
ZU064-05-FPR main 27 July 2015 12:34

Under consideration for publication in J. Functional Programming 1

Type-Based Amortized Resource Analysis with
Integers and Arrays

JAN HOFFMANN and ZHONG SHAO
Yale University

(e-mail: {jan.hoffmann,zhong.shao}@yale.edu)

Abstract

Proving bounds on the resource consumption of a program by statically analyzing its source code
is an important and well-studied problem. Automatic approaches for numeric programs with side
effects usually apply abstract interpretation–based invariant generation to derive bounds on loops and
recursion depths of function calls.

This paper presents an alternative approach to resource-bound analysis for numeric and heap-
manipulating programs that uses type-based amortized resource analysis. As a first step towards
the analysis of imperative code, the technique is developed for a first-order ML-like language
with unsigned integers and arrays. The analysis automatically derives bounds that are multivariate
polynomials in the numbers and the lengths of the arrays in the input. Experiments with example
programs demonstrate two main advantages of amortized analysis over current abstract interpretation–
based techniques. For one thing, amortized analysis can handle programs with non-linear intermediate
values like f ((n+m)2). For another thing, amortized analysis is compositional and works naturally
for compound programs like f (g(x)).

1 Introduction

The quantitative performance characteristics of a program are among the most important
aspects that determine whether the program is useful in practice. Even the most elegant
solution to a programming problem is useless if its clock-cycle or memory consumption
exceeds the available resources. While resource consumption is relevant for every program,
it is particularly critical in embedded and real-time systems where resources are often
extremely limited. If such systems operate in a safety-critical context then formal verification
of a bound on the worst-case resource behavior is an effective method to increase the trust
in the system.

Manually proving concrete (non-asymptotic) resource bounds with respect to a formal
machine model is tedious and error-prone. This is especially true if programs evolve over
time when bugs are fixed or new features are added. As a result, automatic methods for
inferring resource bounds are extensively studied. The most advanced techniques for imper-
ative programs with integers and arrays apply abstract interpretation to generate numerical
invariants, that is, bounds on the values of variables. The obtained size-change information
forms the basis of the computation of actual bounds on loop iterations and recursion depths;
using counter instrumentation (Gulwani et al., 2009), ranking functions (Alias et al., 2010;
Albert et al., 2011; Brockschmidt et al., 2014; Sinn et al., 2014), recurrence relations (Albert

ZU064-05-FPR main 27 July 2015 12:34

2 Jan Hoffmann and Zhong Shao

et al., 2012b; Albert et al., 2012a), and abstract interpretation itself (Gulavani & Gulwani,
2008; Zuleger et al., 2011).

For reasons of efficiency, many abstract interpretation–based resource-analysis systems
rely on abstract domains that enable the inference of invariants through linear constraint
solving (Cousot & Halbwachs, 1978; Miné, 2004). The downside of this approach is that
the resulting tools only work effectively for programs in which all relevant variables are
bounded by linear invariants. This is, for example, not the case if programs perform non-
linear arithmetic operations such as multiplication or division. However, a linear abstract
domain can be used to derive non-linear invariants using domain lifting operations (Gulavani
& Gulwani, 2008). Another possibility is to use disjunctive abstract domains to generate non-
linear invariants (Sankaranarayanan et al., 2006). This technique has been experimentally
implemented in the COSTA analysis system (Alonso-Blas et al., 2011). However, it is
unclear how it scales to larger examples.

In this paper, we study an alternative approach to infer resource bounds for numeric
programs with side effects. It is based on type-based amortized resource analysis (Hofmann
& Jost, 2003; Hoffmann et al., 2011) and tracking of size-changes does not require
abstract interpretation. It has been shown that this analysis technique can infer tight
polynomial bounds for functional programs with nested data structures while relying on
linear constraint solving only (Hoffmann & Hofmann, 2010b; Hoffmann et al., 2011). A
main innovation in this polynomial amortized analysis is the use of multivariate resource
polynomials that have good closure properties and behave well under common size-change
operations. Advantages of amortized resource analysis include precision, efficiency, and
compositionality. Connections with the aforementioned other approaches are discussed
in (Alonso-Blas & Genaim, 2012). Size-changes of variables can also be tracked using
ranking functions and local size bounds derived by SMT solving (Brockschmidt et al.,
2014). However, type-based amortized resource analysis reduces inference of non-linear
bounds and tracking of non-linear size changes to linear programming.

Our ultimate goal is to transfer the advantages of amortized resource analysis to imperative
(C-like) programs. We have already shown that techniques based on amortized resource
analysis can be integrated into a program logic and the verified C compiler CompCert (Leroy,
2006) to derive stack bounds on compiled x86 code (Carbonneaux et al., 2014). Moreover,
we have developed a version of amortized resource analysis for C code that automatically
derives linear bounds that are functions of signed integers (Carbonneaux et al., 2015).

The next important step is to extend our analysis for C programs to polynomial bounds.
It is beneficial to study this extension carefully in a functional setting before moving to
C programs and signed integers where things are more involved. Therefore we develop
a multivariate amortized resource analysis for numeric ML-like programs with mutable
arrays in this work. We present the new technique for a simple language with unsigned
integers, arrays, and pairs as the only data types in this paper. However, we implemented
the analysis in Resource Aware ML (RAML) (Aehlig et al., 2010-2013) which features
more data types such as lists and binary trees. Our experiments (see Section 7) show that
our implementation can automatically and efficiently infer complex polynomial bounds for
programs that contain non-linear size changes like f (8128∗ x∗ x) and composed functions
like f (g(x)) where the result of the inner function is non-linear in its arguments. RAML is

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 3

publicly available and all of our examples as well as user-defined code can be tested in an
easy-to-use online interface (Aehlig et al., 2010-2013).

Technically, we treat unsigned integers like unary lists in multivariate amortized analy-
sis (Hoffmann et al., 2011). However, we do not just instantiate the previous framework by
providing a pattern matching for unsigned integers and implementing recursive functions.
In fact, this approach would be possible but it has several shortcomings (see Section 2) that
make it unsuitable in practice. The key for making amortized resource analysis work for
numeric code is to give direct typing rules for the arithmetic operations addition, subtraction,
multiplication, division, and modulo. The most interesting aspect of the rules we developed
is that they can be readily represented with very succinct linear constraint systems. This
includes a generalized additive shift (see (Hoffmann & Hofmann, 2010b)) for subtraction
with a constant, and two convolutions for addition and multiplication (see Section 5).
Moreover, the rules precisely capture the size changes in the corresponding operations in
the sense that no precision (or potential) is lost in the analysis.

Arrays are manipulated with the standard operations A.make, A.get, A.set, and A.length.
To deal with mutable data, the analysis ensures that the resource consumption does not
depend on the size of data that has been stored in a mutable heap cell. While it would
be possible to give more involved rules for array operations, all examples we considered
could be analyzed with our technique. There are three main reasons for this. First, in many
programs data stored in arrays is not used in the control flow. Second, nested arrays often
have fixed dimensions like an n×m matrix. So the iteration cost does not only depend on
the sizes of the inner arrays but also the dimensions like n and m. Third, it is often possible
to replace arrays with lists if resource usage depends on the size of the elements.

The main difficulty with inner potential for arrays is the non-linear access of the array
elements. If we obtained potential from an array access A.get(a, i) then we would need to
keep track of the array elements from which we had obtained potential already and the
elements which still carry potential for future use. It would then be necessary to abstract
common iteration patterns and identify these patterns in the program before the analysis.
Automatically identifying such patterns and integrating them into the analysis is currently
an open problem.

In the implementation, we also have signed integers and a successful analysis proves
that the resource usage of a program cannot depend on the values of signed integers. If
the resource usage depends on the value of a signed integer in a non-trivial way then the
analysis terminates without deriving a bound.

To prove the soundness of the analysis, we model the resource consumption of programs
with a big-step operational semantics for terminating and non-terminating programs. This
enables us to show that bounds derived within the type system hold for terminating and
non-terminating programs. Refer to the literature for more detailed explanations of type-
based amortized resource analysis (Hofmann & Jost, 2003; Hoffmann & Hofmann, 2010b;
Hoffmann et al., 2011), the soundness proof (Hoffmann et al., 2012a), and Resource Aware
ML (Aehlig et al., 2010-2013; Hoffmann et al., 2012b).

This article is the extended journal version of a conference article with the same title that
appeared earlier (Hoffmann & Shao, 2014). The changes with respect to the conference
version include additional lemmas and theorems, proofs, the complete sets of inference
rules, and additional experimental results.

ZU064-05-FPR main 27 July 2015 12:34

4 Jan Hoffmann and Zhong Shao

2 Informal Account

In this section we briefly introduce type-based amortized resource analysis. We then motivate
and describe the novel developments for programs with integers and arrays.

Amortized Resource Analysis. The idea of type-based amortized resource analysis (Hof-
mann & Jost, 2003; Hoffmann et al., 2011) is to annotate each program point with a
potential function which maps sizes of reachable data structures to non-negative numbers.
The potential functions have to ensure that, for every input and every possible evaluation,
the potential at a program point is sufficient to pay for the resource cost of the following
transition and the potential at the next point. It then follows that the initial potential function
describes an upper bound on the resource consumption of the program.

It is natural to build a practical amortized resource analysis on top of a type system because
types are compositional and provide useful information about the structure of the data. In a
series of papers (Hoffmann & Hofmann, 2010b; Hoffmann et al., 2011; Hoffmann et al.,
2012a; Hoffmann et al., 2012b), it has been shown that multivariate resource polynomials are
a good choice for the set of possible potential functions. Multivariate resource polynomials
are a generalization of non-negative linear combinations of binomial coefficients that
includes tight bounds for many typical programs (Hoffmann et al., 2012a). At the same
time, multivariate resource polynomials can be incorporated into type systems so that type
inference can be efficiently reduced to LP solving (Hoffmann et al., 2012a).

The basic idea of amortized resource analysis is best explained by example. Assume
we represent natural numbers as unary lists and implement addition and multiplication as
follows.

add (n,m) = match n with | nil → m

| _::xs → () :: (add (xs,m));

mult (n,m) = match n with | nil → nil

| _::xs → add(m,mult(xs,m));

Assume furthermore that we are interested in the number of pattern matches that are
performed by these functions. The evaluation of the expression add(n,m) performs |n|+1
pattern matches and evaluating mult(n,m) needs |n||m|+ 2|n|+ 1 pattern matches. To
represent these bounds in an amortized resource analysis, we annotate the argument and
result types of the functions with indexed families of non-negative rational coefficients
of our resource polynomials. The index set depends on the type and on the maximal
degree of the bounds, which has to be fixed to make the analysis feasible. For our example
mult we need degree 2. The index set for the argument type A = L(unit)∗L(unit) is then
Ind(A) = {(0,0),(1,0),(2,0),(1,1),(0,1),(0,2)}. A family Q = (qi)i∈Ind(A) denotes the
resource polynomial that maps two lists n and m to the number ∑(i, j)∈Ind(A) = q(i, j)

(|n|
i

)(|m|
j

)
.

Similarly, an indexed family P = (pi)i∈{0,1,2} describes the resource polynomial ` 7→ p0 +

p1|`|+ p2
(|`|

2

)
for a list ` : L(unit).

A valid typing for the multiplication would be for instance mult : (L(unit)∗L(unit),Q)→
(L(unit),P), where q(0,0) = 1,q(1,0) = 2,q(1,1) = 1, and qi = p j = 0 for all other i and
all j. The annotation Q of the arguments corresponds then to the potential function
|n||m|+2|n|+1 and the annotation P of the result corresponds to the potential function 0.

