
Vertical Selection in the Presence of Unlabeled Verticals

Jaime Arguello
∗

Language Technologies
Institute

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA, USA
jaime@cs.cmu.edu

Fernando Diaz
Yahoo! Labs

4301 Great America Pkwy
Santa Clara, CA, USA

diazf@yahoo-inc.com

Jean-François Paiement
Yahoo! Labs

1000 Rue de la Gauchetiere
Suite 2400

Montreal, QC, Canada
paiement@yahoo-

inc.com

ABSTRACT
Vertical aggregation is the task of incorporating results from
specialized search engines or verticals (e.g., images, video,
news) into Web search results. Vertical selection is the sub-
task of deciding, given a query, which verticals, if any, are
relevant. State of the art approaches use machine learned
models to predict which verticals are relevant to a query.
When trained using a large set of labeled data, a machine
learned vertical selection model outperforms baselines which
require no training data. Unfortunately, whenever a new
vertical is introduced, a costly new set of editorial data must
be gathered. In this paper, we propose methods for reusing
training data from a set of existing (source) verticals to learn
a predictive model for a new (target) vertical. We study
methods for learning robust, portable, and adaptive cross-
vertical models. Experiments show the need to focus on
different types of features when maximizing portability (the
ability for a single model to make accurate predictions across
multiple verticals) than when maximizing adaptability (the
ability for a single model to make accurate predictions for a
specific vertical). We demonstrate the efficacy of our meth-
ods through extensive experimentation for 11 verticals.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms

Keywords
vertical search, distributed information retrieval, query in-
tent, domain adaptation

∗work done while at Yahoo! Labs Montreal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’10, July 19–23, 2010, Geneva, Switzerland.
Copyright 2010 ACM 978-1-60558-896-4/10/07 ...$10.00.

1. INTRODUCTION
Many web search engines provide their users with access

to specialized search services, or verticals, that focus on a
specific type of media (e.g., blogs, images, video) or domain
(e.g., health, music, travel). In some cases, if a user is aware
of a relevant vertical, the query can be issued directly to a
vertical-specific search engine. However, to improve user-
experience, portal search engines have started embedding
relevant vertical content in Web search results. This has
been referred to as aggregated search. A necessary part of
an aggregated search system is vertical selection, the task
of deciding, given a query, which vertical back-ends, if any,
should be presented alongside Web search results.

Vertical selection can be viewed as a type of resource selec-
tion, a well-studied task in distributed information retrieval.
Recent work shows that a supervised machine learning ap-
proach to vertical selection outperforms traditional resource
selection methods [2, 1]. Most of these traditional methods
derive evidence exclusively from vertical content and do not
require extensive training data [4, 15, 18, 17, 16, 19].

While a supervised approach outperforms state-of-the-art
methods, one of its drawbacks is that it requires training
data. As is shown in Arguello et al. [2], suitable training
data (e.g., vertical relevance judgments for a set of queries)
can originate from human annotations. Human annotation
is resource intensive in terms of time and money. An an-
notation effort may be sensible as a one-time investment.
However, in practice, the aggregated search environment is
often dynamic. Verticals can be added to or removed from
the set of candidate verticals. Documents can be added to or
removed from a vertical. The interests of the user population
may drift, in effect, changing the set of vertical documents
most likely to be requested by users. It may not be feasible
to annotate a new set of queries every time the environment
undergoes a significant change.

In this paper, our goal is to improve a system’s return on
editorial investment. We are interested in the following sce-
nario. Suppose we have a set of verticals for which we have
collected training data in the form of human vertical rele-
vance judgements. We refer to these verticals as the source
verticals. Then, suppose we have a new vertical associated
with no training data. We refer to this vertical as the target
vertical. Our objective is to learn a predictive model for the
target vertical using only source-vertical training data.

Our solution to this problem focuses on two model prop-
erties: portability and adaptability. A portable model is one
that can be effectively applied to any target vertical with
no additional training data. If a model is portable, it can



be used as a ‘black box’ for any new vertical. An adaptable
model is one that can be tailored to a specific new verti-
cal with no additional training data. If a model is adapt-
able, its parameters can be automatically adjusted to suit
the new vertical at no editorial cost. We will present mod-
els which exhibit these properties and evaluate their perfor-
mance across a set of 11 target verticals.

2. RELATED WORK
In distributed IR, most traditional approaches to resource

selection cast the problem as resource ranking and score
collections using functions tuned manually on a few train-
ing queries. Most of these approaches focus exclusively on
the similarity between the query and the collection content,
possibly using sampled documents [4, 15, 18, 17, 16, 19].
Of these, so-called large document models treat each collec-
tion (or its document samples) as a single monolithic doc-
ument and adapt document ranking functions to rank col-
lections [4, 18]. In contrast, small document models focus
on those (sampled) collection documents most relevant to
the query [15, 17, 16, 19]. ReDDE [17], for example, scores
collections by their expected number of relevant documents.
This expectation is based on the number of collection sam-
ples predicted relevant, scaled by a factor proportional to
the collection size.

