
`

Single-window integrated development environment

Ivan Ruchkin

Computer Systems Lab

Moscow State University, CS department

Moscow, Russia

ruchkin.ivan@gmail.com

Vladimir Prus

Computer Systems Lab

Moscow State University, CS department

Moscow, Russia

vladimir.prus@gmail.com

Abstract — This paper addresses the problem of IDE interface

complexity by introducing single-window graphical user

interface. This approach lies in removing additional child

windows from IDE, thus allowing a user to keep only text

editor window open. We describe an abstract model of IDE

GUI that is based on most popular modern integrated

environments and has generalized user interface parts. Then

this abstract model is reorganized into single windowed

interface model: access to common IDE functions is provided

from the code editing window while utility windows are

removed without loss of IDE functionality. After that the

implementation of single-window GUI on KDevelop 4 is

described. And finally tool views and usability of several well-

known IDEs are surveyed.

Keywords – integrated development environment (IDE);

graphical user interface (GUI); usability; widget; single-window

interface/design/approach; tool view (utility window); KDevelop;

Microsoft Visual Studio; Eclipse; Code::Blocks; NetBeans.

I. INTRODUCTION

There is a wide variety of tools that software engineers
use to write the code – from simple text editors, such as
Notepad or Kate (which offer only basic text highlighting) to
elaborate integrated development environments (IDEs) like
Eclipse or Microsoft Visual Studio. IDEs bring together
different tools improving convenience, and also providing
features not possible with individual tools. For example,
reliable code-completion is only possible when the editor,
the compiler, and the build system work closely together.

But despite those attractive features many developers
find IDE hard to use and stick with simple editors [1].
Reasons for that are different and large usability study [2] is
required to completely and accurately determine them.
However, anecdotic evidence shows that many users
complain about the IDE tool views – which are auxiliary
windows typically docked around the editor area, also called
utility windows [3][4]. One problem is that a dozen of
available tool views just confuse a new user. But a deeper
problem is that the tool views are actually required in a
number of common workflows. And if a given tool view is
repeatedly required, a user is faced with unpleasant choice –
either to keep the window always visible, taking space from
the source editor, or to constantly open and close it. One way
to address this usability issue with tool views is to remove
them altogether. Of course, we propose this only as research
experiment: remove all tool views, design alternative
mechanism to support common workflows and then perform
a usability study. These steps allow us to determine a set of
tool views that users cannot live without and have to be put

back. But we also hope that some utility windows can be
eliminated, resulting in an overall usability improvement.
One apparent example of removable tool view is build
results view which shows errors and warnings. It only makes
sense to process error messages from the first to the last one
(as later error can be induced by the earlier) and therefore
there’s no necessity of showing a list of errors – we can
immediately display the first error inside the text editor.

So we come to the idea of IDE with the single window
hosting a text editor. Researching such approach requires:

 designing conceptual single-window IDE interface,
 implementing it in certain IDE,
 usability testing [2] of implemented GUI and

comparing results to existing popular IDEs.
This paper is a work-in-progress report that covers only

first two steps. The exact plan of this paper:
 Create a model of IDE tool views by observing them

in the most popular development environments
[1][5]. This model includes a set of abstract tool
views with description of their structure and usage.

 Design a conceptual single-window IDE GUI by
removing the utility windows from IDE tool view
model.

 Implement the single-window interface in KDevelop
integrated development environment.

 Survey existing IDE and find out whether they can
be used without tool views.

It is difficult to move functionality of all tool views to
text editor window. Trying to do this can cause usability
problems [6]. To solve this issue we introduce new widgets
and mechanisms to display information inside and near text
editor. These widgets are described while designing a
conceptual single-window interface.

In the following section the IDE tool view model is
proposed.

II. MODEL OF IDE TOOL VIEWS

In this section we build a model of IDE tool views. This
model describes a set of abstract tool views and their
functions. Each abstract tool view is generalization of similar
real tool views from existing IDEs. We build such model to
be able to construct a generally useful set of interface
improvements, as opposed to fixing problems in a single
arbitrary selected IDE.

Development process greatly depends on the
programming language. To limit the scope of research we
only consider development in a compiled object-oriented
language such as C++, Java, or C#. According to [1] [7], the
most popular IDEs for these languages are Visual Studio,
NetBeans, Eclipse, KDevelop, and Code::Blocks.