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 5

12
11
10

9
8
7
6
5
4
3
2
1

100 101 102 103 104 105 106 107

Number of constraints

New ruleM
ax

im
al

 d
eg

re
e

Recursive

Fig. 1. Number of constraints generated by RAML for the program a∗b as a function of the
maximal degree. The solid bars show the number of constraints generated using the novel type
rule for multiplication. The striped bars show the number of constrained generated using an recursive
implementation. The scale on the x-axis is logarithmic.

Another valid instantiation of P and Q, which would be needed in a larger program such as
add(mult(n,m),k), is q(0,0) = q(1,0) = q(1,1) = 2, p0 = p1 = 1 and qi = p j = 0 for all other
i and all j. This latter typing is needed to pass potential to the result of mult(n,m). Here, Q
corresponds to the potential function 2|n||m|+2|n|+2 and P corresponds to t +1 where
t = |mult(n,m)| is the length of the result of the multiplication.

The challenge in designing an amortized resource analysis is to develop a type rule for
each syntactic construct of a program that describes how the potential before the evaluation
relates to the potential after the evaluation. It has been shown (Hoffmann & Hofmann,
2010b; Hoffmann et al., 2012a) that the structure of multivariate resource polynomials
facilitates the development of relatively simple type rules. These rules enable the generation
of linear constraint systems such that a solution of a constraint system corresponds to a
valid instantiation of the rational coefficients qi and p j.

Numerical Programs and Side Effects. Previous work on polynomial amortized analy-
sis (Hoffmann & Hofmann, 2010b; Hoffmann et al., 2012a) (that is implemented in RAML)
focused on inductive data structures such as trees and lists. In this paper, we are extending
the technique to programs with unsigned integers, arrays, and the usual atomic operations
such as ∗, +, −, mod, div, set, and get. Of course, it would be possible to use existing
techniques and a code transformation that converts a program with these operations into
one that uses recursive implementations such as the previously defined functions add and
mult. However, this approach has multiple shortcomings.

Efficiency In programs with many arithmetic operations, the use of recursive implemen-
tations causes the analysis to generate large constraint systems that are challenging to
solve. Figure 1 shows the number of constraints that are generated by the analysis for
a program with a single multiplication a ∗ b as a function of the maximal degree of
the bounds. With our novel handcrafted rule for multiplication the analysis creates for
example 82 constraints when searching for bounds of maximal degree 10. With the
recursive implementation, 408653 constraints are generated. IBM’s Cplex can still solve
this constraint system in a few seconds but a precise analysis of a larger RAML program

ZU064-05-FPR main 27 July 2015 12:34

6 Jan Hoffmann and Zhong Shao

currently requires to copy the 408653 constraints for every multiplication in the program.
This makes the analysis infeasible.

Effectivity A straightforward recursive implementation of the arithmetic operations on
unary lists in RAML would not allow us to analyze the same range of functions we can
analyze with handcrafted typing rules for the operations. For example, the fast Euclidean
gcd algorithm cannot be analyzed with the usual, recursive definition of mod but can
be analyzed with our new rule. Similarly, we cannot define a recursive function so that
the analysis is as effective as with our novel rule for minus. For example, the pattern
if n > C then ... recCall(n−C) else ... for a constant C > 0 can be analyzed with our new
rule but not with a recursive definition for minus.

Conception A code transformation prior to the analysis complicates the soundness proof
since we would have to show that the resource usage of the modified code is equivalent
to the resource usage of the original code. More importantly, handling new language
features merely by code transformations into well-understood constructs is conceptually
less attractive since it often does not advance our understanding of the new features.

To derive a typing rule for an arithmetic operation in amortized resource analysis, we have
to describe how the potential of the arguments of the operation relates to the potential
of the result. For x,y ∈ N and a multiplication x ∗ y we start with a potential of the
form ∑(i, j)∈I q(i, j)

(x
i

)(y
j

)
(where I = {(0,0),(1,0),(2,0),(1,1),(0,1),(0,2)} in the case

of degree 2). We then have to ensure that this potential is always equal to the constant
resource consumption Mmult of the multiplication and the potential ∑i∈{0,1,2} pi

(x·y
i

)
of

the result x·y. This is the case if q(0,0) = Mmult + p0, q(1,1) = p1, q(1,2) = q(2,1) = p2,
q(2,2) = 2p2, and q(i, j) = 0 otherwise. We will show that such relations can be expressed for
resource polynomials of arbitrary degree in a type rule for amortized resource analysis that
corresponds to a succinct linear constraint system.

The challenge with arrays is to account for side effects of computations that influence
the resource consumption of later computations in the presence of aliasing. We can analyze
such programs but ensure that the potential of data that is stored in arrays is always 0. In this
way, we prove that the influence of aliasing on the resource usage is accounted for without
using the size of mutable data. As for all language features, we could achieve the same with
some abstraction of the program that does not use arrays. However, this is not necessarily a
simpler approach.

3 A Simple Language with Side Effects

We present our analysis for a minimal first-order functional language that only contains
the features we are interested in, namely operations for integers and arrays. However,
we implemented the analysis in Resource Aware ML (RAML) (Hoffmann et al., 2012b;
Aehlig et al., 2010-2013) which also includes (signed) integers, lists, binary trees, Booleans,
conditionals and pattern matching on lists and trees.

Syntax. The subset of RAML we use in this article includes variables x, unsigned integers
n, function calls, pairs, pattern matching for unsigned integers and pairs, let bindings,
an undefined expression, a sharing expression, and the built in operations for arrays and

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 7

unsigned integers.

e ::= x | f (x) | (x1,x2) |match x with(x1,x2)⇒ e | undefined | let x = e1 ine2

| share x as(x1,x2) ine |match x with〈0⇒ e1 | S(y)⇒ e2〉
| n | x1 + x2 | x1 ∗ x2 |minus(x1,x2) |minus(x1,n) | divmod(x1,x2)

| A.make(x1,x2) | A.set(x1,x2,x3) | A.get(x1,x2) | A.length(x)

We present the language in, what we call, share-let normal form which simplifies the type
system without hampering expressivity. In the implementation, we transform input programs
to share-let normal form before the analysis. Like in Haskell, the undefined expression
simply aborts the program without consuming any resources. The meaning of the sharing
expression share x as(x1,x2) ine is that the value of the free variable x is bound to the
variables x1 and x2 for use in the expression e. The sharing expression is similar to a let
binding and we use it to inform the (affine) type system of multiple uses of a variable.

While all array operations as well as multiplication and addition are standard, subtraction,
division, and modulo differ from the standard operations. To give stronger typing rules in
our analysis system, we combine division and modulo in one operation divmod. Moreover,
minus and divmod return their second argument, that is, minus(n,m) = (m,n−m) and
divmod(n,m) = (m,n÷m,n mod m). We also distinguish two syntactic forms of minus;
one in which we subtract a variable and another one in which we subtract a constant. More
explanations are given in Section 5. If m > n then the evaluation of minus(n,m) fails without
consuming resources. That means that it is the responsibility of the user or other static
analysis tools to show the absence of overflows.

Simple Types and Programs. Data types A,B and function types F are defined as follows.

A,B ::= nat | A array | A∗B F ::= A→ B

Let A be the set of data types and let F be the set of function types. A signature Σ : FID ⇀

F is a partial finite mapping from function identifiers to function types. A context is a partial
finite mapping Γ : Var ⇀ A from variable identifiers to data types. A simple type judgment
Σ;Γ ` e : A states that the expression e has type A in the context Γ under the signature Σ.
The definition of typing rules for this judgment is standard and we omit the rules. Basically,
the rules are obtained by erasing the potential annotations of the syntax-directed rules in
Section 5.

A (well-typed) program consists of a signature Σ and a family (e f ,y f) f∈dom(Σ) of
expressions e f with a distinguished variable identifier y f such that Σ;y f :A ` e f :B if Σ(f) =
A→ B.

Cost Semantics. In the following, we define an operational big-step semantics for our
subset of RAML. The semantics is standard except that it defines a cost of an evaluation.
This cost depends on a resource metric that assigns a cost to each atomic operation.

The semantics is formulated with respect to a stack and a heap. Let Loc be an infinite set
of locations modeling memory addresses on a heap. The set of RAML values Val is given
as follows.

Val 3 v ::= n | (`1, `2) | (σ ,n)

ZU064-05-FPR main 27 July 2015 12:34

8 Jan Hoffmann and Zhong Shao

V,H M e ⇓ ◦ | 0
(E:ZERO)

[y f 7→V (x)],H M e f ⇓ ρ | (q,q′)
V,H M f (x) ⇓ ρ |Mapp·(q,q′)

(E:APP)

V (x) = `

V,H M x ⇓ (`,H) |Mvar
(E:VAR)

H ′ = H, ` 7→ (V (x1),V (x2))

V,H M (x1,x2) ⇓ (`,H ′) |Mpair
(E:PAIR)

H(V (x)) = (`1, `2) V [x1 7→ `1,x2 7→ `2],H
M e ⇓ ρ | (q,q′)

V,H M match x with(x1,x2)⇒ e ⇓ ρ |MmatP·(q,q′)
(E:MATP)

V (x) = ` V [x1 7→ `,x2 7→ `],H M e ⇓ ρ | (q,q′)
V,H M share x as(x1,x2) ine ⇓ ρ |Mshare·(q,q′)

(E:SHARE)

V,H M undefined ⇓ ◦ |Mundef
(E:UNDEF)

V,H M e1 ⇓ ◦ | (q,q′)
V,H M let x = e1 ine2 ⇓ ◦ |Mlet1·(q,q′)

(E:LET1)

V,H M e1 ⇓ (`,H ′) | (q,q′) V [x 7→ `],H ′ M e2 ⇓ ρ | (p, p′)

V,H M let x = e1 ine2 ⇓ ρ |Mlet1·(q,q′)·Mlet2·(p, p′)
(E:LET2)

n ∈ N H ′ = H, ` 7→ n

V,H M n ⇓ (`,H ′) |Mnat
(E:NAT)

n = H(V (x1))+H(V (x2)) H ′ = H, ` 7→n

V,H M x1 + x2 ⇓ (`,H ′) |Madd
(E:ADD)

n = H(V (x1))−H(V (x2)) n≥ 0 H ′ = H, ` 7→ (V (x2), `
′), `′ 7→ n

V,H M minus(x1,x2) ⇓ (`,H ′) |Msub
(E:SUB)

n′ = H(V (x))−n H ′ = H, ` 7→ (`1, `2), `1 7→ n, `2 7→ n′

V,H M minus(x,n) ⇓ (`,H ′) |Msub
(E:SUBC)

n = H(V (x1)) ·H(V (x2)) H ′ = H, ` 7→ n

V,H M x1 ∗ x2 ⇓ (`,H ′) |Mmult
(E:MULT)

n1 = H(V (x1)) n2 = H(V (x2))
H ′ = H, ` 7→ (`′, `3), `

′ 7→ (V (x2), `2), `2 7→ (n1÷n2), `3 7→ (n1 mod n2)

V,H M divmod(x1,x2) ⇓ (`,H ′) |Mdiv
(E:DIV)

H(V (x)) = 0 V,H M e1 ⇓ ρ | (q,q′)
V,H M match x with〈0⇒ e1 | S(y)⇒ e2〉 ⇓ ρ |MmatZ·(q,q′)

(E:MATN1)

H(V (x)) = n+1 V [y 7→ `],H, ` 7→ n M e2 ⇓ ρ | (q,q′)
V,H M match x with〈0⇒ e1 | S(y)⇒ e2〉 ⇓ ρ |MmatS·(q,q′)

(E:MATN2)

Fig. 2. Rules of the operational big-step semantics (part 1).