Other approaches cast resource selection as a supervised
machine learned classification [2, 1] or rank-learning task [20].
In contrast to the single-evidence resource-scoring methods
described above, these approaches have the advantage of
easily incorporating multiple types of evidence as input fea-
tures, for example, resource-specific query-logs [2] or click-
through data [1]. This type of evidence integration is critical
when dealing with text-impoverished verticals (e.g., images,
video), which are problematic for methods that focus exclu-
sively on content-based evidence.

In machine learning, domain adaptation is the task of us-
ing training data from one or more source domains to learn
a predictive model for a target domain, typically associated
with little or no training data. While domain adaptation
has not been studied in the context of supervised vertical
selection, it has been widely studied in other applications.
The domain adaptation problem arises from the fact that
the source and target data originate from different distribu-
tions.

One line of work performs instance weighting to down-
weight the influence of “misleading” source-domain training
instances. Jiang and Zhai [11] do this by discarding source-
domain training instances that are misclassified by a model
trained on whatever target-domain training data is available.
This is slightly different than our problem setting since we
assume that we have no training data in the target domain.

A different approach is to perform feature weighing to
learn a model that generalizes better to the target domain.
Saptal and Sarawagi [14] perform feature subset selection
by minimizing a distance function between a single source
domain and target domain data distribution. The target
data distribution is estimated using predicted labels from a
source-trained model. This is different from our work since
we want to learn from multiple source domains. Jiang [10]
proposes an approach that uses training data from multi-
ple domains. First, a generalizable subset of features is
identified based on their predictiveness across source do-
mains. Then, a model that focuses heavily on these features

is used to produce predictions on the target domain. Fi-
nally, a target-domain classifier with access to all available
features is trained on these predictions. This approach as-
sumes binary features and requires using linear classifiers.
The framework we propose can handle real-valued features
and models that can explore complex features interactions.

Feature subset selection can be viewed as a type of repre-
sentation change aimed to make a model more generalizable
to the target domain. A similar technique is feature augmen-
tation. Given access to some target-domain training data,
Daumé III [6] augments the feature space by making three
versions of each feature: a source-domain, target-domain,
and general version. A model is then trained on the union
of the source and target training data. This allows the model
to effectively weight a source of evidence differently when it
is predictive of the target class in only the source domain,
only the target domain, or both. Blitzer et al. [3] propose
an approach that does this without requiring target-domain
training data. The goal is to identify the correspondence of
non-pivot features, which may have a different correlation
with the target class across domains, based on their predic-
tiveness of pivot features, manually identified as similarly
correlated with the target class across domains. The as-
sumption is that the cross-domain correspondence between
pairs of non-pivot features is encoded in the weights assigned
to each when training linear classifiers to predict the pres-
ence of each pivot feature using non-pivot features.

A different approach is to train a model on the source do-
main and then to only fine-tune it using a few target-domain
training examples. In the context of web search, Chen et
al. [5] propose several ways to fine-tune a model trained us-
ing Gradient Boosting Decision Trees, which combines weak
models into a more complex model. The approach of ap-
pending trees (based on target-domain training data) to a
source-trained model has the advantage of accommodating
features only present in the target domain.

3. PROBLEM FORMULATION
Let yv(q) denote the true relevance label of vertical v with

respect to query q. In the general vertical selection setting,
the goal is to learn a function f that approximates y. In
this work, we focus on the following scenario. Assume we
have a set, S, of source verticals each with labeled queries.
Then, suppose we are given a new (target) vertical t with no
labeled data. Our objective is to learn a function f that ap-
proximates yt using only source-vertical training data. The
quality of an approximation will be measured by some met-
ric that compares the predicted and true query labels. We
use notation,

µ(f, yt,Q)

to refer to the evaluation of function f on query set Q. This
metric could be classification based (e.g. accuracy) or rank-
based (e.g. average precision).

4. FEATURE-BASED MODEL
In our work, the domain of f is not the universe of possi-

ble query strings. Instead, we generate features of the query
string which we believe correlate with vertical relevance and
are generalizable across queries. In this section, we review
the basic feature-based vertical selection model. A more



detailed description of our features can be found in our ref-
erences [2, 1].

4.1 Features
Given query q and vertical v, let φv(q) be a vector of fea-

tures. Whatever the vertical, the semantics of a particular
feature are the same. For example, if φv(q)i refers to the
number of times the query was issued by users directly to
v, then φv′(q)i refers to the number of times the query was
issued to v′. As a result, all feature vectors are of the same
length.

We generate two types of features,

1. query-vertical features: specific to the query-vertical
pair, for example, the number of times the query was
previously issued directly to the vertical by users.

2. query features: specific to the query and independent
of the vertical, for example, whether the query is re-
lated to the travel domain.1

Our approach is to use signals shown to be useful for super-
vised vertical selection in previous work. We describe them
briefly below.

4.1.1 Query-Vertical Features
Query-vertical features are generated from the vertical. In

our case, they are derived from the similarity between the
query and sampled vertical content and from the similar-
ity between the query and queries issued previously to the
vertical by users.2 We use five query-vertical features.