`

First, we need to list the common parts of an IDE
interface to show the context in which tool views are used.
GUI of a contemporary IDE consists of:

 Main menu, typically with a vast set of commands. It
isn’t easy for a new developer to discover all of
operations in the main menu, that fact can cause
usability issues [8].

 Customizable toolbar with command buttons. It
facilitates accessing and learning IDE functions, but
requires a careful selection of command to expose b
default.

 Text editor window. Obviously that’s where
program code is being edited. This area contains
source code and is usually tabbed. Unfortunately, in
common IDEs developer is drawn away from the
text editor window because a lot of functions and
information are spread across other UI elements,
mostly utility windows.

 Tool views. These are additional utility child
windows inside IDE GUI that contain special
instruments: errors view, call graph, project view
and many others. Typically views can be docked on
any side of text editor window, resized and made
auto hiding – popping up when mouse cursor hovers
over their header and closing when it leaves. Tool
views occupy considerable amount of screen space
and compete for it with text editor.

 Status bar. It is a horizontal one text line-high widget
in the bottom of IDE GUI that traditionally contains
information on current operation progress and rarely
some static information about current state of
development.

 Context menus in text editor window. That’s a
powerful tool to provide various operations: a user
accesses it quicker than the main menu and learns
faster.

Due to work-in-progress paper size limit, we omit the full
study of several IDEs and their tool views. The result of this
study is a set of abstract tool views, collected from examined
IDEs. The key abstraction points were tool view structure
and functionality.

We should remark that some tool views are actually
documents, displayed outside editor. A good example of
document-window is “Output View” in Visual Studio. Such
views should be promoted to regular documents and shown
in one of text editor tabs. We take only Variables view as an
example of such document-like windows, though there are
more of them in existing IDEs.

Here we name only the most significant abstract tool
views, which compose the tool view model:

 Project view. It is a tree view of categorized project
documents. This window is used to navigate through
project and interact with documents.

 Files view. It is a tree view of files in file system.
This view allows a user to observe the files structure
and operate over them.

 Code objects view. It is a tree view of code objects:
classes, global functions, global variables and
macros. Exact appearance and naming can vary
depending on IDE, but all code objects views display
class hierarchy as well as class methods and
attributes.

 Build results view. Shows a list of build errors and
warnings if there were any. Allows a user to
navigate to any issue by clicking on it.

 Tasks view. Contains a list of tasks and lets a user
navigate from them to text; in most cases, task is a
comment from code, marked with a special word, for
example “TODO”, “FIXME”, or “HACK”.

 Breakpoint view. Shows a list of all breakpoints,
allows a user to switch them on/off, edit their
condition and navigate to certain breakpoint.

 Threads view. This window contains a list of
debugged application threads. Clicking on a thread
results in navigating to its current execution point.

 Call stack view. This view shows the stack of
subroutine calls for every program thread while
debugging an application. By clicking on any
function call a user can open the definition of it in
code editor.

 Variables view. This utility window shows a list of
variables and expressions monitored while
debugging and their current values.

So we have described a model of IDE tool views. This
model is sufficient to introduce the single-window design.

III. CONCEPTUAL SINGLE-WINDOW DESIGN

This section shows the process and reasoning of creating
a single-window IDE design based on tool view model from
the previous section.

A. Single-window design: idea

The idea of this paper is creating a usable graphical
interface design for IDE without tool views. Our goal is to
reduce the number of open tool views while working with
IDE and to carry over the tool views functionality into the
text editor.

It is very difficult to meet this goal with the only text
editor window. Thus we should introduce several new GUI
elements for our single-window design. Those elements
address tool view usability problems by (i) taking, when
inactive, much less screen space than a tool view (or no
space at all) and (ii) appearing when necessary, without
explicit user interaction. These visual elements are covered
in the next subsection.

`

B. Single-window design: additional widgets

We add widgets into single-window interface or
considerably enhance the functionality of existing widgets
and use them to achieve the goal from the previous
subsection. Each of following paragraphs is dedicated to an
additional widget.

