Objectives

- Consistent representation of a system with multiple models
- Verification using heterogeneous models
- Tools to support CPS modeling and verification

Architectural Approach

We use architectural models (components and connectors) to represent common structural and semantic features to guarantee consistency.

Heterogeneous models allow experts to address different aspects of the system design. Although convenient for the experts, creates two challenges: consistency and verification.

The challenges may occur because of:
- Timing: periods, events, determinism
- Movement: geometry, dimensionality
- Sensing and actuation: delays, precision
- ...

Research Directions

- Consistency
- Verification

Tools

- AcmeStudio – architectural design environment for representation and analysis of architectural views.
- AcmeMaps – specification of relations between views.
- KeYmaera – hybrid program language and proof system for verification in differential dynamic logic
- Sphinx – a Graphical and Textual Modeling Tool for Hybrid Programs.

Case Studies

Quadrotor

Goal: ensure consistency of heterogeneous models for a STARMAC quadrotor.

Results:
- Developed architectural modeling for structural consistency.
- Detected several inconsistencies in design.

CICAS-SSA

Goal: verify a stop sign assist algorithm.

Results:
- Formalized heterogeneous model semantics using behavior relations.
- Developed a compositional approach to heterogeneous abstraction.

Robot Collision Avoidance

Goal: verify a family of robot controllers for collision safety with obstacles.

Results:
- Proved safety for moving obstacles in presence of location and actuator uncertainty.
- Work in progress.