The first four query-vertical features are generated using a
retrieval from a centralized sample index, an index that com-
bines documents sampled from every vertical. ReDDE.top [2,
1] is a variation of ReDDE [17]. GAVG measures the geo-
metric average document score of the vertical’s top sampled
documents [15]. Soft.ReDDE [2] is a variation of ReDDE.top
and uses a soft document-to-vertical membership. We gener-
ated two Soft.ReDDE features. One version uses a document-
to-vertical membership based on the similarity between the
document and a language model constructed from vertical-
sampled documents. A second version uses the similarity
between the document and a language model constructed
from the vertical query-log. Finally, we use the query like-
lihood given the vertical’s query-log language model. Each
query-vertical feature was mass normalized across verticals.

4.1.2 Query Features
Query features are generated from the query, independent

of the vertical. These features are used in previous work and
are described more completely in Arguello et al. [2]. Boolean
features include regular expressions and dictionary look-ups
likely to correlate with vertical intent (e.g., does query con-
tain the keyword “news”?). Geographic features correspond
to the output of a geographic named-entity tagger (e.g., does
the query contain a city name?). Categorical features corre-
spond to the output of a query-domain categorization algo-
rithm (e.g., is the query related to the travel domain?). In
total, we use about 120 query features.
1We can imagine additionally having query-independent
vertical features, for example, whether the vertical has ob-
served a sudden increase in query traffic. We do not make
use of vertical features.
2Vertical-specific query-logs are available to the system un-
der the assumption of a cooperative environment.

4.2 Learning Algorithm
We adopt a machine learning approach to vertical selec-

tion. In all experiments, we used the Gradient Boosted De-
cision Trees (GBDT) algorithm [9]. The main component
of a GBDT model is a regression tree. A regression tree is
a simple binary tree. Each internal node corresponds to a
feature and a splitting condition which partitions the data.
Each terminal node corresponds to a response value, the
predicted output value. GBDT combines regression trees in
a boosting framework to form a more complex model. Dur-
ing training each additional regression tree is trained on the
residuals of the current prediction. In our case, we chose
to minimize logistic loss, which has demonstrated effective
performance for vertical selection in prior work [1, 2, 8, 7].
That is, the model maximizes,

µlog(fv, yv,Q) = −
X
q∈Q

`log(fv(φv(q))× yv(q)) (1)

where `log is the logistic loss function,

`log(z) = log(1 + exp(−z)) (2)

We adopt GBDT because it is able to model complex feature
interactions and has been effective for other tasks such as
text categorization [13] and rank-learning [22].

5. PORTABILITY
A portable vertical selection model is defined as one that

can make vertical relevance predictions with respect to any
arbitrary vertical. In other words, a portable model is not
specific to a particular vertical, but rather agnostic of the
candidate vertical being questioned for relevance.

Let us examine the distinction between a portable and
non-portable vertical selection model with an example. Con-
sider a single-evidence model that predicts a vertical relevant
based on the number of times the query was issued previ-
ously to the vertical by users. This type of evidence is likely
to be positively correlated with the relevance of the vertical
in question. In fact, it is likely to be positively correlated
with vertical relevance irrespective of the particular candi-
date vertical. On the other hand, consider a model that
predicts a vertical relevant if the query is classified as re-
lated to the travel domain. This model may be effective
at predicting the relevance of a vertical that serves travel-
related content. However, it is probably not effective on a
vertical that focuses on a different domain. This model is
less portable.

Most existing single-evidence resource selection models
can be considered portable [18, 17, 16, 15, 19]. For example,
ReDDE [17] prioritizes resources for selection based on the
estimated number of relevant documents in the collection.
This expectation is a function of the number of documents
sampled from the collection that are predicted relevant and
the estimated size of the original collection. The greater
the expectation the greater the relevance irrespective of the
particular resource.

5.1 Basic Model
The objective of a portable vertical selection model, f?,

is to maximize the average performance across source ver-
ticals. Our assumption is that if f? performs consistently
well across S, then f? will perform well on a new (target)
vertical t. In general, the portability of a model is defined



by a metric that quantifies performance for a vertical s ∈ S
and a function that aggregates performance across verticals
in S.

For example, the portability, π, which uses the arithmetic
mean of the logistic loss metric is defined by,

πavg
log (f?, yS ,QS) =

1

|S|
X
s∈S

µlog(f?, ys,Qs) (3)

where Qs is the set of training queries for source s and QS is
the set of those sets; similarly, ys provides labels for vertical
s and yS is the set of these functions. We refer to the model
which optimizes πavg

log as the basic model. Notice that,

πavg
log (f?, yS ,QS) = − 1

|S|
X
s∈S

X
q∈Qs

`log(f?(φs(q))× ys(q))

As a result, the solution which maximizes πavg
log is equiva-

lent to the solution which minimizes the logistic loss across
all feature-vector/relevance-label pairs from all source ver-
ticals. That is, we can perform standard GBDT training on
a pooling of each source vertical’s training set.