Breadcrumbs navigation bar. It is a widget that
represents a path in a certain tree to a currently selected
object. The most common example is a file system
breadcrumbs bar that shows a path to current file or
directory. The bar is separated into blocks, each one
representing a node in the path. Each block can be decorated
with an icon or color and, on mouse click, displays a context
menu with the list of elements on the same level of
hierarchy. The context menu is used to change the currently
selected object or to operate over other objects. The benefit
of breadcrumbs lies in the principle of locality [6] [8]: a user
tends to work with objects closer to his current work context.
For our purposes, we propose that a single breadcrumbs bar
supports different modes – that is, different meanings of
what a current item mean and what hierarchy is displayed.
Mode of breadcrumbs can be conventional (navigation in file
system) or advanced (navigation in frame stack or classes).
We describe it in detains in following subsections.
Breadcrumbs navigation for file path is shown on the Picture
1.

Enhanced status bar. Although status bar is a standard
part of IDE GUI, it has to be considerably enhanced to meet
the needs of single-window design. The enhanced status bar
has two parts: static and dynamic. The former part is place
for small (not bigger than icon plus a couple of symbols)
customizable widgets that are to display information on
current IDE state (for instance, number of changed files in
VCS working copy). The static area should contain
information that user requires occasionally [8]. The dynamic
part shows messages about events in the IDE (for example,
project build finished). This part shows one message at a
time and can display a dropdown list of recent events so a
user can choose any of them. Both status bar areas support
customizable actions for left click on their parts (static
widgets and messages respectively). You can see the
enhanced status with several static widgets, dynamic area
and setup dialog on the picture 2.

Text editor inserts. We want to show information linked
with certain objects (variables, functions, etc.) in program
code. Along with traditional ways of presenting information
in text editor window (tooltips, context menus) we are going
insert widgets between lines. These inline widgets can
contain some information and control elements like buttons.
Inline widgets are preferable when we want to display
something independent on user’s action. Good example is
showing build errors in text (see picture 3): after build
system encounters an error it should be displayed

Picture 2. Enhanced status bar.

Picture 1. Breadcrumbs navigation bar.

Picture 3. Inline error message.

`

immediately, not after user hovers mouse over error line or
invokes context menu

We come to the discussion of creating single windowed
interface from the model created in section II. Now we
discuss each of abstract tool views listed in the previous
section. We determine their main use cases and show how
these tool views can be removed from user workflows.

C. Single-window design: project view

Project view is probably the most common type of utility
window. It contains a tree of project files. Exact tree items
can vary among IDEs, but the main use case is navigation
through existing documents. The project view can be
replaced with breadcrumbs bar. Breadcrumbs should display
the path to current document, each block is a directory, and
the final block is the edited document. In popup display for
each block there is a tree view for directory represented by
that block. In such way we allow user to navigate through
project structure.

D. Single-window design: files view

Files view is very similar to project view in terms of
structure and use cases. To replace files view we introduce a
new mode for breadcrumbs. In this mode breadcrumbs bar
shows a path from the root of file system to the currently
edited file. Similarly to previous subsection each block is a
directory, except the final one.

E. Single-window design: build results view

Build results window shows a list of errors and warnings.
Its main use cases are viewing errors and warnings and
showing corresponding source location in the editor. We
replace this view functionality by displaying build issues
between the lines of text and upgrading breadcrumbs bar.

Concerning errors, it’s well known that the first error
should be examined first, as other errors can be induced. So,
it’s reasonable to show the first error as inline widget, and
just highlight other errors (for example, with red
underlining). The inline widget should contain the text of
error message, as well as “Next” and “Previous” to cycle
through errors.

Warnings can’t be handled like errors: their importance
doesn’t depend on their order. But displaying all warnings
with inline widgets would takes a lot of place and can
confuse a user [9]. So, we just underline code lines with
warnings and display the warning text (either as inline
widget or as a tooltip) only when a user clicks on the line.
Also, there should be an action “Ignore this warning forever”
because if warning has been shown and wasn’t fixed then
developer most probably won’t ever touch it.

In that way the navigation is carried over to text editor.
But what about overview of errors and warnings? We want
to handle this use case as well. Thus we mark the blocks of
file system breadcrumbs (as well as objects in popup for
blocks) with red dots, reflecting that there is an error in
corresponding document or that there is a document with an
error in the directory.

A user also wants to have information about the number
of errors and warnings. We add “Errors number” static
widget to status bar. Context menu allows user to
enable/disable inline text widgets and breadcrumbs marks.
Also there should be a dynamic status bar message about

build end with the same functionality. So the build results
view has been replaced.