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 9

H(V (x1)) = n ∀i : σ(i) =V (x2) H ′ = H, `′ 7→ (σ ,n)

V,H M A.make(x1,x2) ⇓ (`′,H ′) | (n·MAmakeL+MAmake,0)
(E:AMAKE)

V (x1) = `1 H(`1) = (σ ,n)
H(V (x2)) = i 0≤ i < n H ′ = H[`1 7→ (σ [i 7→V (x3)],n), `2 7→ 0]

V,H M A.set(x1,x2,x3) ⇓ (`2,H ′) |MAset
(E:ASET)

H(V (x1)) = (σ ,n) H(V (x2))≥ n

V,H M A.set(x1,x2,x3) ⇓ ◦ |MAfail
(E:ASFAIL)

H(V (x1)) = (σ ,n) H(V (x2)) = i 0≤ i < n

V,H M A.get(x1,x2) ⇓ (σ(i),H) |MAget
(E:AGET)

H(V (x1)) = (σ ,n) H(V (x2))≥ n

V,H M A.get(x1,x2) ⇓ ◦ |MAfail
(E:AGFAIL)

H(V (x)) = (σ ,n) H ′ = H, ` 7→ n

V,H M A.length(x) ⇓ (`,H ′) |MAlen
(E:ALEN)

Fig. 3. Rules of the operational big-step semantics (part 2).

A value v ∈ Val is either a natural number n, a pair of locations (`1, `2), or an array (σ ,n).
An array (σ ,n) consists of a size n and a mapping σ : {0, . . . ,n−1} → Loc from the set
{0, . . . ,n−1} of natural numbers to locations. A heap is a finite partial mapping H : Loc ⇀
Val that maps locations to values. A stack is a finite partial mapping V : Var ⇀ Loc from
variable identifiers to locations.

The big-step operational evaluation rules in Figure 2 and Figure 3 are formulated with
respect to a resource metric M. They define an evaluation judgment of the form V,H M e ⇓
(`,H ′) | (q,q′) . It expresses the following. Under resource metric M (see below), if the stack
V and the initial heap H are given then the expression e evaluates to the location ` and the
new heap H ′. The location ` then contains the value to which the expression has evaluated.
To evaluate e one needs at least q ∈ Q+

0 resource units and after the evaluation there are
q′ ∈Q+

0 resource units available. The actual resource consumption is then δ = q−q′. The
quantity δ is negative if resources become available during the execution of e.

In fact, the evaluation judgment is slightly more complicated because there are two
other behaviors that we have to express in the semantics: failure (i.e., array access outside
its bounds) and divergence. To this end, our semantics judgment does not only evaluate
expressions to values but also expresses incomplete computations by using ◦ (pronounced
busy). In this paper, we combine erroneous behavior with non-terminating behavior since
we are only interested in the resource consumption. In other applications it might be more
useful to introduce a separate error value ⊥. This can be done without problems.

The evaluation judgment has the general form

V,H M e ⇓ ρ | (q,q′) where ρ ::= (`,H ′) | ◦ .

An intuition for the judgement V,H M e ⇓ ◦ | (q,q′) is that there is a partial evaluation of e
that runs without failure, needs q resources (high watermark), has momentarily q′ resources
available, and has not yet reached a value. This is similar to a small-step judgement.

ZU064-05-FPR main 27 July 2015 12:34

10 Jan Hoffmann and Zhong Shao

H(`) = (σ ,n)
dom(σ) = dom(α) = {0, . . . ,n−1} ∀ 0≤i<n : H � σ(i) 7→ ai and α(i) = ai

H � ` 7→ (α,n) : A array
(V:ARRAY)

H(`) = n n ∈ N
H � ` 7→ n : nat

(V:NAT)
H(`) = (`1, `2) H � `1 7→ a1 : A1 H � `2 7→ a2 : A2

H � ` 7→ (a1,a2) : (A1,A2)
(V:PAIR)

Fig. 4. Relating heap cells to semantic values.

The cost semantics is non-deterministic. The idea is to use the rule E:ZERO to approxi-
mate (non-existing) infinite evaluation trees that correspond to diverging computations with
an infinite number of finite trees. The rules E:ZERO and E:LET1 can be used in combination
to obtain a snapshot of the resource usage during a diverging or converging computation.

A resource metric M : K→Q defines the resource consumption of each evaluation step
of the big-step semantics. Here, K is a finite set of constant symbols. We define

K ={nat,var,app,matchL,undef,pair,matP, let1, let2,nat,add,mult,sub,div

matS,matZ,minus,divmod,Amake,Aset,Aget,Alength,Afail} .

We write Mk for M(k).
We view the pairs (q,q′) in the evaluation judgments as elements of a monoid Q = (Q+

0 ×
Q+

0 , ·). The neutral element is (0,0) which means that resources are neither needed nor
refunded. The operation (q,q′) · (p, p′) defines how to account for an evaluation consisting
of evaluations whose resource consumptions are defined by (q,q′) and (p, p′), respectively.
We define

(q,q′) · (p, p′) =
{

(q+ p−q′, p′) if q′ ≤ p
(q, p′+q′− p) if q′ > p

If resources are never restored (as with time) then we can restrict to elements of the form
(q,0) and (q,0) · (p,0) is just (q+ p,0).

We identify a rational number q with an element of Q as follows: q≥ 0 denotes (q,0)
and q < 0 denotes (0,−q). This notation avoids case distinctions in the evaluation rules
since the constants K that appear in the rules might be negative.

Proposition 3.1

Let (q,q′) = (r,r′) · (s,s′).

1. q≥ r and q−q′ = r− r′+ s− s′

2. If (p, p′) = (r̄,r′) · (s,s′) and r̄ ≥ r then p≥ q and p′ = q′

3. If (p, p′) = (r,r′) · (s̄,s′) and s̄≥ s then p≥ q and p′ ≤ q′

4. (r,r′) · ((s,s′) · (t, t ′)) = ((r,r′) · (s,s′)) · (t, t ′)

In the semantic rules we use the notation H ′ = H, 7̀→v to indicate that ` 6∈ dom(H),
dom(H ′) = dom(H)∪{`}, H ′(`) = v, and H ′(x) = H(x) for all x 6= `.

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 11

Well-Formed Environments. For each simple type A we inductively define a set JAK of
values of type A.

JnatK = N
JA arrayK = {(α,n) | n ∈ N and α : {0, . . . ,n−1}→ JAK}
JA∗BK = JAK× JBK

If H is a heap, ` is a location, A is a type, and a ∈ JAK then we write H � ` 7→ a :A to mean
that ` defines the semantic value a ∈ JAK when pointers are followed in H in the obvious
way. The judgment is formally defined in Figure 4.

If we fix a simple type A and a heap H then there exists at most one semantic value a
such that H � ` 7→ a :A .

Proposition 3.2
Let H be a heap, ` ∈ Loc, and let A be a simple type. If H � ` 7→ a :A and H � ` 7→ a′ :A
then a = a′.

We write H � ` :A to indicate that there exists a necessarily unique, semantic value a ∈ JAK
so that H � ` 7→ a :A . A stack V and a heap H are well-formed with respect to a context Γ if
H �V (x) :Γ(x) holds for every x ∈ dom(Γ). We then write H �V : Γ.

Theorem 3.1 shows that the evaluation of a well-typed expression in a well-formed
environment results in a well-formed environment. A proof of a similar theorem can be
found in a previous article (Hoffmann et al., 2012a).

Theorem 3.1
If Γ ` e : B, H �V : Γ and V,H M e ⇓ (`,H ′) | (q,q′) then H ′ �V : Γ and H ′ � ` : B.

4 Resource Polynomials and Annotated Types

Compared with multivariate amortized resource analysis for nested inductive data types (Hoff-
mann et al., 2012a), the resource polynomials that are needed for the data types in this
article are relatively simple. They are multivariate, non-negative linear combinations of
binomial coefficients. To emphasize that these potential functions are a special case of
general multivariate resource polynomials we nevertheless use the terminology that has been
developed for the general case (Hoffmann et al., 2012a). In this way, it is straightforward to
see that the present development could be readily implemented in Resource Aware ML.

Resource Polynomials. For each data type A we first define a set P(A) of functions p :
JAK→ N that map values of type A to natural numbers. The resource polynomials for type
A are then given as non-negative rational linear combinations of these base polynomials.
We define P(A) as follows.

P(nat) = {λn .
(

n
k

)
| k ∈ N} P(A array) = {λ (α,n) .

(
n
k

)
| k ∈ N}

P(A1 ∗A2) = {λ (a1,a2) . p1(a1)·p2(a2) | p1 ∈ P(A1)∧ p2 ∈ P(A2)}

ZU064-05-FPR main 27 July 2015 12:34

12 Jan Hoffmann and Zhong Shao

A resource polynomial p : JAK→Q+
0 for a data type A is a non-negative linear combination

of base polynomials, i.e.,

p = ∑
i=1,...,m

qi · pi

for qi ∈Q+
0 and pi ∈ P(A). We write R(A) for the set of resource polynomials for the data

type A.

Example 4.1
For example, h(n,m) = 7+2.5·n+5

(n
3

)(m
2

)
+8
(m

4

)
is a resource polynomial for the data

type nat∗nat.

Names for Base Polynomials. To assign a unique name to each base polynomial, we
define the index set Ind(A) to denote resource polynomials for a given data type A. Basically,
Ind(A) is the meaning of A when we identify arrays with their lengths.

Ind(nat) = Ind(A array) = N
Ind(A1 ∗A2) = {(i1, i2) | i1 ∈ Ind(A1) and i2 ∈ Ind(A2)}

The degree deg(i) of an index i ∈ Ind(A) is defined as follows.

deg(k) = k if k ∈ N
deg(i1, i2) = deg(i1)+deg(i2)

Let Indk(A) = {i ∈ Ind(A) | deg(i) ≤ k}. The indexes i ∈ Indk(A) are an enumeration of
the base polynomials pi ∈ P(A) of degree at most k. For each i ∈ Ind(A), we define a base
polynomial pi ∈ P(A) as follows: If A = nat then

pk(n) =
(

n
k

)
.

If A = A′ array then

pk(σ ,n) =
(

n
k

)
.

If A = (A1 ∗A2) is a pair type and v = (v1,v2) then

p(i1,i2)(v) = pi1(v1) · pi2(v2) .

We use the notation 0A (or just 0) for the index in Ind(A) such that p0A(a) = 1 for all a. We
identify the index (i1, . . . , in) with the index (i1,(i2,(· · ·(in−1, in))).

Example 4.2
Our previous example h : Jnat∗natK→Q+

0 from Example 4.1 can for instance be written as
h(n,m) = 7p(0,0)(n,m)+2.5p(1,0)(n,m)+5p(3,2)(n,m)+8p(0,4)(n,m).

Annotated Types and Potential Functions. A type annotation for a data type A is defined
to be a family

QA = (qi)i∈Ind(A) with qi ∈Q+
0

We say QA is of degree (at most) k if qi = 0 for every i ∈ Ind(A) with deg(i) > k. An
annotated data type is a pair (A,QA) of a data type A and a type annotation QA of some
degree k.

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 13

Let H be a heap and let ` be a location with H � ` 7→ a :A for a data type A. Then the
type annotation QA defines the potential

ΦH(`:(A,QA)) = ∑
i∈Ind(A)

qi · pi(a)

If a∈ JAK and QA is a type annotation for A then we also write Φ(a : (A,QA)) for ∑i qi·pi(a).

Example 4.3
Consider the resource polynomial h(n,m) from Example 4.1. We have Φ((n,m) : (nat ∗
nat,Q)) = h(n,m) if q(0,0) = 7, q(1,0) = 2.5, q(3,2) = 5, q(0,4) = 8, and q(i, j) = 0 for all other
(i, j) ∈ Ind(nat∗nat).

The Potential of a Context. For use in the type system we need to extend the definition of
resource polynomials to typing contexts. We treat a context like a tuple type.