5.2 Vertical Balancing
In the basic model’s training set, positive instances corre-

spond to relevant query-vertical pairs from all source verti-
cals. For this reason, we expect the basic model to focus on
evidence that is consistently predictive of relevance across
source verticals, and hence predictive of the target vertical.
In other words, vertical-specific evidence that is conflicting
with respect to the positive class should be ignored. The
challenge, however, is that the positive instances in the ba-
sic model’s training pool may be skewed towards the more
popular source verticals. This is problematic if these ver-
ticals are reliably predicted relevant using vertical-specific
evidence, not likely to be predictive of the new target verti-
cal. To compensate for this, we consider a weighted average
of metrics across verticals. Specifically,

πwavg
log (f?, yS ,QS) =

1

Z
X
s∈S

wsµlog(f?, ys,Qs) (4)

where Z =
P
s∈S ws. We use the simple heuristic of weight-

ing a vertical with the inverse of its prior,

ws =
1

ps

where ps is the prior probability of observing a query with
relevant vertical s. This value is approximated with the
training data,

ps ≈
P
q∈Qs

ys(q)

|Qs|
The goal is to make training instances from minority verti-
cals more influential and those from majority verticals less.

It is easy to see that Equation 4 is a generalization of
Equation 3. Because we use logistic loss, this technique
reduces to training with an instance weighted logistic loss
where the instances are weighted by ws, the weight of the
vertical,

πwavg
log (f?, yS ,QS) = − 1

Z
X
s∈S

X
q∈Qs

ws`log(f?(φs(q))× ys(q))

As with the basic model, we can use standard GBDT train-
ing to optimize for this metric.

5.3 Feature Weighting
An alternative to optimizing for a portable model is to

find portable features and to train a model using only those.
A portable feature is defined as a feature which is highly
correlated with relevance across all verticals. Recall that,
across verticals, all features are identically indexed. Let φi

be a predictor based only on the value of feature i. In pre-
vious work, the effectiveness of features across verticals was
shown to be very dependent on the vertical being consid-
ered. In order to address the expected instability of feature
predictiveness across verticals, we adopt a harmonic average
for our aggregation method.

πhavg(φi, yS ,QS) =
|S|P

s∈S
1

µ(φi
s,ys,Qs)

(5)

Additionally, features, on their own, are not scaled to the
label range, making the use of logistic loss difficult. Instead
of constructing a mapping from a feature value to the ap-
propriate range, we adopt a rank-based metric. Let ρf (Q)
be the ranking of Q by f . We use average precision as our
rank-based metric,

µAP(f, y,Q) =

|Q|X
r=1

y(ρf (Q)r)× Pr(y, ρf (Q)) (6)

where ρf (Q)k denotes the query at rank k and Pk is the
precision at rank k,

Pk(y, ρ) =
1

k

kX
r=1

y(ρk)

In other words, for each feature, we rank queries by fea-
ture value and compute the harmonic mean average preci-
sion across verticals.3 Having computed the portability of
each feature, we build a portable model by restricting our
training to the most portable features.

The most portable features were selected by inspecting
the distribution of portability values. Because portability
values are in the unit range, we model our data with the Beta
distribution. We fit the Beta distribution using the method
of moments and then select features whose portability is in
the top quartile of this distribution.

6. ADAPTABILITY
Above, we focus on ways of improving the portability of

a model by influencing the model to ignore evidence that is
vertical-specific. The argument is that a model that focuses
heavily on vertical-specific evidence will not generalize well
to a new target vertical.

Given access to target-vertical training data, previous work
reveals two meaningful trends [2]. First, given a wide-range
of input features, most features contribute significantly to
performance. In Arguello et al. [2], no small subset of fea-
tures was solely responsible for effective vertical prediction.
Second, the features that contributed the most to perfor-
mance, which characterize the domain of the query, seem
to be vertical-specific (assuming that verticals focus on dif-
ferent domains). Based on these observations, while ignor-
ing vertical-specific evidence seems necessary to improve a
3Because we do not know whether the feature value has a
positive or negative relationship with the label, we compute
πhavg

AP (f, yS ,QS) using ρ induced in both directions and use
the max.



model’s portability, a model customized to a particular ver-
tical is likely to benefit from it.

In the context of adaptation for web search, Chen et al. [5]
propose several ways to adapt an already-tuned GBDT model
given data in a new domain. Their approach, Tree-based
Domain Adaptation (TRADA), essentially consists of con-
tinuing the GBDT training process on labeled data from
the target domain. More specifically, a set of new regression
trees are appended to the existing model while minimizing
a loss function (logistic loss, in our case) on the target data.

In our case, the challenge of using TRADA to adapt a
model to a specific target is that we lack target-vertical
training data. In the context of semi-supervised learning,
self-training or bootstrapping [21] is the process of re-training
a model using previous model predictions on unlabeled data.
We combine self-training and model adaptation in the fol-
lowing way. First, we use a portable model to label a set
of queries with respect to the target vertical. Then, we
use TRADA to adapt the portable model to its own target-
vertical predictions.

Tree adaptation provides a method for adjusting the mod-
eling of all features. Just as we can select portable features
for a portable model, we can select vertical-specific, non-
portable features for adapting a model to a specific target
vertical. That is, the base model may focus on portable
features while the additional trees—added in the context of
pseudo-training data—may focus on non-portable features.
In this case, we use the same feature portability measure
(Equation 5) but select the least portable features for tree
augmentation.

