Mathematical Medicine and Biology Advance Access published September 24, 2010

MathematicaMedicine and Biologyage 1 of 16
doi:10.1093/imammb/dqq014

Stability of a microvessel subject to structural adaptation of diameter
and wall thickness

ILARI SHAFER, RACHEL NANCOLLAS, MORGAN BOES AND ALISHA L. SIEMINSKI
Franklin W. Olin College of Engineering, Needham, MA 02492, USA

AND

JOHN B. GEDDES*

Franklin W. Olin College of Engineering, Needham, MA 02492 USA and
Institute for Complex Systems and Mathematical Biology, University of Aberdeen,
AB42 3FX Aberdeen, UK

*Correspondinguthor: john.geddes@olin.edu

[Received on 4 May 2009; revised on 12 February 2010; accepted on 20 July 2010]

Vascular adaptation—or structural changes of microvessels in response to physical and metabolic
stresses—can influence physiological processes like angiogenesis and hypertension. To better under-
stand the influence of these stresses on adaptdioeset al. (1998,2001a,b,2005) have developed

a computational model for microvascular adaptation. Here, we reformulate this model in a way that is
conducive to a dynamical systems analysis. Using these analytic methods, we determine the equilibrium
geometries of a single vessel under different conditions and classify its type of stability. We demonstrate
that our closed-form solution for vessel geometry exhibits the same regions of stability as the numerical
predictions ofPrieset al. (2005, Remodeling of blood vessels: responses of diameter and wall thickness
to hemodynamic and metabolic stimutlypertension46, 725-731). Our analytic approach allows us

to predict the existence of limit-cycle oscillations and to extend the model to consider a fixed pressure
across the vessel in addition to a fixed flow. Under these fixed pressure conditions, we show that the
vessel stability is affected and that the multiple equilibria can exist.

Keywords microvascular; adaptation; stability.
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1. Introduction

The primary function of the cardiovascular system is to transport oxygen and nutrients to and provide
waste removal from tissues. While this exchange occurs in the capillaries, regulation of the cardio-
vascular system occurs systemically. Homeostasis is maintained through a complex feedback system,
which includes modulation of the pumping capability of the heart and the resistance of the microvas-
culature. In particular, structural remodelling of the body’s small blood vessels occurs continuously in
response to changing hemodynamic conditions—namely flow rate and pressure—so as to maintain ap-
propriate blood flow to the organs and tissues. Vascular remodelling is an important part of the response
to changing conditions that occur in physiological events such as development, endurance training and
pregnancyBuuset al.,2001). However, vascular remodelling, normal or impaired, may also play a role

in the pathologies associated with conditions such as hypertension, diabetes and collateral formation
after ischemic injury (Dumorgt al.,2007).

(© Theauthor 2010. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
For the definitive version, please visit http://dx.doi.org/10.1093/imammb/dqq014


http://imammb.oxfordjournals.org/

20f16 |. SHAFERET AL.

During remodelling, vessels may change in size and may also be added, as seen in angiogenesis,
or die off, as seen in capillary network pruningdr et al.,2001), without compromising the stability
of adjacent vessel#\(aujo & McElwain, 2004). An understanding of this structural remodelling of the
microvasculature has great relevance to numerous physiological and pathological events. However, the
small size of microvessels, on the order of 10m long and 25-45:m in diameter Pozrikidis,2003)
and the challenges of reproducing their behaviour over timeévo or in vitro, makes experimental
work quite difficult (Chrobalet al., 2006). In order to obtain a more complete and broadly applicable
understanding of how microvessels change over time, mathematical models can be useful in predicting
how vessels will react to changes in their environment without subjecting actual vessels to those stresses
(Perktold & Rappitsch]1995).

Though we focus on analysis of a specific model, it should be noted that vascular remodelling and
angiogenesis are rather active topics in mathematical biology. They are discussed in a recent review of
the key approaches to modelling microvascular adaptation with regards to angiog€hegisiet al.,

2006). These models have explored vascular adaptation in healthy t@aen ét al., 2009) and in

the capillary networks surrounding tumours, which have been of demonstrated importance in tumour
development$tephanowt al.,2006). Some of these models suggest that the adaptation of microvessels
surrounding tumours are critical factors in the angiogenesis that feeds tumour growth (Mceévagall
2002;Bartha & Rieger2006).