Let Γ = x1:A1, . . . ,xn:An be a typing context and let k ∈N. The index set Ind(Γ) is defined
as

Ind(Γ) = {(i1, . . . , in) | i j ∈ Ind(A j)} .
The degree of i = (i1, . . . , in) ∈ Ind(Γ) is defined as deg(i) = deg(i1)+ · · ·+deg(in). As for
data types, we define Indk(Γ) = {i ∈ Ind(Γ) | deg(i)≤ k}. A type annotation Q for Γ is a
family

Q = (qi)i∈Indk(Γ) with qi ∈Q+
0 .

We denote a resource-annotated context with Γ;Q. Let H be a heap and V be a stack with
H �V : Γ where H �V (x j) 7→ ax j : Γ(x j) . The potential of Γ;Q with respect to H and V is

ΦV,H(Γ;Q) = ∑
(i1,...,in)∈Indk(Γ)

q~ı
n

∏
j=1

pi j(ax j) .

In particular, if Γ = /0 then Indk(Γ) = {()} and ΦV,H(Γ;q()) = q(). We sometimes also write
q0 for q().

Notations. Families that describe type and context annotations are denoted with upper case
letters Q,P,R, . . . with optional superscripts. We use the convention that the elements of
the families are the corresponding lower case letters with corresponding superscripts, i.e.,
Q = (qi)i∈I and Q′ = (q′i)i∈I .

If Q,P and R are annotations with the same index set I then we extend operations on Q
pointwise to Q,P and R. For example, we write Q≤ P+R if qi ≤ pi + ri for every i ∈ I.

For K ∈Q we write Q = Q′+K to state that q0 = q′0 +K ≥ 0 and qi = q′i for i 6= 0 ∈ I.
Let Γ = Γ1,Γ2 be a context, let i = (i1, . . . , ik) ∈ Ind(Γ1) and j = (j1, . . . , jl) ∈ Ind(Γ2) .
We write (i, j) for the index (i1, . . . , ik, j1, . . . , jl) ∈ Ind(Γ).

We write Σ;Γ;Q cf e : (A,Q′) to refer to cost-free type judgments where cf is the cost-
free metric with cf(K) = 0 for constants K. We use it to assign potential to an extended
context in the let rule.

Let Q be an annotation for a context Γ1,Γ2. For j ∈ Ind(Γ2) we define the projection
π

Γ1
j (Q) of Q to Γ1 to be the annotation Q′ with q′i = q(i, j). Sometimes we omit Γ1 and just

write π j(Q) if the meaning follows from the context.

ZU064-05-FPR main 27 July 2015 12:34

14 Jan Hoffmann and Zhong Shao

Operations on Annotations. For each arithmetic operation such as n−1, n∗m, and n+m,
we define a corresponding operation on annotations that describes how to transfer potential
from the arguments to the result.

Let Γ,y:nat be a context and let Q = (qi)i∈Ind(Γ,y:nat) be a context annotation of degree
k. The additive shift for natural numbers C(Q) of Q is an annotation Q′ of degree k for a
context Γ,x:nat that is defined as

C(Q) = (q′(i, j))(i, j)∈Ind(Γ,x:nat) if q′(i, j) = q(i, j)+q(i, j+1) .

The additive shift for natural numbers reflects the identity

∑
0≤i≤k

qi

(
n+1

i

)
= ∑

0≤i≤k
(qi+qi+1)

(
n
i

)
(1)

where qk+1 = 0. It is used in cases when a natural number is incremented or decremented
by one. This is the case in the successor function (not presented here but implemented in
RAML) or in the type rule T:MATN for pattern matching on natural numbers. This is a
special case of the additive shift that has been introduced for lists and trees in previous
articles (Hoffmann et al., 2012a).

Example 4.4
Consider again our running example, the resource polynomial h(m,n) that is given by
Q where q(0,0) = 7, q(0,1) = 2.5, q(2,3) = 5, q(4,0) = 8, and q(i, j) = 0 for all other (i, j) ∈
Ind(nat ∗ nat). Then the additive shift C(Q) of Q in direction n is given by Q′ = C(Q)

where q′(0,0) = 9.5, q′(0,1) = 2.5, q′(2,2) = 5, q′(2,3) = 5, q′(4,0) = 8, and q′(i, j) = 0 for all other

(i, j) ∈ Ind(nat ∗ nat). It reflects the identity h(m,n+1) = 7+ 2.5·(n+1) + 5
(m

2

)(n+1
3

)
+

8
(m

4

)
= 9.5+2.5·n+5

(m
2

)(n
2

)
+5
(m

2

)(n
3

)
+8
(m

4

)
.

Lemma 4.1 states the soundness of the shift operation.

Lemma 4.1
Let Γ,x:nat;Q be an annotated context, H � V : Γ,x:nat, and H(V (x)) = n+1. Let fur-
thermore V ′ =V [y7→`] and H ′ = H, 7̀→n. Then H ′ �V ′ : Γ,y:nat and ΦV,H(Γ,x:nat;Q) =

ΦV ′,H ′(Γ,y:nat;C(Q)).

Proof
By definition we have ΦV,H(Γ,x:nat;Q) = ∑(i, j) q(i, j)·φi·

(n+1
j

)
where φi is a product of

base polynomials that depends on the data that is referenced by Γ. From the premises
V ′ = V [y 7→ `] and H ′ = H, ` 7→ n, and the definition of the additive shift it follows that
ΦV ′,H ′(Γ,y:nat;C(Q)) = ∑(i, j)(q(i, j)+q(i, j+1))·φi·

(n
j

)
. But then we use (1) (for every i) to

derive

∑
(i, j)

(q(i, j)+q(i, j+1))·φi·
(

n
j

)
= ∑

i
φi

(
∑

j
(q(i, j)+q(i, j+1))·

(
n
j

))

= ∑
i

φi

(
∑

j
q(i, j)·

(
n+1

j

))

= ∑
(i, j)

q(i, j)·φi·
(

n+1
j

)
= ΦV,H(Γ,x:nat;Q)

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 15

For addition and subtraction (compare rules T:ADD and T:SUB in Figure 5) we need to
express the potential of a natural number n in terms of two numbers n1 and n2 such that
n = n1 +n2. To this end, let Q = (qi)i∈N be an annotation for data of type nat. We define
the convolution �(Q) of the annotation Q to be the following annotation Q′ for the type
nat∗nat.

�(Q) = (q′(i, j))(i, j)∈Ind(nat∗nat) if q′(i, j) = qi+ j

The convolution �(Q) for type annotations corresponds to Vandermonde’s convolution for
binomial coefficients: (

n1 +n2

k

)
= ∑

i+ j=k

(
n1

i

)(
n2

j

)
(2)

This can be viewed as an explicit representation of the type of the append function for unit
lists in multivariate amortized analysis (Hoffmann et al., 2012a).

Example 4.5
Consider the resource polynomial g(n) = n+2.2

(n
2

)
, that is, q1 = 1, q2 = 2.2, and qi = 0

otherwise. Then we have �(Q) = (q′(i, j))(i, j)∈Ind(nat∗nat), where the non-zero coefficients
of Q′ are q′(1,0) = q′(0,1) = 1 and q′(1,1) = q′(0,2) = q′(2,0) = 2.2. This reflects the identity

g(n) = m+ k+2.2(
(m

2

)
+
(k

2

)
+mk) for every m,k with m+ k = n.

Lemma 4.2
Let Q be an annotation for type nat, H � ` 7→ n1+n2 :nat , and H ′ � `′ 7→ (n1,n2) :nat∗nat .
Then ΦH(`:(nat,Q)) = ΦH ′(`

′:(nat∗nat,�(Q))).

Proof
By definition we have ΦH(`:(nat,Q)) = ∑k qk

(n1+n2
k

)
and also ΦH ′(`

′:(nat∗nat,�(Q))) =

∑(i, j) q′(i, j)
(n1

i

)(n2
j

)
for some coefficients q′(i, j) ∈Q+

0 . From the definition of the convolution
�(Q) it follows that q′(i, j) = qi+ j. Thus we can use (2) to derive the statement of the lemma.

∑
k

qk

(
n1 +n2

k

)
= ∑

k
qk

(
∑

i+ j=k

(
n1

i

)(
n2

j

))

= ∑
i+ j=k

qk

(
n1

i

)(
n2

j

)
= ∑

(i, j)
q′(i, j)

(
n1

i

)(
n2

j

)
In the type rule for subtraction of a constant K we can distribute the potential in two different
ways. We can either use the convolution to distribute the potential between two numbers or
we can perform K additive shifts. Of course, we can describe K shift operations directly:
Let Q = (qi)i∈N be an annotation for data of type nat. The K-times shift for natural numbers
CK(Q) of the annotation Q is an annotation Q′ for data of type nat that is defined as follows.

CK(Q) = (q′i)i∈Ind(nat) if q′i = ∑
j=i+`

q j

(
K
`

)
.

Recall that
(n

m

)
= 0 if m > n. The K-times shift is a generalization of the additive shift

which is equivalent to the 1-times shift. It corresponds to the following identity that holds if

ZU064-05-FPR main 27 July 2015 12:34

16 Jan Hoffmann and Zhong Shao

q j = 0 for all j > k.

∑
0≤i≤k

qi

(
n+K

i

)
= ∑

0≤i≤k

(
∑

j=i+`

q j

(
K
`

))(
n
i

)
(3)

It can be derived from Vandermonde’s convolution as follows.

∑
0≤i≤k

qi

(
n+K

i

)
= ∑

0≤i≤k
qi

(
∑

i= j+`

(
n
j

)(
K
`

))

= ∑
i= j+`

qi

(
n
j

)(
K
`

)
where 0≤i, j, `≤ k

= ∑
0≤ j≤k

(
∑

i= j+`

qi

(
n
j

)(
K
`

))
where 0≤i, `≤ k

= ∑
0≤ j≤k

(
∑

i= j+`

qi

(
K
`

))(
n
j

)
where qi = 0 for i > k

Lemma 4.3
Let Q be an annotation for type nat, H � ` 7→ n+K :nat , and H ′ � `′ 7→ n :nat . Then
ΦH(`:(nat,Q)) = ΦH ′(`

′:(nat,CKQ)).

Proof
By definition, ΦH(`:(nat,Q)) = ∑i qi

(n+K
i

)
and ΦH ′(`

′:(nat,CKQ)) = ∑i q′i
(n

i

)
for some

coefficients q′i ∈ Q+
0 . From the definition of the K-times shift CKQ it follows that q′i =

∑ j=i+` q j
(K
`

)
. Thus we can use (3) to argue as follows.

∑
i

qi

(
n+K

i

)
= ∑

i

(
∑

j=i+`

q j

(
K
`

))(
n
i

)
= ∑

i
q′i

(
n
i

)
= ΦH ′(`

′:(nat,CKQ))

For multiplication and division, things are more interesting. Our goal is to define an operation
�(Q) that defines an annotation for the arguments (x1,x2) : nat∗nat if given an annotation
Q of a product x1 ∗ x2 : nat. For this purpose, we are interested in the coefficients A(i, j,k)
in the following identity. Note that ranges for i and j are not necessary since A(i, j,k) will
be 0 if i > k or j > k. (

nm
k

)
= ∑

i, j
A(i, j,k)

(
n
i

)(
m
j

)
(4)

Fortunately, this problem has been carefully studied by Riordan and Stein (Riordan & Stein,
1972).1 Intuitively, the coefficient A(i, j,k) is number of ways of arranging k pebbles on an
i× j chessboard such that every row and every column has at least one pebble. Riordan and
Stein obtain the following closed formulas.

A(i, j,k) = ∑
r,s
(−1)i+ j+r+s

(
i
r

)(
j
s

)(
rs
k

)
= ∑

n

i! j!
k!