Pseudo-labels for the target vertical were produced using
the portable model’s prediction confidence value with re-
spect to the target vertical. We used the simple heuristic of
considering the top N% most confident predictions as pos-
itive examples and the botton (100 − N)% predictions as
negative examples.

7. METHODS AND MATERIALS
The objective is to predict the relevance of a target vertical

given a query. For this reason, we evaluate on a per-vertical
basis. Given a set of verticals V with query-vertical relevance
labels, each vertical was artificially treated as the new target
vertical and all remaining verticals as the source verticals.
That is, for each t ∈ V, we set S = V − t.

Given a set of queries with vertical-relevance judgements,
evaluation numbers were averaged across 10 cross-validation
test folds, using the remaining 90% of data for training.
GBDTs require tuning several parameters: number of trees,
maximum number of nodes per tree, and shrinkage factor
(see Friedman [9] for details). These were tuned using a grid
search and 10-fold cross-validation on each training fold. In
all cases, cross-validation folds were split randomly. Signifi-
cance is tested using a 2-tailed unpaired t-test.

TRADA was self-trained using predictions made on the
test set. More specifically, at each cross-validation step,
a basic model was tuned on the training fold (90% of all
queries) and applied to the test fold (10% of all queries).
Then, a TRADA model was pseudo-trained using predic-
tions on the test fold. In other words, for a given vertical,
we trained 10 basic and 10 TRADA models. Rather than
tune pseudo-training parameter N , we present results for
N = 2.5, 5, 10%.

Table 1: Vertical descriptions.
vertical retrievable items
finance financial data and corporate information
games hosted online games
health health-related articles
images online images

jobs job listings
local business listings

movies movie show times
music musician profiles
news news articles

travel travel and accommodation reviews and listings
video online videos

7.1 Data
We focus on 11 verticals, described in Table 1. These ver-

ticals differ in terms of number of documents, domain (e.g.,
health, finance, travel), document type (e.g., news stories,
embedded video clips, images), and level of query traffic.4

Our evaluation data consists of 25, 195 unique queries, ran-
domly sampled from Web traffic. Given a query, human
editors were instructed to assign verticals to one of four rel-
evance grades (‘most relevant’, ‘highly relevant’, ‘relevant’,
‘not relevant’) based on their best guess of the user’s verti-
cal intent. It is possible for a query to have multiple verti-
cals tied for a particular relevance grade. For about 25% of
queries all verticals were labeled ‘not relevant’. These are
queries for which a user would prefer to see only Web search
results.

7.2 Metrics
We are interested in the accuracy of a model’s target-

vertical predictions. Given a set of predictions for a target
vertical, precision and recall can be computed by setting a
threshold on the prediction confidence value. Rather than
report a single precision-recall operating point, we evaluate
using ranking metrics. These metrics are computed from
a ranking of test queries by descending order of prediction
confidence value, the probability that the target vertical is
relevant to the query.

We adopt two rank-based metrics: average precision (AP)
and normalized discounted cumulative gain (NDCG). In com-
puting AP, the labels ‘most relevant’, ‘highly relevant’, and
‘relevant’ were collapsed into a single grade: relevant. We
then compute average precision according to Equation 6.

NDCG differs from AP in two respects. First, it differenti-
ates between relevance grades. Second, given a target verti-
cal, t, it favors a model that is more confident on queries for
which t is more relevant. Put differently, compared to AP,
it punishes high-confidence errors more severely than low-
confidence errors. Following Järvelin and Kekäläinen [12],
NDCG for a target vertical t, evaluated over queries Qt, is
computed as,

µNDCG(f, yt,Qt) =
1

Z

|Qt|X
r=1

2yt(ρf (Qt)r) − 1

log(max(r, 2))
(7)

where y maps the relevance grade to a scalar (‘most rele-
vant’: 3, ‘highly relevant’: 2, ‘relevant’: 1, ‘not relevant’:
0). The normalizer Z is the DCG of an optimal ranking of
queries with respect to the relevance.

4Each vertical is associated with its own search interface.



Table 2: Target-trained (“cheating”) results: AP
and NDCG.

vertical AP NDCG
finance 0.556 0.861
games 0.741 0.919
health 0.800 0.945

hotjobs 0.532 0.814
images 0.513 0.855

local 0.684 0.926
movies 0.575 0.851
music 0.791 0.934
news 0.339 0.748

travel 0.797 0.947
video 0.290 0.701

Recall that our objective is to achieve the best perfor-
mance possible without target-vertical training data. A ma-
jor motivation is to alleviate the need for a model trained on
target vertical data. Therefore, it is useful to measure our
performance as a fraction of the performance achievable by a
model with access to target training data. We show AP and
NDCG results given human-annotated target-vertical train-
ing data in Table 2. A target-specific model (using all avail-
able features) was trained and tested for each vertical using
10-fold cross-validation. As in all results, we present perfor-
mance averaged across test folds. Given our objective, this
can be considered a “cheating” experiment. However, these
numbers present a kind of upper bound for our methods.
Our goal is to approximate these numbers using no target-
vertical training data. For this reason, all results beyond
this section are normalized by these numbers (i.e., results
are reported as percentage of target-trained performance).
Also, this normalization facilitates an understanding for the
cost-benefit of labeling the new vertical given source-vertical
labels and our proposed methods.