Here, we consider a model for microvascular structural adaptation developed over the past decade
by Prieset al. (1998,2001a,b,2005). Their computational model describes the diameter and width of
a vessel with two coupled differential equations. By conducting a set of careful numerical experiments,
the authors found a set of model parameters that lead to stable vessels with geometries that are well
matched tdn vivo findings. These vessels adapt towards an equilibrium diameter and width instead of
collapsing, oscillating or expanding to unreasonable dimensions. We use the tools of dynamical systems
to analyse the model in detail and find that our results from reformulating the model match the numerical
conclusions oPrieset al. (1998,2001a,b2005).

Our first exploration considers a single vessel with a fixed blood flow. We formulate the equations
of the model ofPrieset al. (1998,2001a,b,2005) in a coherent system and describe the physical and
metabolic stimuli that cause vascular remodelling. These stimuli are combined into a pair of differential
equations that describe remodelling. Using analytic techniques, we obtain a closed-form solution for
the single equilibrium solution under the fixed flow condition. We analyse the type of stability at this
equilibrium and find that the region of stability predicted by our dynamical systems approach matches
the region found in the numerical simulationRrieset al.(1998,2001a,b2005). We also find evidence
of limit-cycle oscillations in which the vessel diameter and width continuously go through a process of
expansion and contraction. Expanding the analysis, we consider the model when the pressure drop across
the vessel is fixed instead of the flow. We find that two equilibria are present in this case, although only
one is stable. In this way, we explore the proposed model for a single vessel using tools from dynamical
systems.

2. Adaptation model

The model of structural adaptation we consider is a mathematical model propoBeddst al. (2005).

Here, we focus our attention on a single vessel and synthesize the model from several of the group’s
published works to develop a straightforward set of differential equations and a closed-form represen-
tation of vessel diameteP(ieset al., 1998,2001a,b2005). The vessel we consider has the geometry
shown in Fig.1 and is modelled as a tube of fixed length and uniform wall thickness with Poiseuille
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FiG. 1. Schematic of single vessel. The pressure drop across the vessel ofllesgttP and the flow through the vessel @&
The vessel has lumel, wall width w, mid-wall diameteDm = D + w and cross-sectional wall arégy = zwDm.
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flow. The boundary conditions of this model are flexible and can be posed in terms of either a fixed flow 3
Q or fixed pressure drog P. We first consider a vessel with a fixed flow condition, and then move onto
the previously unexplored, but biologically relevant, case of a vessel with a fixed pressure drop. In bothg
cases, we hold the outlet pressure fixed.

The model ofPrieset al. (1998,2001a,b,2005) for microvascular adaptation describes how the
mid-wall diameteD, and cross-sectional ardg, of a vessel adapt over time (Prietsal.,2005). Their
model consists of a system of coupled differential equations for each vessel in a network,

ww

dD

¢ = (Om. Aw)Din, (2.1)
t

dA

d—tW = g(Dm, Aw)Aw. (2.2)

The mid-wall diameter remodelling ratk and cross-sectional area remodelling rgtare each non-
linear functions oD, and A, and depend on both hemodynamic and metabolic stimuli.

Vascular remodelling is driven by physical stresses on the vessel and chemical stimuli caused b
metabolic demand. The two primary physical stresses are shear strdepéndent upon flow through
the vessel) and circumferential stress ¢ependent on the pressure differeneg, between the inside
and outside of the vessell€houx & Tedguj 1998). These physical stresses are combined to form
physical stimuli which are functions of the vessel’s width, diameter, pressure, flow and other hemody-
namic parameters. In addition to these physical stimuli, the model also includes a metabolic stimulus
and a conducted stimulus, which depend on blood oxygen levels and represent the surrounding tissue’s
demand for oxygen.
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2.1 Stresses

The wall shear stressdescribes the stress placed on the inner surface of a vessel due to the fluid moving
along the sides of the vessel. The shear stress,
_ Du4P

= 2.3
TR (2.3)
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canbe expressed as a function of the pressure dté) the vessel length and the vessel lumeD.
Depending on the boundary conditions that are investig&ezhn be substituted into (2.3) by using the
relationship between pressure drop and flow

 1284.Q
D%

Circumferentialtress is the stress within the vessel walls due to the transmural pr&sdi@ns-
mural pressure is the pressure difference between the outside of a Wssel &s shown in Figl) and
the average interior pressure. Thus, the circumferential stress,

_PiD

o= 1=
2w’

is a function of the transmural pressupg, the lumenD and the widthw.

