Resource Analysis: Problem Set 5

Jan Hoffmann
Carnegie Mellon University
February 22, 2016

Due before 1:30pm on Monday, February 29

5.1 (8 Points) Resource Monoid

Recall the definition of the resource monoid $Q = (\mathbb{Q}_{\geq 0} \times \mathbb{Q}_{\geq 0}, \cdot)$ where

$$(q, q') \cdot (p, p') = \begin{cases} (q + p - q', p') & \text{if } q' \leq p \\ (q, p' + q' - p) & \text{if } q' > p \end{cases}$$

Let $(q, q') = (r, r') \cdot (s, s')$. Prove the following statements.

1. $q \geq r$ and $q - q' = r - r' + s - s'$

2. If $(p, p') = (\bar{r}, r') \cdot (s, s')$ and $\bar{r} \geq r$ then $p \geq q$ and $p' = q'$

3. If $(p, p') = (r, r') \cdot (\bar{s}, s')$ and $\bar{s} \geq s$ then $p \geq q$ and $p' \leq q'$

4. $(r, r') \cdot ((s, s') \cdot (t, t')) = ((r, r') \cdot (s, s')) \cdot (t, t')$

5.2 (12 Points) Reasoning with the Cost Semantics

Consider the metric M_{app} that counts the number of function applications, that is,

$$M_{\text{app}}(\text{app}) = 1$$

$$M_{\text{app}}(K) = 0 \text{ if } K \neq \text{app}$$

Consider the function $\omega : (X \rightarrow X) \rightarrow Y$ that is defined as follows.

let rec $\omega = \text{fun } x \rightarrow \omega \omega x \text{ in } \omega \omega (\text{fun } x \rightarrow x)$

Let e_{ω} be the above expression.

a) Prove that $\cdot : H_{M} \vdash e_{\omega} \Downarrow \circ (n, 0)$ for every $n \in \mathbb{N}$ and every heap H.

b) Prove that $\cdot : H_{M} \vdash e_{\omega} \Downarrow (\ell, H')$ for any ℓ and H'.
5.3 (18 Points) Resource-Based Type Safety

We will now use our effect-based cost semantics to show that well-typed programs don’t go wrong: In a well-formed environment, a well-typed expression will either evaluate to a value of the right type or can make an infinite number of steps.

First, recall the definition of a well-typed environment. We write $H \Downarrow v : A$ to indicate that there exists a, necessarily unique, semantic value $a \in [A]$ so that $H \Downarrow v \rightarrow a : A$. An environment V and a heap H are well-formed with respect to a context Γ if $H \Downarrow V(x) : \Gamma(x)$ holds for every $x \in \text{dom}(\Gamma)$. We then write $H \Downarrow V : \Gamma$.

The judgement $H \Downarrow v \rightarrow a : A$ is defined by the following rules. Recall that the rules have to be interpreted coinductively.

\[
\begin{align*}
X \in X' & \quad \ell \in \text{dom}(H) \\
\frac{}{H \Downarrow \ell \rightarrow \ell : X} & \quad \text{(V:VAR)} \\
\frac{}{H \Downarrow \text{Null} \rightarrow [] : L(T)} & \quad \text{(V:NIL)} \\
\frac{H(\ell) = (\ell_1, \ell_2) \quad H \Downarrow \ell_1 \rightarrow a_1 \quad H \Downarrow \ell_2 \rightarrow (a_2, \ldots, a_n) : L(T)}{H \Downarrow \ell \rightarrow [a_1, \ldots, a_n] : L(T)} & \quad \text{(V:CONS)} \\
\frac{H(\ell) = (\lambda x.e, V) \quad \exists \Gamma. H \Downarrow V : \Gamma \land \Gamma \vdash \lambda x.e \vdash^m T_1 \rightarrow T_2}{H \Downarrow \ell \rightarrow (\lambda x.e, V) : \Sigma \rightarrow T} & \quad \text{(V:FUN)}
\end{align*}
\]

In this problem assume that M_E is the steps metric, which counts the number of evaluation steps. We then have $M_E^K = 1$ for all constants K.