S(n, i)S(n, j)s(k,n)

1 Thanks to Mike Spivey for pointing us to that article.

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 17

Here, S(·, ·) and s(·, ·) denote the Stirling numbers of first and second kind, respectively.
Furthermore they report the recurrence relation A(i, j,k+ 1)(k+ 1) = (A(i, j,k)+A(i−
1, j,k)+A(i, j−1,k)+A(i−1, j−1,k))i j− k A(i, j,k).

Equipped with a closed formula for A(i, j,k), we now define the multiplicative convolution
�(Q) of an annotation Q for type nat as

�(Q) = (q′(i, j))(i, j)∈Ind(nat∗nat) if q′(i, j) = ∑
k

A(i, j,k)qk .

Note that ranges for the indices i, j,k ∈ N are not necessary since A(i, j,k) = 0 if i > k,
j > k, or k > i∗ j. In the implementation, we have to select some bounds to obtain a finite
number of indices. We currently fix a maximal degree D and require i+ j ≤ D and k ≤ D.

Lemma 4.4
Let Q be an annotation for type nat, H � ` 7→ n1 ·n2 :nat , and H ′ � `′ 7→ (n1,n2) :nat∗nat .
Then ΦH(`:(nat,Q)) = ΦH ′(`

′:(nat∗nat,�(Q))).

Proof
By definition we have ΦH(`:(nat,Q)) =∑k qk

(n1·n2
k

)
. Moreover, ΦH ′(`

′:(nat∗nat,�(Q))) =

∑(i, j) q′(i, j)
(n1

i

)(n2
j

)
for some coefficients q′(i, j) ∈Q

+
0 . From the definition of the multiplicative

convolution �(Q) it follows that q′(i, j)=∑k A(i, j,k)qk. Thus we can use (4) to obtain

∑
k

qk

(
n1 ·n2

k

)
= ∑

k
qk

(
∑
i, j

A(i, j,k)
(

n1

i

)(
n2

j

))

= ∑
k,i, j

qk·A(i, j,k)
(

n1

i

)(
n2

j

)

= ∑
i, j

(
∑
k

A(i, j,k)qk

(
n1

i

)(
n2

j

))

= ∑
(i, j)

q′(i, j)

(
n1

i

)(
n2

j

)
Let Γ,x1:A,x2:A;Q be an annotated context. The sharing operation.Q defines an annotation
for a context of the form Γ,x:A. It is used when the potential is split between multiple
occurrences of a variable. The following lemma shows that sharing is a linear operation that
does not lead to any loss of potential. A proof can be found for instance in (Hoffmann et al.,
2012a).

Lemma 4.5
Let A be a data type. Then there are natural numbers c(i, j)k for i, j,k ∈ Ind(A) with deg(k)≤
deg(i, j) such that the following holds. For every context Γ,x1:A,x2:A;Q and every H,V
with H � V : Γ,x:A it holds that ΦV,H(Γ,x:A;Q′) = ΦV ′,H(Γ,x1:A,x2:A;Q) where V ′ =

V [x1,x2 7→V (x)] and q′(`,k) = ∑i, j∈Ind(A) c(i, j)k q(`,i, j).

The coefficients c(i, j)k can be computed effectively. We were however not able to derive a
closed formula for the coefficients. The proof can be found in a previous article (Hoffmann
et al., 2012a).

For a context Γ,x1:A,x2:A;Q we define .Q to be the Q′ from Lemma 4.5.

ZU064-05-FPR main 27 July 2015 12:34

18 Jan Hoffmann and Zhong Shao

5 Resource-Aware Type System

We now describe the type-based amortized analysis for programs with unsigned integers
and arrays.

Type Judgments. The declarative type rules for RAML expressions in Figure 5 and
Figure 6 define a resource-annotated typing judgment of the form

Σ;Γ;Q M e :(A,Q′)

where e is a RAML expression, M is a metric, Σ is a resource-annotated signature (see
below), Γ;Q is a resource-annotated context and (A,Q′) is a resource-annotated data type.
The intended meaning of this judgment is that if there are more than Φ(Γ;Q) resource units
available then this is sufficient to cover the evaluation cost of e in metric M. In addition,
there are at least Φ(v:(A,Q′)) resource units left if e evaluates to a value v.

Programs with Annotated Types. Resource-annotated function types have the form
(A,Q)→ (B,Q′) for annotated data types (A,Q) and (B,Q′). A resource-annotated signature
Σ is a finite, partial mapping of function identifiers to sets of resource-annotated function
types. We need multiple types per function since it is often necessary to pass on potential
to the function result for later use in the program as demonstrated with the function mult

in Section 2. The potential that needs to be passed on—and thus the annotated function
type—depends on the call site.

A RAML program with resource-annotated types for metric M consists of a resource-
annotated signature Σ and a family of expressions with variable identifiers (e f ,y f) f∈dom(Σ)

such that Σ;y f :A;Q M e f : (B,Q′) for every function type (A,Q)→ (B,Q′) ∈ Σ(f).

Type Rules. Figure 5 and Figure 6 contain the annotated type rules. The rules T:WEAK-A
and T:WEAK-C are structural rules that apply to every expression. The other rules are
syntax-driven and there is one rule for every construct of the syntax. In the implementation
we incorporated the structural rules in the syntax-driven ones.

The rules T:VAR, T:APP, T:PAIR, T:MATP, T:SHARE, T:LET, T:MATN, and T:WEAK-*
are similar to the corresponding rules in previous work (Hoffmann et al., 2011).

In the rule T:UNDEF, we only require that the constant potential Mundef is available.
In contrast to the other rules we do not relate the initial potential Q with the resulting
potential Q′. Intuitively, this is sound because the program is aborted when evaluating
the expression undefined. A consequence of the rule T:UNDEF is that we can type the
expression let x = undefined ine with constant initial potential Mundef regardless of the
resource cost of the expression e.

The rule T:NAT shows how to transfer constant potential to polynomial potential of
a non-negative integer constant n. Since n is statically available, we simply compute the
coefficients

(n
i

)
for the linear constraint system.

In the rule T:ADD, we use the convolution operation �(·) that we describe in Section 4.
The potential defined by the annotation �(Q′) for the context x1:nat,x2:nat is equal to the
potential Q′ of the result.

Subtraction is handled by the rules T:SUB and T:SUBC. To be able to conserve all the
available potential, we have to ensure that subtraction is the inverse operation to addition. To

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 19

Q = Q′+Mvar

Σ;x:A;Q M x : (A,Q′)
(T:VAR)

P+Mapp = Q (A,P)→ (A′,Q′) ∈ Σ(f)

Σ;x:A;Q M f (x) : (A′,Q′)
(T:APP)

Q = Q′+Mpair

Σ;x1:A1,x2:A2;Q M (x1,x2) : (A1∗A2,Q′)
(T:PAIR)

Σ;Γ,x1:A1,x2:A2;P M e : (B,Q′) P+MmatP = Q

Σ;Γ,x:A;Q M match x with(x1,x2)⇒ e : (B,Q′)
(T:MATP)

Σ;Γ,x1:A,x2:A;P M e : (B,Q′) .P+Mshare = Q

Σ;Γ,x:A;Q M share x as(x1,x2) ine : (B,Q′)
(T:SHARE)

Σ;Γ1,Γ2;R M e1 Γ2,x:A;R′

Σ;Γ2,x:A;P M e2 : (B,Q′) Q = R+Mlet1 R′ = P+Mlet2

Σ;Γ1,Γ2;Q M let x = e1 ine2 : (B,Q′)
(T:LET)

Q =�(Q′)+Madd

Σ;x1:nat,x2:nat;Q M x1 + x2 : (nat,Q′)
(T:ADD)

Q′+Msub =�(πx1:nat
0 (Q))

Σ;x1:nat,x2:nat;Q M minus(x1,x2) : (nat∗nat,Q′)
(T:SUB)

q0 = Mnat+ ∑
i≥0

q′i

(
n
i

)
Σ; ·;Q M n : (nat,Q′)

(T:NAT)

Q = Msub+P+R P′ =�(P) R′ =Cn(R)
q′(i,0) = r′i + p′(i,0) q′(i, j) = p′(i, j) if j > 0

Σ;x:nat;Q M minus(x,n) : (nat∗nat,Q′)
(T:SUBC)

q0 = Mundef

Σ; ·;Q M undefined : (B,Q′)
(T:UNDEF)

Q =�(Q′)+Mmult

Σ;x1:nat,x2:nat;Q M x1∗x2 : (nat,Q′)
(T:MULT)

R+Mdiv =�(πx1:nat
0 (Q)) ∀i ∈ N : πi(R) =�(πi(Q′))

Σ;x1:nat,x2:nat;Q M divmod(x1,x2) : ((nat∗nat)∗nat,Q′)
(T:DIV)

Σ;Γ;R M e1 : (B,Q′)
R+MmatZ = π

Γ
0 (Q) Σ;Γ,y:nat;P M e2 : (B,Q′) P+MmatS =C(Q)

Σ;Γ,x:nat;Q M match x with〈0⇒ e1 | S(y)⇒ e2〉 : (B,Q′)
(T:MATN)

Σ;Γ;P M e : (B,P′)
Q≥ P+ c Q′ ≤ P′+ c

Σ;Γ;Q M e : (B,Q′)
(T:WEAK-A)

Σ;Γ;π
Γ
0 (Q) M e : (B,Q′)

Σ;Γ,x:A;Q M e : (B,Q′)
(T:WEAK-C)

Fig. 5. Annotated type rules.

ZU064-05-FPR main 27 July 2015 12:34

20 Jan Hoffmann and Zhong Shao

∀ i>1 : q(i,0) = q′i q(0,0) = q′0 +MAmake q(1,0) = q′1 +MAmakeL

Σ;x1:nat,x2:A;Q M A.make(x1,x2) : (A array,Q′)
(T:AMAKE)

q0 = q′0 +MAget

Σ;x1:Aarray,x2:nat,x3:A;Q M A.set(x1,x2,x3) : (nat,Q′)
(T:ASET)

∀ i6=0 : q′i = 0 q0 = q′0 +MAset

Σ;x1:Aarray,x2:nat;Q M A.get(x1,x2) : (A,Q′)
(T:AGET)

Q = Q′+MAlen

Σ;x : Aarray;Q M A.length(x) : (nat,Q′)
(T:ALEN)

Fig. 6. Annotated Type rules for array operations.

∀ j ∈ Ind(∆): j=~0 =⇒ Σ;Γ;π
Γ
j (Q) M e : (A,πx:A

j (Q′))
j 6=~0 =⇒ Σ j;Γ;π

Γ
j (Q) cf e : (A,πx:A

j (Q′))

Σ;Γ,∆;Q M e ∆,x:A;Q′
(B:BIND)

Fig. 7. The binding rule for multivariate variable binding.

this end, we abort the program if x2 > x1 and otherwise return the pair (n,m) = (x2,x1−x2).
This enables us to transfer the potential of x1 to the pair (n,m) where n+m = x1. This is
inverse to the rule T:ADD for addition.

In the rule T:SUB, we only use the potential of x1 by applying the projection π
x1:nat
0 (Q).

The potential of x2 and the mixed potential of x1 and x2 can be arbitrary and is wasted by
the rule. This is usually not problematic since it would just be zero anyway in most useful
type derivations. By using the convolution �(πx1:nat

0 (Q)) we then distribute the potential of
x1 to the result of minus(x1,x2).

The rule T:SUBC specializes the rule T:SUB. We can use T:SUBC to simulate T:SUB

but we also have the possibility to exploit the fact that we subtract a constant. This puts us
in a position to use the K-times shift that we introduced in Section 4. So we split the initial
potential Q into P and R. We then assign the convolution P′ =�(P) to the pair of unsigned
integer that is returned by minus and the n-times shift Cn(R) to the first component of the
returned pair. In fact, it would not hamper the expressivity of our system to only use the
conventional subtraction x−n and the n-times shift in the case of subtraction of constants.
The only reason why we use minus also for constants is to present a unified syntax to the
user.