AP (2.4)

(2.5)

2.2 Metabolic stimulus

In addition to physical stresses on the blood vessel, the model includes a chemical stimulus dependent
on blood flow. Since tissues require oxygen and other metabolites, chemical signals are released into
the bloodstream to increase blood flow when these levels are low. Thus, the metabolic stimulus captures
the tissues’ demand for additional oxygen. Though a great deal of emphasis is typically placed upon the
physical stresses, the biological importance of this stimuli is mirrored by the observation that, mathe-
matically, the metabolic stimulus serves to stabilize vessel networks that would otherwise collapse with
only the influence of shear and circumferential strésgeget al.,2001a).

The level of available oxygen is described by the saturation of oxygen in the b{® 5 Oxygen
saturation is assumed to decrease linearly down the ldngththe vessel due to consumption by the
surrounding tissue,

keL

S(POZ)|X=L = S(F’OZ)|><=0 - m,

(2.6)

whereke is the rate at which vessels consume oxygen per unit le@gtls the binding constant between
oxygen and hemoglobin and is the hematocrit of blood (Priext al.,2005). The saturation of oxygen
is then converted into partial pressure of oxygen using Hill's equakoieget al.,2001a),

SPQ))”
1-SPO))

where Psg is a reference pressure. This partial pressure is then used to define the level of metabolic
signal J4'" at the downstream end of the vessel,

PQz%% 2.7)

_ POZ|)<=L ) P

Jdown _ 3P 4 [(';”‘L (1 POgref (2.8)

whereJy is the metabolic signal entering the vessel &mds the maximum metabolic production rate

per unit length. Note that this metabolic signal is conditional on whether the partial pressure of oxygen
is above a level given by the reference pressurg,&0n other words, vessels with sufficient oxygen

will not produce this metabolic signal.
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The metabolic stimulus that acts on a vessel is determined by the amount of metabolite flowing past
a given wall area and decreases with increased flow rate. In particular, the metabolic sgmulus

Im
— (14 —" 2.9
Sn n(+Q+me), (2.9)

dependson the ratio of the average metabolic sigdal = 0.5(Jy + J99) to the flow Q. Qyer is
a small value that prevents singular behaviour in vessels with very low flow. Overall, increasing the
average metabolic signal increases this stimulus.

2.3 Conducted stimulus

In addition to the metabolic stimulus, vessels also transmit a conducted metabolic stimulus or ag
metabolic signal that travels upstream, likely via ion channels between cells, when metabolite is neede@
(Prleset aI 2001a). A conducted metabolic S|gnaﬂ°"’” entersa vessel and produces an upstream
signal J¢¥ thatis based on itself and the vessel's metabolite. The combined signal depedﬁ%”&n
themetabolic stimulus, and is assumed to decay exponentially with vessel length

up down —%
J ="M+ Sn)e e, (2.10)
whereL (¢t is a reference vessel length. The conducted stim8lus
J
=—c_ (2.11)
J+Jo

is a function of the average conducted signal in the vegsel 0. 5(Jd°“’n + J&P) anda reference value
Jo- This relationship creates a conducted stimythatincreases wittgy, andsaturates at 1.

2.4 Physical stimuli

While the metabolic stimulu§y,, and conducted stimuluS;, have a direct effect on vessel adaptation,
the impacts of the physical stresseands are more oblique. The model specifies stinfiliandS;,

s - In (ﬁ)

L+ ke In (32)

()
T 14k In ()

that define how shear and circumferential stresses affect vascular adaptation. These stimuli increase
monotonically with increasing stress and decrease with increased vessel wdglidrer and wres give

threshold levels at which the stimuli start taking effect &pd andk,,, govern the stimuli’'s depen-

dence on width. Both stimuli increase monotonically with their stress component and decrease with
width. These functions capture the natural tendency of vessels to normalize their shear and wall stresses
in response to changing stimuli. Specifically, these functions capture the biological observation that
increased shear stress tends to cause vasodilation or diameter increase, that in turn returns shear stress
to a baseline level. On the other hand, increased wall stress tends to cause vasoconstriction which
results in a thicker wall and lowered wall stress.