7.3 Unsupervised Baselines
Section 4.1.1 describes several query-vertical features that

are used as input signals to our models. Prior work shows
that each of these can be used as an unsupervised single-
evidence vertical predictor [2, 1]. In other words, these
methods can make target vertical predictions without train-
ing data. To justify the added complexity of our models, we
compare against these single-evidence approaches. To con-
serve space, we present results for that which performed best
in this evaluation: Soft.ReDDE [2]. Soft.ReDDE (the ver-
sion for which the vertical language model was derived from
vertical samples) performed equal to or better than the next
best single-evidence method for all but 3/11 verticals based
on both AP and NDCG.

8. RESULTS
We present portability results in Table 3. Across metrics,

both vertical balancing (VB) and feature weighting (FW),
that is, using only the most portable features, improves
the performance of the basic model. Performance across
verticals was either statistically indistinguishable or bet-
ter. Compared to each other, feature weighting significantly
improves the basic model across more verticals (8/11 for
both metrics). Compared to Soft.ReDDE, the only method
that does noticeably better is the basic model with feature

weighting. Performance was significantly better for 4 verti-
cals based on AP and 5 based on NDCG. Performance was
significantly worse for only one vertical based on AP and no
vertical based on NDCG.

Table 3: Portability results: normalized AP and NDCG.

A N(H) denotes significantly better(worse) performance

compared to Soft.ReDDE (SR). A M(O) denotes signif-

icantly better(worse) performance compared to the un-

balanced basic model with all features. Significance was

tested at the p < 0.05 level.

(a) AP

basic basic+VB basic+FW
vertical SR (all feats.) (all feats.) (only portable feats.)
finance 0.446 0.209H 0.199H 0.392M

games 0.720 0.636 0.724 0.683
health 0.823 0.797 0.793 0.839

hotjobs 0.155 0.193 0.226N 0.321NM

images 0.283 0.365N 0.404N 0.390N

local 0.696 0.543H 0.614HM 0.628HM

movies 0.477 0.294H 0.388HM 0.478M

music 0.757 0.673H 0.700H 0.780M

news 0.559 0.293H 0.434HM 0.548M

travel 0.487 0.571N 0.618NM 0.639NM

video 0.525 0.449 0.539 0.691NM

(b) NDCG

basic basic+VB basic+FW
vertical SR (all feats.) (all feats.) (only portable feats.)
finance 0.776 0.663H 0.651H 0.775M

games 0.910 0.884 0.918 0.903
health 0.953 0.950 0.946 0.960

hotjobs 0.563 0.583 0.607 0.671NM

images 0.712 0.745 0.776N 0.768N

local 0.905 0.875H 0.897M 0.910M

movies 0.775 0.685H 0.745 0.798M

music 0.937 0.922 0.922 0.957NM

news 0.852 0.703H 0.781HM 0.875M

travel 0.846 0.881N 0.908NM 0.911NM

video 0.817 0.816 0.828 0.902NM

We present adaptability results in Table 4. TRADA adapts
a basic model using its target-vertical predictions as pseudo-
training data. Given its superior performance (Table 3), we
used the unbalanced basic model with only portable features
(basic+FW). We refer to this as the base model. TRADA
was tested under two conditions. In the first condition,
TRADA is given access to all features for adaptation. In
the second condition, it is restricted access to only the non-
portable features (those purposely ignored to improve the
portability of the base model).

Table 4 presents several meaningful results. First, TRADA
performs poorly when the adapted model is given access to
all features (columns 4-6). In contrast, when restricted ac-
cess to only the non-portable features (TRADA+FW), re-
sults improve (columns 7-9).

TRADA+FW performs either equal to or better than the
base model in all but one case for AP and in all cases
for NDCG. Similarly, across metrics, TRADA+FW signif-
icantly outperforms Soft.ReDDE across most verticals for all
values ofN . It performs significantly worse than Soft.ReDDE
in three cases in terms of AP and none in terms of NDCG.
Overall, we interpret this as a positive result in favor of
adaptability. TRADA succeeds at adapting a portable model
to a specific target vertical at no additional editorial cost.



Table 4: Trada results: normalized AP and NDCG. A N(H) denotes significantly better (worse) performance compared

to soft.redde (SR). A M(O) denotes a significantly better(worse) performance compared to the base model. Significance

was tested at the p < 0.05 level.