In practice, it would be beneficial not to expose this non-standard minus function to users
and instead apply a code transformation that converts the usual subtraction let x= x1−x2 ine
into an equivalent expression let(x2,x) = minus(x1,x2) ine that overshadows x2 in e. In this
way, it is ensured that the potential that is returned by minus can be used within e.

The rule T:MULT is similar to T:ADD. We just use the multiplicative convolution �(·)
(see Section 4) instead of the additive convolution �(·). The rule T:DIV is inverse to

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 21

T:MULT in the same way that T:SUB is inverse to T:ADD. We use both, the additive and
multiplicative convolution to express the fact that n∗m+r = x1 if (n,m,r) = divmod(x1,x2).

In the rule T:AMAKE, we transfer the potential of x1 to the created array. We discard
the potential of x2 and the mixed potential of x1 and x2. At this point, it would in fact be
not problematic to use mixed potential to assign it to the newly created elements of the
array. We refrain from doing so solely because of the complexity that would be introduced
by tracking the potential in the functions A.get and A.set. Another interesting aspect of
T:AMAKE is that we have a constant cost that we deduce from the constant coefficient as
usual, as well as a linear cost that we deduce from the linear coefficient. This is represented
by the constraints q(0,0) = q′0 +MAmake and q(1,0) = q′1 +MAmakeL, respectively.

For convenience, the operation A.set returns 0 in this paper. In RAML, A.set has however
the return type unit. This makes no difference for the typing rule T:ASET in which we simply
pay for the cost of the operation and discard the potential that is assigned to the arguments.
Since the return value is 0, we do not need require that the non-constant annotations of Q′

are zero.
In the rule T:AGET, we again discard the potential of the arguments and also require that

the non-linear coefficients of the annotation of the result are zero. In the rule T:ALEN, we
simply assign the potential of the array in the argument to the resulting unsigned integer.

In the rule T:LET for let bindings, we bind the result of the evaluation of an expression
e to a variable x. The problem that arises is that the resulting annotated context ∆,x:A,Q′

features potential functions whose domain consists of data that is referenced by x as well as
data that is referenced by ∆. This potential has to be related to data that is referenced by ∆

and the free variables in the expression e.
To express the relations between mixed potentials before and after the evaluation of e, we

introduce a new auxiliary binding judgment of the from

Σ;Γ,∆;Q M e ∆,x:A;Q′

in the rule B:BIND in Figure 7. The intuitive meaning of the judgment is the following.
Assume that e is evaluated in the context Γ,∆, that FV(e)⊆ dom(Γ), and that e evaluates to
a value that is bound to the variable x. Then the initial potential Φ(Γ,∆;Q) is larger than the
cost of evaluating e in the metric M plus the potential of the resulting context Φ(∆,x:A;Q′).
Lemma 5.1 formalizes this intuition.

Lemma 5.1
Let H �V :Γ,∆ and Σ;Γ,∆;Q M e ∆,x:A;Q′.

1. If V,H M e⇓ (`,H ′) | (w,d) then ΦV,H(Γ,∆;Q)≥ d+ΦV ′,H ′(∆,x:A;Q′) where V ′=
V [x 7→ `].

2. If V,H M e ⇓ ρ | (w,d) then d ≤ΦV,H(Γ;Q).

Formally, Lemma 5.1 is a consequence of the soundness of the type system (Theorem 5.1).
In the inductive proof of Theorem 5.1, we use a weaker version of Lemma 5.1 in which the
soundness of the type judgments in Lemma 5.1 is an additional precondition.

Soundness. An annotated type judgment for an expression e establishes a bound on the
resource cost of all evaluations of e in a well-formed environment; regardless of whether
the evaluation terminates, diverges, or fails.

ZU064-05-FPR main 27 July 2015 12:34

22 Jan Hoffmann and Zhong Shao

Additionally, the soundness theorem states a stronger property for terminating evaluations.
If an expression e evaluates to a value v in a well-formed environment then the difference
between initial and final potential is an upper bound on the resource usage of the evaluation.

Theorem 5.1 (Soundness)
Let H �V :Γ and Σ;Γ;Q M e:(B,Q′).

1. If V,H M e ⇓ (`,H ′) | (p, p′) then p ≤ ΦV,H(Γ;Q) and p− p′ ≤ ΦV,H(Γ;Q)−
ΦH ′(`:(B,Q′)).

2. If V,H M e ⇓ ◦ | (p, p′) then p≤ΦV,H(Γ;Q).

Theorem 5.1 is proved by a nested induction on the derivation of the evaluation judgment
and the type judgment Γ;Q ` e:(B,Q′). The inner induction on the type judgment is needed
because of the structural rules. There is one proof for all possible instantiations of the
resource constants.

The proof of most rules is similar to the proof of the rules for multivariate resource
analysis for sequential programs (Hoffmann et al., 2012a). The novel type rules are mainly
proved by the Lemmas 4.2, 4.3, and 4.4. For example, the induction case for multiplication
in the first part of the Theorem 5.1 works as follows.

(T:MULT) Assume that the type derivation ends with an application of the rule T:MULT.
Then e has the form x1 ∗ x2 and the evaluation consists of a single application of the rule
E:MULT. Therefore we can apply Lemma 4.4 and derive ΦV,H(x1:nat,x2:nat;�(Q′)) =
ΦV,H ′(v : (nat,Q′)) where v = H(V (x1)) ·H(V (x2)). Then it follows from the rule T:MULT

that ΦV,H(x1:nat,x2:nat;Q)−ΦV,H ′(v : (nat,Q′)) = q(0,0)−q′0 = Mmult.
If Mmult ≥ 0 then it follows p = Mmult and p′ = 0. Thus we have p = Kop ≤ q(0,0) =

ΦV,H(x1:nat,x2:nat;Q) and p− p′ = Mmult = ΦV,H(x1:nat,x2:nat;Q)− (ΦV,H ′(v:(nat,Q′)).
If Mmult < 0 then it follows that p = 0 and p′ = −Mmult. Therefore we have p ≤ q =

ΦV,H(x1:nat,x2:nat;Q) and p− p′=Mmult =ΦV,H(x1:nat,x2:nat;Q)−(ΦV,H ′(v : (nat,Q′))).

We deal with the mutable heap by requiring that array elements do not influence the
potential of an array. As a result, we can prove the following lemma, which is used in the
proof of Theorem 5.1.

Lemma 5.2
If H � V :Γ, Σ;Γ;Q M e : (B,Q′) and V,H M e ⇓ (`,H ′) | (p, p′) then ΦV,H(Γ;Q) =

ΦV,H ′(Γ;Q).

To prove Lemma 5.2 we need a definition and two propositions. We say that two heaps H1

and H2 are compatible (modulo arrays) if for all ` ∈ dom(H1∩H2)

H1(`) = H2(`) or, H1(`) = (σ1,n) and H2(`) = (σ2,n) .

Proposition 5.1
Let H1 and H2 be compatible heaps, H1 � ` 7→ a1 : A, and `∈ dom(H2). Then H2 � ` 7→ a2 : A;
moreover a1 = a2, or a1 = (α1,n) and a2 = (α2,n) for some α1, α2, and n.

Proposition 5.1 follows by induction on the derivation of the judgement H1 � ` 7→ a1 : A.

Proposition 5.2

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 23

Let H1 and H2 be compatible heaps, H1 � ` :A , and Q a potential annotation for type A. If
` ∈ dom(H2) then ΦH1(`:(A,Q)) = ΦH2(`:(A,Q)).

Proof
By definition of H1 � ` :A there exists an a1 such that H1 � ` 7→ a1 : A. Thus it follows from
Proposition 5.1 that there exists an a2 such that H2 � ` 7→ a2 : A. If a1 = a2 then by definition
ΦH1(`:(A,Q)) = ΦH2(`:(A,Q)). Otherwise it follows by Proposition 5.1 that a1 = (α1,n)
and a2 = (α2,n) for some α1, α2, and n. But then ΦH1(`:(A,Q)) = ΦH2(`:(A,Q)) since the
potential of an array depends by definition only on the size n of an array.

Proof of Lemma 5.2
Let H � V :Γ, Σ;Γ;Q M e : (B,Q′) and V,H M e ⇓ (`,H ′) | (p, p′). By induction on
the derivation of the judgement V,H M e ⇓ (`,H ′) | (p, p′) it follows that H and H ′ are
compatible and that dom(H)⊆ dom(H ′). Thus H ′ �V :Γ and ΦV,H ′(Γ;Q) is defined. Thus

ΦV,H(Γ;Q) = ∑(i1,...,in)∈Indk(Γ)
q~ı ∏

n
j=1 pi j(ax j)

= ∑(i1,...,in)∈Indk(Γ)
q~ı ∏

n
j=1 pi j(a

′
x j
) = ΦV,H ′(Γ;Q)

where H �V (x j) 7→ ax j : Γ(x j) and H ′ �V (x j) 7→ a′x j
: Γ(x j) . The second equation holds

because the sums are pointwise equal. This is a direct consequence of Proposition 5.2.

If the metric M is simple (all constants are 1) then it follows from Theorem 5.1 that the
bounds on the resource usage also prove the termination of programs.

Corollary 5.1
Let M be a simple metric. If H � V :Γ and Σ;Γ;Q M e:(A,Q′) then there are w ∈ N and
d ≤ΦV,H(Γ;Q) such that V,H M e ⇓ (`,H ′) | (w,d) for some ` and H ′.

6 Type Inference

In principle, type inference consists of four steps. First, we perform a classic type inference
for the simple types such as (Arr(nat)). Second, we fix a maximal degree of the bounds and
annotate all types in the derivation of the simple types with variables that correspond to
type annotations for resource polynomials of that degree. Third, we generate a set of linear
inequalities, which express the relationships between the added annotation variables as
specified by the type rules. Forth, we solve the inequalities with an LP solver such as CLP.
A solution of the linear program corresponds to a type derivation in which the variables in
the type annotations are instantiated according to the solution.

In practice, the type inference is slightly more complex. Most importantly, we have to
deal with resource-polymorphic recursion in many examples. This means that we need a
type annotation in the recursive call that differs from the annotation in the argument and
result types of the function. To infer such types we successively infer type annotations of
higher and higher degree. Details can be found in previous work (Hoffmann & Hofmann,
2010a). Moreover, we have to use algorithmic versions of the type rules in the inference in
which the non-syntax-directed rules are integrated into the syntax-directed ones (Hoffmann
et al., 2012a). Finally, we use several optimizations to reduce the number of generated
constraints.

ZU064-05-FPR main 27 July 2015 12:34

24 Jan Hoffmann and Zhong Shao

For the most part, our constraints have the form of a so-called network (or network-flow)
problem (Vanderbei, 2001). LP solvers can handle network problems very efficiently and
CPLEX solves the constraints RAML generates in linear time in practice. Because our
problem sizes are large we can save memory and time by reducing the number of constraints
that are generated during typing. A representative example of an optimization is that we try
to reuse constraint names instead of producing constraints like p = q.

Example Inference. In the following, we illustrate the constraint generation during type
inference with an example. As in Section 2, we use the resource metric that counts the
number of pattern matches that are performed during an evaluation. The function quad

below is a particularly simple example that uses the new rule for addition and performs a
quadratic number of match operations.

quad(n,m) = match n with

| 0 → 0

| S n’ → match m with

| 0 → let y = 0 in quad(n’,y)

| S m’ → share m’ as (m1,m2) in

let x = n’ + m1 in

quad(x,m2);

The purpose of quad is only to illustrate the type inference and the computed value is
not interesting: The function takes two unsigned integers n and m and always returns 0.
Nevertheless, the number of performed match operations is 1+2n+2

(m
2

)
in the worst case.

