
     d iam = 42.0;  
} 
 
void draw( )  
{ 
     background( 0 );    // b lack 
    f il l( 200, 0, 0  ) ;  // dark red 
    el lipse( x,  y,  diam,  diam );   
     x =  x +  1; 
} 

Page 11 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

And here  is the result  of  severa l frames:  
Frame 0 
x = 0 

 

Frame 10 
 x = 10 

 

Frame 50 
x =5 0 

 

Fame 65 
 x = 65 

 

Frame 100 
x = 100   

 
Frame 200 
x = 200 

 

Frame 300 
x = 300 

 

Frame 350 
x = 350 

 

Frame 380 
x = 380 

 

Frame 399 
x = 399 

 
 
As you can see  in the f igures  above, as  the value of x  changes,  the c ircle  
move further to the right.    If  we continue to run the program, the c ircle  
wil l d isappear off  the r ight side of the window. 
 
The reason we cannot see the previous  frames behind the new frame is  
because each new frame has a b lack background that hides the older  
frame. 
 
So this is  one way we can use variables but this animation stuff  is more 
than we want to use r ight now.   You can,  if  you want to experiment 
with this dur ing the coming week.   We will  come back to  it  later  in the 
course sequence.    We looked at  it  here to show you one way we can use 
variables.  
 
Before we go back to animation, we want to look at  two other ways  to 
use variables to make our programs more “useful.” 
 
So for now,  we put animation away and move … 
 

onward… 
 

Page 12 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

 
 
 
Let’s return to Jim’s drawing of at the end of the previous set of notes.

Here is some of the code that draws this figure:
 fill(147, 114, 3);
 rect(275, 200, 100, 50);
 fill(0);
 triangle(270, 200, 380, 200, 325, 175);
 fill(255);
 rect(325, 225, 10, 25);
 fill(54, 48, 1);
 quad(325, 250, 335, 250, 150, 300, 110, 300);
It is difficult to figure out what function draws what part except for the
roof which is probably drawn by the triangle() function.

When Jim wrote this, he added what we call comments to the code so he
would know what the functions were drawing. The comments begin with
two slashes and ignored by Processing when the program is executed.

Here is the commented form of the program:
// house
 // front
 fill(147, 114, 3);
 rect(275, 200, 100, 50);
 // roof
 fill(0);
 triangle(270, 200, 380, 200, 325, 175);

Page 13 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

 // door
 fill(255);
 rect(325, 225, 10, 25);
 // walk
 fill(54, 48, 1);
 quad(325, 250, 335, 250, 150, 300, 110, 300);

So what does this have to do with variables? As this code is written,
absolutely nothing.

But what if Jim’s boss asked him to move the house to the right a bit and
make it a bit bigger but make the height of the roof smaller. Oh, make
the door larger and move it left a bit.

Jim would have to rewrite almost the entire house drawing code. All of
the arguments in the function calls would have replaced with new values
that would do what the boss asked Jim to do.

This is because all of the arguments that Jim used in the functions are
the actual numbers of the locations. These numbers are called literal
constants. The value of 42 is always 42. You cannot change it.

But what if Jim used variables instead of the constants. Suppose he
drew the house with code like this:

// variables:
 float x = 275; // location of the upper left corner
 float y = 200; // of the brown rectangle of the house
 float wd = 100; // width of the house
 float ht = 50; // height of the house
 // house
 // front
 fill(147, 114, 3);
 rect(x, y, wd, ht);

This code will draw the brown rectangle that forms the structure of the
house using variables instead of constants. If Jim’s boss wants the
house moved to the right, all Jim as to do is change the value of x:
 float x = 375;

In a similar way he can make the house smaller by changing the variables
wd and ht:
 float wd = 75;
 float ht = 30;

Page 14 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

This works fine for the brown rectangle but what about the roof. That
does not use the values (200, 100) for any of the triangle vertices or the
values wd or ht for the width or height of the roof.

In order to do this we need some arithmetic. Processing does arithmetic
just like you do. The rules for adding, subtracting, multiplying, and
dividing are the same. The rules for using parentheses are the same.

The only difference you need to know is the multiplication operator. In
your arithmetic classes you learned that the multiplication operator is
the X. Unfortunately programming languages like Processing cannot tell
the difference between the variable x and the operator X so Processing
uses a different multiplication operator – the asterisk that is on the key
with the number 8.

Instead of typing:
 0.9 x x
we type
 0.9 * x
Processing reads this a “zero point nine times the variable x.”

if we have these variables:
 float x = 275; // location of the upper left corner
 float y = 200; // of the brown rectangle of the house
 float wd = 100; // width of the house
 float ht = 50; // height of the house

and we draw the rectangle like this:
 fill(147, 114, 3);
 rect(x, y, wd, ht);

then we can draw the roof like this:
// roof
fill(0);
// left vertex right vertex roof peak

triangle(x-5, y, x+wd+5, y, x+(wd/2), y–(ht/2);
Processing looks up the values of the variables and substitutes them:
// left vertex right vertex roof peak
triangle(275-5, 200, 275+100+5, 200, 275+(100/2), 200–(50/2);
which becomes:
// left vertex right vertex roof peak
triangle(270, 200, 380, 200, 325, 175);

Page 15 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

If we use similar arithmetic to draw the entire house, then Jim can move
it and resize it by just changing the values of the variables used to draw
the house.