: (2.12)
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2.5 Ordinary differential equations

Each vessel is assumed to respond to a linear combination of the four primary stimuli defined in
(2.9-2.13). For convenience, these four stimuli are condensed into two effective Simalnd S, m,

Sm=S +Kkmd(Sn +ke&) — Ksa (2.14)
Sm=S + Kmg(Sn + keS) — Ksg, (2.15)

wherekmd, kmg andkc are parameters that govern the relative strength of metabolic stimuli aile
andksg are background stimulus leveBr{eset al.,2001a).

The mid-wall diameter and the cross-sectional area remodelling rates may be expressed as a weighted
combination of the effective stimu$;,» andS; m,

dD
5 = (ReaSm + RoaSym) i, (2.16)
dA
d_tw =Ry (RegSm + RogSm) Aw. (2.17)

R:d, Rrg, Rsd, and R, ¢ define the relative contributions of each stimulus to the remodelling rate and
are normalized such th&Z; + R = 1 andRZ; + RZ, = 1. R.q is assumed to vary on [a], while
the other coupling parameters are defined e4,[1]. Ry defines the relative strength of wall mass
remodelling compared to lumen remodelling (Pe¢gl.,2005).

In Fig. 2, we show the 2D parameter space define@hgset al. (1998,2001a,b2005) and used in
our analysis. Physiologically, shear stress is thought to primarily affect diameter, while circumferential
stress primarily affects wall mass. Thus, we define direct coupling as the case when diameter adaptation
is purely caused b, ,, and changes in wall mass are dueSg,. These are reflected in the coupling
values centred ned,q = 1, R,g = 0, R, = 0 andR,y = 1 (see black marker in Fig). Notably,
cross-coupling, wheré&, 1, affects Ay, and S, changesDy, is also possible and is represented by

Rud

-1 » »1

|
-

R
oyg
— O = O g
oq—._l_‘_..pé-_’—‘q...ca
R
tg

|
-

td @ Full Direct Coupling

Tlncreasing R-value X
Full Cross-Coupling

FiG. 2. Two-dimensional coupling space Bfq, R;g, Ryq and R;g used in our analysis. ThB-values represent the relative
strength of stimuli. The physiologically sensible direct-coupled s&®-wélues is located in the centre of the space shown. These
R-values vary sinusoidally in the mapping above; arrows denote the direction of increase.
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regions whereR;g, R;q > 0. However, large degrees of cross-coupling (see grey markers ir2Fig.
are physiologically abnormal. We will use this parameter space later when we discuss the stability of
microvessels under adaptation.

3. Single vessel under constant flow conditions

As previously mentioned, we begin by analyzing a single vessel subject to a fixed flow. We consider
a vessel at some initial mid-wall diametBr, and cross-sectional wall ared,, thatadapts over time
according to the model presented (h3-2.17). The parameter values used in our analysis are typical
of a single vessel and are given in TalileWithout loss of generality, we assume that the metabolic
and conducted signals entering the vessel are z&d £ 0 and JS“"’” = 0). First, we consider the
equilibrium solutions and examine their stability.

3.1 Unique equilibrium

In the case when the flow is fixed, one equilibrium is present. To demonstrate this, we solve for the

width and diameter Wher%(% = dd# = 0. This can occur when eithddy,, = 0 and A, = 0 or when

TABLE 1 Parameter values used in single-vessel analysis for fixed flow as previously speckieesy
et al.(1998;2001a;2005

Parameter Value Description
Tref 0.5598% Referencevalue for shear stress
Oref 32050% Referencevalue for circumferential stress
Wref 0.804um Reference value for width
ke 1.66 Scale factor for conducted stimulus
Kmd 0.955 Scale factor for shear metabolic contribution
Kmg —-0.374 Scale factor for circumferential metabolic contribution
Ksd 3.077 Equilibrium level of S;m,
Ksg 0.0177 Equilibrium level of S; i,
1 0.114 Strength of width influence 08, ,
0o 0.609 Strength of width influence o8,y
L 2000pum Vessel length used in analysis
Q mllln Flow used in analysis
Pout 466552%2” Pressurat vessel outlet
Pissue O% Tissue pressure
Co 05 Percent of oxygen binding to red blood cells
Pso 38KPa Partial pressure of oxygen reference
N 3 Defined in Hill's Equation
ke 4x 1071 ur?rrflin Derivative of oxygen flux in the vessel
SPD)|x=0 0.9398 Initial saturation of oxygen in the vessel
L ref 14292im Reference vessel length
Jo 27.9 Basal conducted stimulus
J%O"’” 0 Downstream conducted signal
P 0 Upstream metabolic signal
POyref 94 AKPa ReferenceP O, value
Qref 10‘4mli'n Referencdlow to avoid singularity
H Hematocrit
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both S;m = 0 andS,;n = 0 simultaneously. The first case corresponds to a situation in which vessels
collapse, while the second case (in which we are interested) occurs when the net adaptation stimulus is
zero. To find this location computationally, we evalu&e, and S;,, over a space oD andw. This
produces two contours that correspondtg, = 0 andS,n = 0, respectively. Thus, we are interested