A valid type in our type system is thus

quad : (nat∗nat,Q)→ (nat,Q′) ,

where q(0,0) = 1,q(1,0) = 2,q(0,2) = 2, and qi = q′j = 0 for all other i and all j.
The first step in the type inference is to select a maximal degree to limit the search space

and to obtain a finite set of constraints. For simplicity, we set the maximal degree to 2. So
we have Q = (q(0,0),q(1,0),q(2,0),q(1,1),q(0,1),q(0,2)) and Q′ = (q′0,q

′
1,q
′
2), where the qi and

q′j are yet unknown rational variables that are to be determined by the LP solver.
Since the function quad is tail-recursive, we do not need resource-polymorphic recursion

and simply assume the (yet unknown) type quad : (nat∗nat,Q)→ (nat,Q′) at the recursive
calls. Polymorphic recursion is needed to pass-on potential for consumption in the code
that follows a recursive call in the function body. For more information about resource-
polymorphic recursion refer to (Hoffmann & Hofmann, 2010a).

We now use the type rules defined in Section 5 to generate a set of linear constraints so
that every valid instantiation of the constraints results in a valid type for quad. To this end,
we set

Σ(quad) = {(nat∗nat,Q)→ (nat,Q′)}
and produce a type derivation

Σ;n : nat,m : nat;Q M equad : (nat,Q′)

for the function body equad that contains variables in the places of the coefficients of the
potential functions.

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 25

...

n′:nat;R M e0 : (nat,R′)
(T:LET)

Γ = n′:nat,m1:nat

for i = 1,2 :
Γ;π

Γ
i (U) cf n′+m1 : (nat,πx:nat

i (U ′))
(T:ADD)

······ Γ;π
Γ
0 (U) M n′+m1 : (nat,πx:nat

0 (U ′))
(T:ADD)

Γ,m2:nat;U M n′+m1 m2:nat,x:nat;U ′
(B:BIND)

········

(nat∗nat,Q)→ (nat,Q′) ∈ Σ(quad)

m2:nat,x:nat;V M quad(x,m2) : (nat,V ′)
(T:APP)

n′ : nat,m1 : nat,m2 : nat;T M e2 : (nat,T ′)
(T:LET)

n′ : nat,m : nat;S M e1 : (nat,S′)
(T:SHARE)

·····

n′ : nat,m : nat;P M match m with | 0→ e0 | S m′→ e1 : nat,P′)
(T:MATN)

Fig. 8. Type derivation for the main parts of the function quad.

We illustrate this process in detail for the most interesting part of the derivation, namely
the inner match expression. Figure 8 shows the type derivation for the expression

match m with | 0→ e0 | S m′→ e1

where we use the following abbreviations.

e0 ≡ let y = 0 in quad(n′,y)

e1 ≡ share m′ as (m1,m2) in e2

e2 ≡ let x = n′+m1 in quad(x,m2)

The constraints are generated according to the preconditions of the respective type rules.
In the rightmost application of the rule T:ADD, we have πΓ

0 (U) =�(πx:nat
0 U ′) (recall that

Madd = 0 in our metric). This corresponds to the following set of linear constraints.

u(0,0,0) = u′(0,0) u(0,1,0) = u′(1,0) u(1,0,0) = u′(1,0)

u(1,1,0) = u′(2,0) u(0,2,0) = u′(2,0) u(2,0,0) = u′(2,0)

The constraints generated in the two cost-free applications of T:ADD are

u(0,0,2) = u′(0,2) u(0,0,1) = u′(0,1) u(0,1,1) = u′(1,1) u(1,0,1) = u′(1,1) .

Similarly, since Mapp = 0, we have Q =V and Q′ =V ′ in the rule T:APP, that is,

v(0,0) = q(0,0) v(1,0) = q(1,0) v(0,1) = q(0,1) v′0 = q′0
v(1,1) = q(1,1) v(2,0) = q(2,0) v(0,2) = q(0,2) v′1 = q′1 v′2 = q′2 .

In our metric, the rule T:LET requires simply that T =U , U ′ =V , and V ′ = T ′, which can
be directly expressed in linear constraints as well.

For the application of T:SHARE we generate constraints expressing T ′ = S′ as well as the
sharing following constraints.

s(0,0) = t(0,0,0) s(1,0) = t(1,0,0) s(0,1) = t(0,1,0)+ t(0,1,0)+2t(0,1,1)

s(2,0) = t(2,0,0) s(1,1) = t(0,1,0)+ t(0,1,0) s(0,2) = 2·t(0,1,1)

ZU064-05-FPR main 27 July 2015 12:34

26 Jan Hoffmann and Zhong Shao

In the rule T:MATN we require S′ = P′ and S + 1 = C(P), which corresponds to the
following constraint set. The constant 1 in the first equation reflects the fact that we count
the number of match operations, that is, MmatS = 1.

s(0,0)+1 = p(0,0)+ p(0,1) s(0,1) = p(0,1)+ p(0,2) s(0,2) = p(0,2)

s(1,0) = p(1,0)+ p(1,1) s(1,1) = p(1,1) s(2,0) = p(2,0)

Finally, we generate constraints for P′ = Q′. The remainder of the type derivation of equad

(not shown here) would also relate the coefficients in P with the ones in Q.

7 Experimental Evaluation

We have implemented our analysis system in Resource Aware ML (RAML) (Aehlig et al.,
2010-2013; Hoffmann et al., 2012b) and tested the new analysis on multiple classical
example algorithms. In this section we describe the results of our experiments with the
evaluation-step metric that counts the number of steps of an evaluation in the operational
semantics.

Table 1 contains a compilation of analyzed functions together with their simple types,
the computed bounds, the run times of the analysis, and the number of generated linear
constraints. We write Mat for the type (Arr(Arr(int)),nat,nat). The dimensions of the
matrices are needed since array elements do not carry potential. The variables in the
computed bounds correspond to the sizes of different parts of the input. The naming
convention is that we use the order n,m,x,y,z,u of the variables to name the sizes in a
depth-first way: n is the size of the first argument, m is the maximal size of the elements of
the first argument, x is the size of the second argument, etc. The experiments were performed
on an iMac with a 3.4 GHz Intel Core i7 and 8 GB memory.

All but one of the reported bounds are asymptotically tight (gcdFast is actually O(logm)).
Experiments with example inputs indicate that all constant factors in the bounds for the
functions dyadAllM and mmultAll are optimal. The bounds for the other functions seem to
be off by ca. 2%−20%. However, it is sometimes not straightforward to find worst-case
inputs.

The function dijkstra is an implementation of Dijkstra’s single-source shortest-path
algorithm which uses a simple priority queue; gcdFast is an implementation of the Euclidean
algorithm using modulo; pascal(n) computes the first n+1 lines of Pascal’s triangle;
quicksort is an implementation of Hoare’s in-place quick sort for arrays; and mmultAll

takes a matrix (an accumulator) and a list of matrices, and multiplies all matrices in the list
with the accumulator.

The last three examples are composed functions that highlight interesting capabilities
of the analysis. The function blocksort(a,n) takes an array a of length m and divides it
into n/m blocks (and a last block containing the remainder) using the build-in function
divmod, and sorts all blocks in-place with quicksort. The function dyadAllM(n) computes a
matrix of size (i2+9i+28)× (i j+6 j) for every pair of numbers i, j such that 1≤ j ≤ i≤ n
(the polynomials are just a random choice). Finally, the function mmultFlatSort takes two
matrices and multiplies them to get a matrix of dimension m×u. It then flattens the matrix
into an array of length mu and sorts this array with quicksort. The function for the flattening
is especially interesting since it requires a lexicographic order to prove termination.

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 27

Function / Type Computed Bound Time #Constr.

dijkstra : (Arr(Arr(int)),nat)→ Arr(int) 79.5n2 +31.5n+38 0.1 s 2178
gcdFast : (nat,nat)→ nat 12m+7 0.1 s 105

pascal : nat→ Arr(Arr(int)) 19n2 +95n+30 0.4 s 998

quicksort : (Arr(int),nat,nat)→ unit 12.25x2 +52.75x+3 0.7 s 2080
mmultAll : (L(Mat),Mat)→Mat 18nuyx+31nuy+38nu+38n+3 5.6 s 184270

blocksort : (Arr(int),nat)→ unit 12.25n2 +90.25n+18 0.4 s 27795

dyadAllM : nat→ unit 1.6̄n6 +334.8n4 +1485.08n3+
37n5+2963.54n2+1789.92n+3

3.9 s 130236

mmultFlatSort : (Mat,Mat)→ Arr(int) 12.25u2m2 +18umz+28u+
127.25um+49m+66

5.9 s 167603

Table 1. Compilation of RAML Experiments.

Figures 9 and 10 show a comparison of the computed evaluation-step bounds for the
functions dijkstra, quicksort, dyadAllM, and mmultAll with the measured evaluation steps
in the cost semantics for several input sizes. The experiments show that the bounds
for dyadAllM and mmultAll are tight. The bounds for dijkstra and quicksort are only
asymptotically tight. The relative looseness of the bound for quicksort (ca. 20%) is in some
sense a result of the compositionality of the analysis: The worst-case behavior of quick
sort’s partition function materializes if the number of swaps performed in the partitioning
is maximal. However, the number of swaps that are performed by the partitioning in a
worst-case run of quicksort is relatively low. Nevertheless, the analysis has to assume the
worst-case for each call of the partition function.

We did not perform an experimental comparison with abstract interpretation-based
resource analysis systems. Many systems that are described in the literature are not publically
available. The COSTA system (Albert et al., 2012b; Albert et al., 2012a) is an exception but
it is not straightforward to translate our examples to Java code that COSTA can handle. We
know that the COSTA system can compute bounds for the Euclidean algorithm (when using
an extension (Alonso-Blas et al., 2011)), quick sort, and Pascal’s triangle. The advantages of
our method are the compositionality that is needed for the analysis of compound functions
such as dyadAllM and mmultFlatSort, as well as for bounds that depend on integers as well
as on sizes of data structures such as dijkstra (priority queue) and mmultAll. Note however
that the LP solving during the inference of the potential functions is not modular if we want
to derive the most precise bounds: To allow different potential at every function call, we
have to copy the constraints for a function body to every call side.

A Case Study. In the remainder of this section, we present a larger case study that we
successively develop. It highlights the advantages of our analysis; namely compositionality
and the seamless analysis of non-linear size changes.

ZU064-05-FPR main 27 July 2015 12:34

28 Jan Hoffmann and Zhong Shao

Fig. 9. Derived evaluation-step bounds in comparison with the measured evaluation steps for inputs
of different sizes. On the top, the bound for dijkstra is compared with manually selected worst-case
inputs (complete graphs with x nodes for 1≤ x≤ 100 and hand-picked edge weights), random inputs
(graphs with randomly generated edge weights), and best-case inputs (empty graphs). The measured
costs for the random and best-case inputs are very close. At the bottom, the bound for quicksort is
compared to worst-case inputs (reversely-sorted arrays of sizes 1 to 200) and randomly filled arrays of
the same sizes.