Prove the following theorem. It is sufficient if you prove the theorem for expressions of the form

\[
e ::= x \quad \text{fun } x \rightarrow e \\
\text{app}(e_1, e_2) \quad e_1 \ e_2 \\
\text{let}(e_1, x. e_2) \quad \text{let } x = e_1 \text{ in } e_2 \\
\text{rec}((f, x). e_f, f.e) \quad \text{let } \text{rec } f x = e_f \text{ in } e
\]

Theorem 1 (Type Safety). Let $H \Downarrow V : \Gamma, \Gamma \vdash^m e : T$, and let M_E be the steps metric. Then

- there is an $n \in \mathbb{N}$ such that $V ; H_M \Downarrow e \Downarrow (\ell, H') \mid (n,0)$, $H' \Downarrow V : \Gamma$, and $H' \Downarrow \ell : T$

- or $V ; H_M \Downarrow e \Downarrow \circ \mid (m,0)$ for every $m \in \mathbb{N}$

A consequence of the theorem is that resource bounds on the number of evaluation steps prove termination.

Hint: The following lemma can be proved by induction on n.

Lemma 1. Let $H \Downarrow V : \Gamma$ and $\Gamma \vdash^m e : T$. If $V ; H_M \Downarrow e \Downarrow \circ \mid (n,0)$ then $V ; H_M \Downarrow e \Downarrow \circ \mid (n + 1,0)$ or $V ; H_M \Downarrow e \Downarrow (\ell, H') \mid (n + 1,0)$ for a location ℓ and an heap H'.

In environment V and heap H, expression e evaluates to (ℓ', H'), the watermark resource usage is q and q' resources are available afterwards.

$$V; H_M \vdash e \downarrow (\ell, H') \mid (q, q')$$

Rules

Rule (EE:VAR)

$$V; H_M \vdash x \downarrow (\ell, H) \mid M^\text{Val}$$

Rule (EE:ABS)

$$V; H_M \vdash \lambda x. e, V \downarrow (\ell, H') \mid M^\text{Abs}$$

Rule (EE:APP)

$$V; H_M \vdash e_1 \downarrow (\ell, H_1) \mid (q_0, q_1) \quad H(\ell_1) = (\lambda x. e, V')$$

$$V; H_M \vdash e_2 \downarrow (\ell_2, H_2) \mid (q_2, q_3) \quad V'(x \mapsto \ell_2) ; H'; M^\text{App} \vdash e_2 \downarrow (\ell, H') \mid (q_2, q_3)$$

Rule (EE:LET)

$$V; H_M \vdash \text{let}(e_1, x.e_2) \downarrow (\ell, H') \mid M^\text{let} \downarrow (q_0, q_1) \mid (q_2, q_3)$$

Rule (EE:NIL)

$$H' = H, \ell \mapsto \text{Null}$$

Rule (EE:CONS)

$$V; H_M \vdash e_1 \downarrow (\ell_1, H_1) \mid (q_0, q_1)$$

$$V; H_M \vdash e_2 \downarrow (\ell_2, H_2) \mid (q_2, q_3)$$

$$V; H_M \vdash \text{cons}(e_1, e_2) \downarrow (\ell, H') \mid M^\text{Cons} \downarrow (q_0, q_1) \mid (q_2, q_3)$$

Rule (EE:MAT1)

$$V; H_M \vdash \text{matL}(e, e_1, (x_1, x_2), e_2) \downarrow (\ell_1, H_1) \mid M^\text{matL} \downarrow (q_0, q_1) \mid (q_2, q_3)$$

Rule (EE:MAT2)

$$V; H_M \vdash \text{matL}(e, e_1, (x_1, x_2), e_2) \downarrow (\ell_1, H_1) \mid M^\text{matL} \downarrow (q_0, q_1) \mid (q_2, q_3)$$

Rule (EE:REC)

$$V' = V[f \mapsto \ell_f] \quad H' = H, \ell_f \mapsto (\lambda x. e_f, V')$$

$$V'; H'_M \vdash e \downarrow (\ell', H'') \mid (q, q')$$

Figure 1: Rules of the effect-based cost semantics.
After evaluating expression \(e \) in environment \(V \) and heap \(H \) for several steps, the watermark resource usage is \(q \) and \(q' \) resources are available.

![Equations and expressions in a table format](image)

Figure 2: Rules of the partial effect-based cost semantics.