(a) AP

trada trada+FW
basic+FW (all features) (only non-portable feats.)

vertical SR (only portable feats.) (N=2.5%) (N=5%) (N=10%) (N=2.5%) (N=5%) (N=10%)
finance 0.446 0.392 0.364 0.328H 0.226HO 0.476 0.407 0.339H

games 0.720 0.683 0.735 0.660 0.491HO 0.819NM 0.817NM 0.787M

health 0.823 0.839 0.814 0.813 0.592HO 0.907NM 0.868N 0.818
hotjobs 0.155 0.321N 0.360N 0.384N 0.345N 0.390N 0.348N 0.323N

images 0.283 0.390N 0.320O 0.370N 0.405N 0.410N 0.499NM 0.523NM

local 0.696 0.628H 0.523HO 0.601H 0.609H 0.562HO 0.614H 0.663
movies 0.477 0.478 0.493 0.462 0.411O 0.640NM 0.587NM 0.578NM

music 0.757 0.780 0.751 0.778 0.760 0.868NM 0.866NM 0.838NM

news 0.559 0.548 0.509 0.556 0.523 0.607 0.665NM 0.615
travel 0.487 0.639N 0.531O 0.573NO 0.597N 0.744NM 0.709NM 0.710NM

video 0.525 0.691N 0.633 0.648 0.586 0.735N 0.722N 0.688N

(b) NDCG

trada trada+FW
basic+FW (all features) (only non-portable feats.)

vertical SR (only portable feats.) (N=2.5%) (N=5%) (N=10%) (N=2.5%) (N=5%) (N=10%)
finance 0.776 0.775 0.760 0.718 0.632HO 0.826 0.765 0.734
games 0.910 0.903 0.920 0.885 0.778HO 0.947NM 0.951NM 0.938M

health 0.953 0.960 0.947 0.939 0.827HO 0.974N 0.960 0.953
hotjobs 0.563 0.671N 0.720N 0.736N 0.710N 0.747N 0.698N 0.676N

images 0.712 0.768N 0.745 0.775N 0.790N 0.801N 0.850NM 0.869NM

local 0.905 0.910 0.885HO 0.907 0.898 0.901 0.911 0.930NM

movies 0.775 0.798 0.808 0.790 0.732O 0.856N 0.842N 0.840N

music 0.937 0.957N 0.939 0.939 0.931 0.977NM 0.974NM 0.965N

news 0.852 0.875 0.850 0.868 0.828 0.898 0.908 0.879
travel 0.846 0.911N 0.875O 0.890N 0.889N 0.944NM 0.933NM 0.926N

video 0.817 0.902N 0.869 0.865 0.827 0.930N 0.896N 0.880

9. DISCUSSION
In the previous section, we demonstrated that the perfor-

mance improvement for both portable and adaptive models
requires measuring individual feature portability. In order
to investigate precisely which features were being selected,
we plotted the value of πhavg

AP in Figure 1. As it turns out,
the same five features were consistently chosen as the most
portable for all target verticals (i.e., for all sets of source
verticals). Interestingly, these correspond to our five query-
vertical features (Section 4.1.1). Conversely, those features
which were the least portable were consistently our remain-
ing query features (Section 4.1.2). In hindsight, this observa-
tion makes sense. Many existing resource selection methods
score resources using a single metric and focus exclusively on
query-vertical evidence [4, 15, 18, 17, 16, 19]. Despite this
observation, we recommend future experiments continue to
measure feature portability since this behavior may not gen-
eralize to different sets of verticals and different tasks.

Vertical balancing significantly improved the basic model
only across 4/11 verticals based on AP and 3/11 based on
NDCG. Recall that we introduced balancing in order to
discourage examples from source verticals with high priors
dominating the training set. However, this does not address
cases where several sources have the same non-portable fea-
tures correlated with relevance. For example, video and im-
ages tend to be relevant to queries that mention a celebrity
name; travel and local tend to be relevant to queries that
mention a geographic entity; and finance and jobs tend
to be relevant to queries that contain a company name.

0.05

0.10

0.15

0.20

ha
vg

query−vertical features
query features

Figure 1: Feature portability values (πhmap) across sets

of source verticals.

Even though vertical balancing addresses a single vertical’s
dominance in the training set, it does not address a small
coalition of related verticals causing the model to use non-
portable features. We believe that a more robust averaging
technique—for example, the harmonic average used for fea-
ture portability—may result in superior performance in the
presence of similar source verticals.

In the previous section, TRADA improves considerably
when restricted access to only the non-portable features for



adaptation. We believe this is due to the following. TRADA
was pseudo-trained using predictions from the base model.
This model (our best portable model) used only the most
portable features. The set of all features is a superset of
these. When TRADA is given access to the same features
used by the base model, the adapted model tends to focus on
these features in order to better fit the original base-model
predictions. Therefore, the non-portable features (purposely
inaccessible to the base model) were ignored. As it turns out,
our set of non-portable features are highly effective given
target-vertical training data. We compared a set of target-
trained models using only the portable features (excluding
the non-portable ones) with our target-trained models using
all features (Table 2). When given access to non-portable
features performance improved significantly across all ver-
ticals for AP and all but one vertical for NDCG (results
suppressed due to space limitations). When restricted ac-
cess to only the non-portable features for adaption, TRADA
is forced to focus on these highly effective features. This
mechanism can be seen as a sort of regularization ensuring
that both portable and non-portable features are used for
prediction.

With respect to pseudo-training data parameter N , we
observe that the optimal value of N seems to be vertical-
dependent. There may be two reasons for this. First, the
base model performance (column 5 in Table 3) is also vertical-
dependent. Given a fixed value ofN across verticals, pseudo-
labels from some verticals may be noisier than others. Sec-
ond, the optimal value of N for a given vertical may correlate
with the vertical’s prior.