Now, this can get complicated if you have a complex drawing that uses
angles and shapes that are not easy to compute with simple arithmetic.
Jim used graph paper to lay out the original drawing when he planned the
picture the first time.

If you have followed this, you may be able to see how variables make our
figures easier to move and resize.

The first program that drew the house with constants as arguments
works fine but is very difficult to change. Some programmer call the use
of constants like Jim did for his drawing, the “use of magic” numbers.
The constants are referred to as “magic numbers” because they sorta
appear like magic.

The use of magic numbers will work but it makes things difficult to alter.
One other problem with magic numbers is that it is not easy for other
programmers to figure out what your code is doing.

Compare these two lines of code
 rect(275, 200, 100, 50);
 triangle(270, 200, 380, 200, 325, 175);
to these two lines of code which do the exact same thing:
 rect(x, y, wd, ht);
 triangle(x-5, y, x+wd+5, y, x+(wd/2), y–(ht/2);
and you can get an idea of how the triangle is related to the rectangle
more easily in the second set of code.

If you have some time, experiment with variables and arithmetic in the
coming week. It will make some of the work we do later much easier.

Page 16 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Another way to move things…

What if we have this house?
// house
 // front
 fill(147, 114, 3);
 rect(275, 200, 100, 50);
 // roof
 fill(0);
 triangle(270, 200, 380, 200, 325, 175);
 // door
 fill(255);
 rect(325, 225, 10, 25);
 // walk
 fill(54, 48, 1);
 quad(325, 250, 335, 250, 150, 300, 110, 300);

and we want to move it.

and we do not want to replace the constants with variables and
arithmetic.

Can we do this?

Think about it.

How can we?

Think again before going to the next page…

Page 17 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

The answer is a trick. A rather neat trick that Processing makes possible
with a function.

The constants in the house drawing code are based on the known location
of the (0, 0) point or the origin. By default, every execution of the
draw() function begins with the (0, 0) point in the upper left corner. X
increases to the right and y increases down.

Here is Jim’s original code. The only change is a partial sun in the upper
left corner drawn with its center at (0, 0);
// sun
fill(200, 200, 0);
ellipse(0, 0, 100, 100);

// house
 // front
 fill(147, 114, 3);
 rect(275, 200, 100, 50);
 // roof
 fill(0);
 triangle(270, 200, 380, 200, 325, 175);
 // door
 fill(255);
 rect(325, 225, 10, 25);
 // walk
 fill(54, 48, 1);
 quad(325, 250, 335, 250, 150, 300, 110, 300);

// tree
 // trunk
 fill(54, 25, 1);
 rect(95, 180, 10, 40);
 // leaves
 fill(1, 54, 1);
 ellipse(100, 180, 50, 30);

And here is the figure the code draws

Page 18 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

Now here is Jim’s house drawn with the same code plus one new line of
code. The sun is still at the coordinates (0, 0):

Remember, the sun is drawn at the (0, 0) point.

How is this possible?

The answer is that Processing has a function that lets us shift the
coordinate plane (the (0, 0) point) to the left or right and up or down.
Here is the code that does this:
// shift the (0, 0) location
translate(200, 0);
// sun
fill(200, 200, 0);
ellipse(0, 0, 100, 100);

The translate() function takes two arguments.

- The first argument is the amount of shift (in pixels) to the left (a
positive value) or to the right (a negative value.

- The second argument is the amount of shift (in pixels down(a
positive value) or up (a negative value).

The translation remains in effect for everything drawn from this point to
the end of draw.

The translation is canceled and returns to (0, 0) at the start of the next
frame. You can translate as many times as you want to as long as you
keep track of where you are. Notice that Jim’s tree is floating in space
in the last drawing... This is not good!!!

But, beware !! You can translate off screen and not
see what you draw.

Page 19 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 2 
Copyright Jim Roberts, November 2012, Pittsburgh PA

You should play with this before the next class. You can also use this in
animation but we will talk about that next time…

Remember, this is a exploratory program – go explore and get lost in the
code. If it does not work, bring it to class next time.

Your Assignment for next time:
Put a setup() function in your program and set the size of the window to
something reasonable – try size(400, 400); Put a draw() function in
your program and do the following:
Design a symbol or emblem to represent you. This is sorta’ like a coat of
arms or family crest. It can have your initials or what ever you want but
it should represent you. We will use this symbol in a game a bit later.

Since it will be used in a game, there are a few limits you should keep in
mind if you want your game to look good.

Design your emblem to fit inside a circle. We will be moving this around
the screen and it looks better if it round or very nearly round. You do
not have to show the circle but you can.

Here is the tough part. Try to fit your emblem or coat of arms in a
circle that is 200 pixels in diameter. This could be tough but give it a
try.

Remember to take a picture of your emblem with the saveFrame()
function.

If you are really getting into this stuff, try to design your emblem using
the variables and arithmetic that Jim did starting on page 9.

If you get this working, and still have some time, interest, and energy,
try to move your emblem around the screen by setting your x and y
variables to the values of mouseX and mouseY. When you move the
mouse in the window, your emblem should follow the mouse.

If you get this working, look up the noCursor() function and see what it
does. Call this in your setup() function after you set the size of the
window.