We start with the function dyad that takes two arrays a and b and two unsigned integers n
and m. It then creates a matrix (an array of arrays) of size n×m by computing the dyadic
product of the prefix of a of length n and the prefix of b of length m.

dyad : (Arr(int),nat,Arr(int),nat) → Arr(Arr(int))

dyad (a,n,b,m) = let outerArr = A.make(n,A.make(0,+0)) in

let _ = fill(a,n,b,m,outerArr) in outerArr;

fill : (Arr(int),nat,Arr(int),nat,Arr(Arr(int))) → unit

fill(a,n,b,m,outerArr) = match n with | 0 → ()

| S n’ → let newLine = A.make(m,+0) in

let _ = multArr(A.get(a,n’),b,newLine,m) in

let _ = A.set(outerArr,n’,newLine) in

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 29

Fig. 10. Derived evaluation-step bounds in comparison with the measured evaluation steps for inputs
of different sizes. On the top, the bound for dyadAllM is compared to the measured cost for inputs x
where x ∈ {1, . . . ,12}. At the bottom, the bound for mmultAll is compared to inputs that contain a
list of y quadratic matrices of dimension x× x where 1≤ x ≤ 30 and 1≤ y≤ 50. The experiments
indicated that the derived bounds are optimal.

fill(a,n’,b,m,outerArr);

multArr : (int,Arr(int),Arr(int),nat) → unit

multArr(q,b,res,m) = match m with | 0 → ()

| S m’ → let p = A.get(b,m’) in

let _ = A.set(res,m’,q*p) in

multArr(q,b,res,m’);

The analysis computes the evaluation-step bound 20nm+31n+18 for the function dyad.
Our experiments with small example inputs indicate that this bound is tight. The analysis
takes 0.5 seconds.

ZU064-05-FPR main 27 July 2015 12:34

30 Jan Hoffmann and Zhong Shao

We now define the function matrix : (nat,nat)→ Arr(Arr(int)) that takes two numbers n
and m and computes a (n2+9n+28)× (mn+6m) matrix using dyad. The polynomials are
just a random choice and the analysis would work with any other polynomial as long as the
coefficients created for the constants in the linear constraints (e.g.

(28
4

)
) do not overflow the

LP solver. Since the elements of the vectors that we use to create the matrix do not influence
the evaluation cost we choose them arbitrarily.

matrix (n,m) = let size1 = n*n + 9*n + 28 in

let size2 = m*n + 6*m in

dyad(A.make(size1,+1),size1,A.make(size2,+1),size2);

Within 1 second, RAML computes the following evaluation-step bound for the function
matrix. Our experiments indicate that the bound is tight.

20mn3 +300mn2 +1641mn+3366m+32n2 +288n+942

Next, we implement the function dyadAll: nat→ unit which, given an unsigned integer n,
computes a dyadic product dyad(a, i,b, j) for every pair of numbers i, j such that 1≤ j ≤
i≤ n.

dyadAll n = match n with | 0 → ()

| S n’ → let _ = dyadP(n,n) in dyadAll(n’);

dyadP(n,m) = match m with | 0 → ()

| S m’ → let mat = dyad(A.make(n,+1),n,A.make(m,+1),m) in

dyadP(n,m’);

In 1.5 seconds, RAML computes the following bound for dyadAll. Note that the bound
function takes values in N if n ∈ N. Again, our experiments indicate that the bound is tight.

2.5n4 +19.16̄n3 +41.5n2 +36.83̄n+3

Now, we define the function dyadAllM that is identical to dyadAll except that we replace
the call dyad(A.make(n,+1),n,A.make(m,+1),m) in dyadP with the call matrix(n,m).
As a result, dyadAllM(n) computes a matrix of size (i2+9i+28)× (i j+6 j) for every pair of
numbers i, j such that 1≤ j ≤ i≤ n. RAML computes the following tight evaluation-step
bound in 5.8 seconds. Since the coefficients in the binomial basis are unsigned integers, the
bound function takes values in N.

1.6̄n6 +37n5 +334.7916̄n4 +1485.083̄n3 +2963.5416̄n2 +1789.916̄n+3

Finally, we show an application of the built-in function minus. The following function
dyadSub : (nat,nat)→ unit takes two numbers n and m, recursively subtracts m+1 from n,
and calls dyadAll(m+1) until n≤ m. Then dyadSub calls dyadAll(n).

dyadSub (n,m) = if (n > m) then

let (m,d) = minus(n,m) in

let (_,d) = minus(d,1) in

let _ = dyadAll(m+1) in dyadSub(d,m)

else dyadAll(n);

To be able to analyze the function, we have to execute the subtraction of m+ 1 in two
steps. First we subtract m and then we subtract the constant 1. This is necessary because the

ZU064-05-FPR main 27 July 2015 12:34

Type-Based Amortized Resource Analysis with Integers and Arrays 31

analysis does not perform a value analysis and does not infer that m+1≥ 1. So it cannot
be aware of the fact that n− (m+1)< n if n > m. If we split the subtraction into two parts
then RAML computes the following bound in 1.4 seconds.

2.5n4 +19.16̄n3 +41.5n2 +60.83̄n+11

Of course, the previous programs are somewhat artificial but they demonstrate quickly some
of the capabilities of the analysis. We invite you to experiment with other examples in the
web interface of RAML (Aehlig et al., 2010-2013).

8 Conclusion

We have presented a novel type-based amortized resource analysis for programs with
arrays and unsigned integers. We have implemented the analysis in Resource Aware ML
and our experiments show that the analysis works efficiently for many example programs.
Moreover, we have demonstrated that the analysis has benefits in comparison to abstract
interpretation–based approaches for programs with function composition and non-linear
size changes.

While the developed analysis system for RAML is useful and interesting in its own
right, we view this work mainly as an important step towards the application of amortized
resource analysis to C-like programs. We are confident that the developed rules for arithmetic
expression can be reused when moving to a different programming language. Our next step
is to develop a type-and-effect system that applies the ideas of this work to an imperative
language with while-loops, unsigned integers and arrays.

Acknowledgments. This research is based on work supported in part by NSF grants
1319671 and 1065451, and DARPA grants FA8750-10-2-0254 and FA8750-12-2-0293. Any
opinions, findings, and conclusions contained in this document are those of the authors and
do not reflect the views of these agencies.

References

Aehlig, Klaus, Hofmann, Martin, & Hoffmann, Jan. (2010-2013). RAML Web Site. http://raml.
tcs.ifi.lmu.de.

Albert, Elvira, Arenas, Puri, Genaim, Samir, & Puebla, Germán. (2011). Closed-Form Upper Bounds
in Static Cost Analysis. Journal of automated reasoning, 161–203.

Albert, Elvira, Arenas, Puri, Genaim, Samir, Gómez-Zamalloa, Miguel, & Puebla, Germán. (2012a).
Automatic Inference of Resource Consumption Bounds. Pages 1–11 of: Logic for Programming,
Artificial Intelligence, and Reasoning, 18th Conference (LPAR’12).

Albert, Elvira, Arenas, Puri, Genaim, Samir, Puebla, German, & Zanardini, Damiano. (2012b). Cost
Analysis of Object-Oriented Bytecode Programs. Theor. comput. sci., 413(1), 142 – 159.

Alias, Christophe, Darte, Alain, Feautrier, Paul, & Gonnord, Laure. (2010). Multi-dimensional
Rankings, Program Termination, and Complexity Bounds of Flowchart Programs. Pages 117–133
of: 17th Int. Static Analysis Symposium (SAS’10).

Alonso-Blas, Diego Esteban, & Genaim, Samir. (2012). On the limits of the classical approach to cost
analysis. Pages 405–421 of: 19th Int. Static Analysis Symp. (SAS’12).

Alonso-Blas, Diego Esteban, Arenas, Puri, & Genaim, Samir. (2011). Handling Non-linear Operations
in the Value Analysis of COSTA. Electr. notes theor. comput. sci., 279(1), 3–17.

ZU064-05-FPR main 27 July 2015 12:34

32 Jan Hoffmann and Zhong Shao

Brockschmidt, Marc, Emmes, Fabian, Falke, Stephan, Fuhs, Carsten, & Giesl, Jürgen. (2014).
Alternating Runtime and Size Complexity Analysis of Integer Programs. Pages 140–155 of:
Tools and Alg. for the Constr. and Anal. of Systems - 20th Int. Conf. (TACAS’14).

Carbonneaux, Quentin, Hoffmann, Jan, Ramananandro, Tahina, & Shao, Zhong. (2014). End-to-End
Verification of Stack-Space Bounds for C Programs. Page 30 of: Conf. on Prog. Lang. Design and
Impl. (PLDI’14).

Carbonneaux, Quentin, Hoffmann, Jan, & Shao, Zhong. (2015). Compositional Certified Resource
Bounds. 36th Conf. on Prog. Lang. Design and Impl. (PLDI’15). Forthcoming.

Cousot, Patrick, & Halbwachs, Nicolas. (1978). Automatic Discovery of Linear Restraints Among
Variables of a Program. Pages 84–96 of: 5th ACM Symp. on Principles Prog. Langs. (POPL’78).

Gulavani, Bhargav S., & Gulwani, Sumit. (2008). A Numerical Abstract Domain Based on Expression
Abstraction and Max Operator with Application in Timing Analysis. Pages 370–384 of: Comp. Aid.
Verification, 20th Int. Conf. (CAV ’08).

Gulwani, Sumit, Mehra, Krishna K., & Chilimbi, Trishul M. (2009). SPEED: Precise and Efficient
Static Estimation of Program Computational Complexity. Pages 127–139 of: 36th ACM Symp. on
Principles of Prog. Langs. (POPL’09).

Hoffmann, Jan, & Hofmann, Martin. (2010a). Amortized Resource Analysis with Polymorphic
Recursion and Partial Big-Step Operational Semantics. Prog. Langs. and Systems - 8th Asian
Symposium (APLAS’10).

Hoffmann, Jan, & Hofmann, Martin. (2010b). Amortized Resource Analysis with Polynomial
Potential. 19th Euro. Symp. on Prog. (ESOP’10).

Hoffmann, Jan, & Shao, Zhong. (2014). Type-Based Amortized Resource Analysis with Integers and
Arrays. 12th International Symposium on Functional and Logic Programming (FLOPS’14).

Hoffmann, Jan, Aehlig, Klaus, & Hofmann, Martin. (2011). Multivariate Amortized Resource
Analysis. 38th ACM Symp. on Principles of Prog. Langs. (POPL’11).

Hoffmann, Jan, Aehlig, Klaus, & Hofmann, Martin. (2012a). Multivariate Amortized Resource
Analysis. Acm trans. program. lang. syst.

Hoffmann, Jan, Aehlig, Klaus, & Hofmann, Martin. (2012b). Resource Aware ML. 24rd Int. Conf. on
Computer Aided Verification (CAV’12).

Hofmann, Martin, & Jost, Steffen. (2003). Static Prediction of Heap Space Usage for First-Order
Functional Programs. Pages 185–197 of: 30th ACM Symp. on Principles of Prog. Langs. (POPL’03).

Leroy, Xavier. (2006). Coinductive Big-Step Operational Semantics. Pages 54–68 of: 15th Euro.
Symp. on Prog. (ESOP’06).

Miné, A. (2004). Weakly relational numerical abstract domains. Ph.D. thesis, École Polytechnique,
Paris, France.

Riordan, John, & Stein, Paul R. (1972). Arrangements on Chessboards. Journal of Combinatorial
Theory, Series A, 12(1).

Sankaranarayanan, Sriram, Ivancic, Franjo, Shlyakhter, Ilya, & Gupta, Aarti. (2006). Static Analysis
in Disjunctive Numerical Domains. Pages 3–17 of: 13th Int. Static Analysis Symp. (SAS’06).

Sinn, Moritz, Zuleger, Florian, & Veith, Helmut. (2014). A Simple and Scalable Approach to Bound
Analysis and Amortized Complexity Analysis. Page 743–759 of: Computer Aided Verification -
26th Int. Conf. (CAV’14).

Vanderbei, Robert J. (2001). Linear Programming: Foundations and Extensions. Springer US.
Zuleger, Florian, Sinn, Moritz, Gulwani, Sumit, & Veith, Helmut. (2011). Bound Analysis of

Imperative Programs with the Size-change Abstraction. Pages 280–297 of: 18th Int. Static Analysis
Symp. (SAS’11).