10. CONCLUSION
Maximizing the return on editorial investment is an im-

portant aspect of any system requiring training data. We
presented an ensemble of approaches which significantly im-
prove prediction of a new target vertical using only source-
vertical training data. Our results demonstrate that model
portability, the ability of a model to generalize across dif-
ferent target verticals, requires careful attention to feature
portability, the ability of a feature to correlate with vertical
relevance across different target verticals. We found that
those features which seemed to be the most portable—and
hence most important for a portable model—were query-
vertical features as opposed those that are independent of
the candidate vertical. Conversely, when we tried to adapt
a model for a specific target, the least portable features ap-
peared to be those most important for the adapted model
to consider.

Furthermore, we showed that a portable solution can be
used to build a target-specific one at no additional editorial
cost. Our best approach adapted a portable model using
its own target-vertical predictions. This approach consis-
tently outperformed both the base model and a competitive
alternative which does not require adaptation. Results also
showed that, given available resources, human-annotation
on the new target vertical remains the best alternative.

This work could be extended in several directions. In
terms of portability, vertical balancing may be improved
by modeling the similarity (in terms of predictive evidence)
between source verticals. In terms of adaptability, further
improvements may be achieved by modeling the similarity
between each source vertical and the target vertical.

11. ACKNOWLEDGMENTS
We would like to thank Jing Bai, Daniel Boies, Hugues

Bouchard, Jean-François Crespo, and Alexandre Rochette
for helpful discussions and feedback. This work was sup-
ported in part by the NSF grants IIS-0916553 and IIS-0841275
and a generous gift from Yahoo! through its Key Scientific
Challenges program. Any opinions, findings, conclusions,
and recommendations expressed in this paper are the au-
thors’ and do not necessarily reflect those of the sponsors.

12. REFERENCES
[1] J. Arguello, J. Callan, and F. Diaz. Classification-based

resource selection. In CIKM 2009, pages 1277–1286. ACM,
2009.

[2] J. Arguello, F. Diaz, J. Callan, and J.-F. Crespo. Sources of
evidence for vertical selection. In SIGIR 2009, pages
315–322. ACM, 2009.

[3] J. Blitzer, R. McDonald, and F. Pereira. Domain
adaptation with structural correspondence learning. In
EMNLP 2006, pages 120–128. ACL, 2006.

[4] J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed
collections with inference networks. In SIGIR 1995, pages
21–28. ACM, 1995.

[5] K. Chen, R. Lu, C. K. Wong, G. Sun, L. Heck, and
B. Tseng. Trada: tree based ranking function adaptation.
In CIKM 2008, pages 1143–1152. ACM, 2008.

[6] H. Daumé III. Frustratingly easy domain adaptation. In
ACL 2007, pages 256–263. ACL, 2007.

[7] F. Diaz. Integration of news content into web results. In
WSDM 2009, pages 182–191. ACM, 2009.

[8] F. Diaz and J. Arguello. Adaptation of offline vertical
selection predictions in the presence of user feedback. In
SIGIR 2009, pages 323–330. ACM, 2009.

[9] J. H. Friedman. Gradient function approximation: A
gradient boosting machine. Annals of Statistics,
29:1189–1232, 1999.

[10] J. Jiang. Domain Adaptation in Natural Language
Processing. PhD thesis, University of Illinois at
Urbana-Champaign, 2008.

[11] J. Jiang and C. Zhai. Instance weighting for domain
adaptation in nlp. In ACL 2007, pages 264–271. ACL, 2007.

[12] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. TOIS, 20:2002, 2002.

[13] S.-M. Kim, P. Pantel, L. Duan, and S. Gaffney. Improving
web page classification by label-propagation over click
graphs. In CIKM 2009, pages 1077–1086. ACM, 2009.

[14] S. Satpal and S. Sarawagi. Domain adaptation of
conditional probability models via feature subsetting. In
PKDD 2007, pages 224–235. Springer-Verlag, 2007.

[15] J. Seo and B. W. Croft. Blog site search using resource
selection. In CIKM 2008, pages 1053–1062. ACM, 2008.

[16] M. Shokouhi. Central rank based collection selection in
uncooperative distributed information retrieval. In ECIR
2007, pages 160–172, 2007.

[17] L. Si and J. Callan. Relevant document distribution
estimation method for resource selection. In SIGIR 2003,
pages 298–305. ACM, 2003.

[18] L. Si, R. Jin, J. Callan, and P. Ogilvie. A language
modeling framework for resource selection and results
merging. In CIKM 2002, pages 391–397. ACM, 2002.

[19] P. Thomas and M. Shokouhi. Sushi: Scoring scaled samples
for server selection. In SIGIR 2009. ACM, 2009.

[20] J. Xu and X. Li. Learning to rank collections. In SIGIR
2007, pages 765–766. ACM, 2007.

[21] D. Yarowsky. Unsupervised word sense disambiguation
rivaling supervised methods. In ACL 1995, pages 189–196.
ACL, 1995.

[22] Z. Zheng, K. Chen, G. Sun, and H. Zha. A regression
framework for learning ranking functions using relative
relevance judgments. In SIGIR 2007, pages 287–294. ACM,
2007.