in finding the intersection of these contours. Notably, when flow is fiS&dand S are constant with
respect to width and diameter, so they are represented as positive corGtaansl,C,. Therefore, for

T
n{—1),
Tref

— Cy = Ca + kyoC2In (ﬁ) ~In (i) .
Wref Tref

), In (ﬁ) and In(é) are monotonic functions af, = ands, they can only intersect
once in theD andw plane. The presence of one intersection corresponds to one equilibrium in the model.
Figure (3)a illustrates the presence of a unique equilibrium solution, while Figieshiows that this

fixed flow
0= Srm =
0= Srm =
Since In(miref

n (L
Tref

)

14k ln (if)

In (L
Oref

1+ Kyo In (ﬁ)

)

. SHAFERET AL.

—-Ci1> C1+kmclln(

w )
Wref

solution varies withQ such that higher flows lead to narrower vessels.

The existence of a unique equilibrium can also be verified analytically. By solving®eth= 0
andS;» = 0 for D as a function ofw, we obtain closed-form solutions for the curves illustrated in
Fig. (3)a. By equating these closed-form functions, we find that there is one valugasfd thus one

equilibrium geometry that produces an intersection if flow is fixed,

o~

D _ 2100ref (kng(Sn+oS)—ksg) (1-Hu In(

Pr

3257Q o md( Sk S)—ked)
T Tref

L
-

-
-

E L
3 9 5
= -7 -
_Smm =0
05} ‘.- \ =S;m=0
a L
0 20 40 60 80 100
D (um)

FiG. 3. Existence of a single equilibrium in width and diameter. (a) In the fixed flow case, only one intersecion €f0 and
S m = 0 is present, which corresponds to a single equilibrium. (b) The single equilibrium valileardw vary with Q.

w
Wref

(st 'n(wfef)))”

)

(from S;m),

(from S;m).

Q (nl/min)
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In addition to confirming the existence of a single equilibrium, we are also interested in the factors
that affect the location of the equilibrium. Figuéb) illustrates the dependence of equilibrium diameter
and width on flow. Although the relationship is not linear due to the presence of metabolic effects,
varying Q still produces only one equilibrium. Additionally, the location of the equilibrium is dependent
upon the parameters embeddedip, andS; m, which represent environmental conditions. Notably, the
conditions under which the stimulus terms equal zero are not dependent upon the vaRyesRp§,

R:g, Ryd andR;g.

Having determined the locations of equilibria in the model, we are interested in the behaviour of the
equilibrium. Depending on their type of stability, vessels may either approach the equilibrium solution
over time or be pushed away from it. Understanding both the equilibrium geometry and its type of
stability allows for a better understanding of how vessels adapt in this model.

3.2 Stability of a single equilibrium

Our exploration of stability begins with the numerical results produced in simulatidPrigget al.
(1998,20014a,b2005). As mentioned above, the equilibrium geometry is not dependentRigomR, g,
Rsd, Ryg Or Ry, but these values do influence the equilibrium’s stability.

The aim of our analytic stability investigation is to determine the behaviour of the system around
its equilibrium. To do this, we first consider a linear system of ordinary differential equakcasAx.
Althoughour system is non-linear, our treatment of the linear case will set the stage for dealing with the 5
non-linear system. It is well accepted that the general solution to a linear system of ordinary differential &
equations,

wiwew! woJy papeojumod

x(t) =D cjellyj,
j

is a linear combination of the eigenvectarsof the matrixA. These eigenvectors are weighted with
magnitudec; eit thatdepends on the eigenvaluegs By inspection of this solution, we conclude that
if all the real parts of the eigenvalues are negative, the solution will converge to zero. However, a single§
eigenvalue with positive real part will lead to divergent behaviour. Thus, to determine the stability of our ¢
system, it is necessary to determine the eigenvalues of the relevant linear differential equations. Recal

sanb Aq B1o°sfeuinolp.

from earlier that our model consists of two coupled, first-order, non-linear differential equatidns ( E
and (2.2). N

We first linearize the system about the single equilibrium using a Taylor series approximation. This -~
process is discussed in many texts (&fgogatz,2001). The Jacobian of the system is evaluated at a §

fixed point. By considering the eigenvalues of the Jacobian, it is found that the system is stable at the”
fixed point if and only if the trace of the Jacobian is negative and the determinant is positive, and that
oscillatory solutions exist if fr < 4 4.

Usingthis analytic method of determining stability, we map the stability regions irdf&.onto the
R-space shown in Fi@. This is done by sweeping ttievalues for a given equilibrium and determining
the resulting eigenvalues, which allow the equilibrium to be classified. As mentioned above, the type
of stability exhibited by an equilibrium depends on these cross-coupling parameters. Mapping these
classifications onto th&-space produces Fig(b). White regions represent vessels that converge as
a stable spiral, whereas vessels WRkvalues in the black and dark grey regions do not converge.
The centre of the plot, which corresponds to direct coupling, is stable as expected. The stable regions,
however, have some degree of cross-coupling, which indicate®thatiw are dependent on both,,
andS;m.
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(@) (b) R

082 -071 -038 -0 038 071 082 1

Unstable
Node

Saddles

-1 -
-0 038 071 092 1 082 071 038 0

th

FIG. 4. Analytical regions of stability. The characteristic stability types based on the trace tr and deteunhghanwn in (a) are
mapped to thé&k-space. This region dR.q, Rrg, Ryd andR;g displayed in (b) is the same shown in RAigExamples of the type
of behaviour characteristic of the stability regions are provided ing).

A comparison with the results &frieset al. (1998,2001a,b2005) confirms this analytical stability
portrait. The authors performed a stability analysis for the same single-vessel case and also focus on
obtaining the dependence of stability on tRevalues. Using a simulation for vessel geomeRyies
et al. (1998,20014a,b2005) investigate the stability of a single vessel numericdlyeset al., 1998).

After providing the microvessel with initial conditions f@ and w, they numerically integrate the
system until the magnitudes Qgtm andd—c’?tﬂ are below a threshold value. The time at which the vessel
reaches the equilibrium threshold is logged, where low convergence time indicates a stable vessel and
failure to converge in a given time limit denotes instability.

Figure5(a) shows the results obtained Byieset al. (1998,2001a,b2005) over the same space of
R-values. It is evident from the numerical results that there is a bounded region in this space where the
single vessel will converge to a fixed width and diameter. Notably, this space is akin to the analytical
region of stability we find in Fig4(b).

Although Prieset al. (1998,2001a,b2005) classify stability by convergence time, it is possible to
compare these results to our stability analysis. One way of obtaining a metric that is similar to conver-
gence time uses the magnitude of the eigenvalues $fij). For eigenvalues with a negative real part,

a, the magnitude o& determines how quickly the solutions converges along the associated eigenvector.
Therefore, when both eigenvalues have a negative real part, the one with the smaller magnitude indi-
cates the upper limit of convergence time. In FB¢b), if the real part of both eigenvalues is negative,

we plot the one with the smaller magnitude. Larger values (white) correspond to faster convergence to
equilibrium, while smaller values (grey) correspond to slower convergence. The black regions have at
least one eigenvalue with a positive real part, so the equilibrium is unstable and does not converge. This
classification by magnitude of eigenvalue (based on the analytical stability results) closely matches the
computational results froRrieset al. (1998,2001a,b2005) shown in Fig5(a).

We further validate our stability predictions by simulating the model near the equilibrium. 16,Fig.
we show three examples of the model’s trajectory in(fbew) phase plane corresponding to different
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(a) (b)

Sigma Effect on Diameter, (Rod)
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171 —-092-0.71-0.38 -0 038 0.71 092 1 0

_. 0o -0.71 0.71
o
C —_—
€ ox g 0
H i
2 W ] 0.71 0.71
3 H 2 o
5 1.00 g b1 e
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& om E 0.71 -0.71
E 050 =
3 & 0 -1
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—0.50
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~0ss -0 0380710982 1 092071038 0
-0.97 R
000 0.25 0.50 080 095 100 0985 080 050 025 0.00 T d

Tau Effect on Diameter, (Rvd)

Fic. 5. Comparison to results of Pries al. (a) (used with permissiorP(ieset al., 2005)). The region oR.q, R;g, R;¢ and
Rsg is identical to the region in Figh(b). The intensity of the regions in (b) corresponds te min(|Re{i1}|, [Re{io}]), where
Re{11} and Ref,} are negative. White regions correspond to laigeavhile grey regions have a smallerBlack regions denote
equilibria with at least one eigenvalue that has a positive real part.
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R-values chosen from Fig(b). The presence of stable nodes (a), stable spirals (b) and saddle pointsc.
(c) is evident. Unstable nodes and spirals are not shown but have phase portraits similar to (a) ang
(b), respectively. When saddle points, unstable nodes or spirals are present, our modelled vessels eith§r
collapse or become unreasonably large. In simulation, we find that these vessels approach a location ia
the model that is ill defined; approaching zerdiror w produces singularities in the stimulus equations,
while moving towardsx is highly non-physiological. Further work is needed to conclusively define the
behaviour of unstable vessels and the physical meaning of the model in these areas.

We have also found that the limit cycles exist in small regions ofRkspace which correspond to
unstable spirals. Toillustrate this, we choose the point irRtspace shown in Fig.(a). The subsequent
limit cycle in the (D, w) phase plane is shown in Fig(b). If this limit cycle is viewed as a function
of time, we see the oscillations D and w present in Fig.7(c). The cause of these oscillations and
subsequent limit-cycle behaviour is relatively complex. However, for the fixed flow case, it is important
to note thatS,, and & are not dependent ob or w, so the metabolic and conducted stimuli do not
produce oscillations. Instead, the shear and circumferential stresses oscillate, as showrY (d)Fig.
Although the oscillation of these stresses are both a cause and a result of the oscilldfioandf
w, the phase shift between and s is not the same as that @ and w. This is due to the cross-
coupling in the differential equations, which causes the remodelling ahdw to be dependent on
bothz andes . These oscillations are surprising and raise questions about the limits of the model as well
as the long-term behaviour of blood vessels. However, the existence of such oscillations in the human
body is questionable because preliminary investigations suggest that the limit cycles tend to occur with
unrealistically strong cross-coupling and the behaviour of a single vessel may not be indicative of the
behaviour of a network.
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FiIG. 6. Examples of dynamic behaviour in thB, w) phase plane. Dots indicate the type of equilibrium. Each case has different
R-values corresponding to Figy(b).

4. Single vessel under constant pressure conditions

Unlike a single vessel, a vascular network has a fixed pressure drop and input flow that feeds vessels in
a series—parallel configuration. The result is that actual vessels are regulated by some combination of
a fixed flow and fixed pressure case. Therefore, in addition to considering the extreme fixed flow case,
we also explore the fixed pressure case for a single vessel. Our analytical work in this area suggests
that multiple equilibria are possible, and we examine the stability of these equilibria using the tools
developed in the previous section.

4.1 Multiple equilibria

When the pressurd P across the vessel is fixed instead of flow, multiple equilibria are possible because
the metabolic-derived stimu$,, and S are no longer constant. To determine the locations of multiple
equilibria in the(D, w) plane, we perform an analysis similar to the fixed flow case and find locations
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FIG. 7. Unstable spirals can give rise to limit cycles. (a) Location of limit cyclRigpace. (b) Example of limit cycle iiD, w)
phase plane. (c) Oscillation of the width and diameter. (d) Oscillation of the stresardg . Note that the phase shift between
D andw is different from the shift betweenando .

where bothS; ., and S, are equal to zero. The resulting stimulus contours are shown ir8fyand
the two intersections represent the two equilibria.

The number of equilibria depends on the values!&f and Pr. In Fig. 8(b), we show the number of
equilibria as a function oPr and 4 P. For relatively small pressure drops, the vessel can support two
equilibrium geometries, while relatively large pressure drops produce no equilibria. The reason for this
is that large pressure drops cause high shear strsstfich does not support equilibrium geometries.

Although two equilibria are present for many valuest® and Py, physiologically reasonabld P
for the microvessels under investigation are probably on the orderdf mbnHg. At these low/ P,
one equilibrium is present at a physiologically reasonable geometry and the other equilibrium is at a
much largerD andw. For example, aP = 0.1 mmHg, one equilibrium is present Bt = 34.8 um
andw = 8.4 um, whereas the other is locatedt= 6350 um andw = 8.4 um. At higher 4P, the
two equilibria are closer, but such large pressures produce unreasonably large vessel widths. Therefore,
the model appears to have only one physiologically reasonable equilibrium evenafhand Pr are
fixed and multiple equilibria can occur.
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FiG. 8. Existence of multiple equilibria (a) illustrates the existence of two equilibria based on the intersection of cBntosre
andS;m = 0 for Pr = 10 mmHg and4P = 1.5 mmHg and (b) shows the number of equilibria as a functioRpfind 4P
(white indicates no equilibrium while grey indicates two).

th

FIG. 9. Regions of stability for equilibrium that are (a) smallebirandw and (b) larger irD andw. Note that the stability regions
are reversed—i.e. the location of saddles for the smaller equilibrium is opposite that of the larger equilibrium. These equilibria
are generated whenP = 10 mmHg andPt = 100 mmHg.
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4.2 Stability of multiple equilibria

When multiple equilibria are present, a natural question concerns whether both equilibria can be stable.
That is, for a given set of conditions, are there multiple geometries to which a vessel could converge
over time, even if one is physiologically unreasonable? Although we have not obtained analytical con-
firmation, numerical results suggest that one of the two equilibria will always be a saddle. For example,
in Fig. 9, we analyse the stability of the equilibria present wRgr= 100 mmHg and4 P = 10 mmHg.
Significantly, the phase portraits of the two equilibria appear to be ‘flipped’, indicating that for a given
set of R-values, one of the fixed points is a saddle while the other is a node or spiral. Moreover, under di-
rect coupling R4 = 1, R;g = 1), the physiologically sensible fixed point is a stable node (as expected)
while the unrealistic fixed point is a saddle. This suggests that only one of the system’s equilibria can
be stable for a given set of parameters, which means only one vessel geometry is possible in a particular
environment.
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5. Conclusion

We perform an analysis of the adaptation model propose®rimset al. (1998,2001a,b,2005). In
investigating a single vessel with a fixed flow, we compare the regions of stability we found using eigen-
values of our linearized differential equations to the regions of stability determined computationally by
Prieset al. (1998,2001a,b2005) using convergence time. Our region of stable nodes and stable spirals
matches the region of stability previously determined computationally. Likewise, the region of unstable
spirals, nodes and saddles corresponds to the coupling paramRetsst al. (1998,2001a,b,2005)
found were unstable. Moreover, in investigating the boundaries between these regions, we find evidence
of limit cycles, which suggests that oscillation of vascular geometry may occur. In an extension of the
model, we consider the case when the pressure di®@mnd transmural pressuf® areboth fixed. In
this situation, we find that multiple equilibria are present but that only one of these equilibria is stable
for a given set oR-values. Although multiple equilibria are possible, only one equilibrium is physio-
logically reasonable, so vessels are unlikely to attain two distinct geometries under identical conditions.
A number of unanswered questions about these equilibria and the model remain—for example, th
meaning of the equilibrium d@ = 0 andw = 0, where many relationships behave erratically. To ad-
dress this issudrieset al. (1998,2001a,b2005) define ‘cut-off’ values for botb andw below which
vessels are assumed to collapse. Implementing a continuous extension of this cut-off could provide
better model of vessel collapse and generation. Also, there are cBratues that can lead to run-
away growth of the vessel, which could be adjusted to eliminate this unrealistic feature of the current:
model. More importantly, the mathematical analysis presented here could be extended to small network
of vessels which could provide more insight into the nature and stability of equilibria in networks.
In general, analytical investigation of the modelRifeset al. (1998,2001a,b2005)—and similar
biological models—can yield stronger conclusions about the behaviour of the system than computa<>
tional studies alone. For example, an analytical exploration of stability allows for determination of the 5
type of stability rather than simply a knowledge of convergence times. At a higher level, mathematical g
analysis indicates the conditions that lead to stable vessels and the boundaries of a model, which are gf
physiological interest. Often, this data cannot be obtained through direct experimentation, so mathemat®
ical analysis can be used as a tool for studying otherwise intractable systems. Finally, from a practicaB
standpoint, computational modelling can require long computer runtime, which can be dramatically‘é’
reduced with mathematical analysis, making complex systems practical to investigate.
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