F. Single-window design: code objects view

Code objects view is used to view program structure and
go to declaration of a class or any other symbol (variable,
function). As shown in the previous subsection breadcrumbs
bar can provide navigation through tree structures. So we can
add another mode to breadcrumbs or extend the document
mode: each document in the tree contains all classes,
functions, global variables and macros declared in it. Thus
we can remove classes view by replacing it with
breadcrumbs navigation.

G. Single-window design: tasks view

Tasks view contains a list of tasks, which are taken from
text (from comments like “// TODO” in C/C++). We replace
this view similar to build results view. First, we want to carry
overview functionality, so we add marks to breadcrumbs
indicating that a document has a task inside. Second, we add
a several characters-wide inline element after each special
word (“FIXME”, “TODO”, etc.) with buttons for going to
next and previous task. And finally we add a static status bar
element that displays a number of tasks in project and allows
switching on/off breadcrumbs marks and inline widgets.

H. Single-window design: breakpoints view

Breakpoints view contains a list of breakpoints in the
project with their attributes: file, line and condition. This
utility window is used when a user wants to

 create a new breakpoint,
 view breakpoints and navigate to a random

breakpoint,
 edit properties of a certain breakpoint.
We want to cover all three use cases using single-window

interface. Creating new breakpoints can easily be transferred
to a thin vertical line on the right of text (many IDEs already
maintain such operation). Overview of breakpoints can be
provided by special marks in the breadcrumbs navigation
bar, while it displays path to current file, just like we did it
with errors in subsection III-D.

Let’s assume that properties editing mostly often occurs
after the breakpoint is hit. Then we handle this use case
through sending dynamic message to status bar and showing
inline widget with breakpoint editable properties. Navigation
and global editing of breakpoints are made available through
breadcrumbs like build errors (see the previous subsection).

I. Single-window design: thread view and call stack view

Call stack view shows called subroutines for each of
program threads. We can replace both these views by
organizing following tree structure: the top-level element is a
thread and its descendants are function calls in stack. With
that said, we introduce a new mode for viewing call stack.
Breadcrumbs bar automatically switches to that mode when
debugging is paused. User can handle changing modes
manually through the first block of breadcrumbs. That’s it
for call stack view and thread view.

J. Single-window design: variables view

This utility window shows a list of variables and
expressions that are watched during debugging process. As

`

stated before, this view is document-like and should be
placed in text editor tabs. A user wants contents of this view
during debugging, so we should split the text editor window
and display watched variables and expression in parallel with
debugged code.

K. Single-window design: resulting interface

In this part of the paper we described a single-window
interface design based on IDE tool views model. We have
determined only some of single-window interface functional
capabilities, used to carry tool views functionality to text
editor and additional widgets. Much more functions can be
added to that interface to improve usability. For example,
contents of context menus for breadcrumbs can be prioritized
upon user’s selections, but such enhancements are outside of
this paper’s topic.

Let’s proceed to the implementation details of single-
window interface.

IV. IMPLEMENTATION DETAILS

The single-window design has been implemented on the
base of KDevelop 4 IDE, part of KDE project [10]. The
source code of all components of KDevelop is open, which
facilitated implementation of desired modifications.
Implemented GUI parts can be seen on pictures 1 – 3 above.

A. KDevelop 4 GUI

KDevelop GUI consists of interface parts that have been
described in section II. The main window consists of
dockable tool views and tabbed text editor view. KDevelop
tool views include “File System” view, “Project” view,
“Errors” view, “Breakpoints” view. Status bar is almost
empty, containing only the progress bar for showing pending
operations progress, so this space can be used to implement
enhanced status bar. To plug text editor inside the main
window KDevelop uses KParts [11], thus allowing a user to
edit text with Kate editor [12]. So, single-window interface
can be implemented in KDevelop.

B. Implementation

To create single-window GUI in KDevelop the following
components have been implemented:

 breadcrumbs navigation bar,
 showing of errors and warnings between lines,
 extended status bar.
Breadcrumbs navigation bar is placed above the code

editing window and shows the path to currently edited
document. When user clicks any node of the bar, a context
menu with file system for that node appears. To speed up
access to frequently opened documents the list of currently
opened files appears above other files.

Errors and warnings are shown in following way: only
the first one appears after the line it refers to. The decision to
show only one line has been made because programmer
usually tries to fix the first errors as later ones can be caused
by the first one. Along with the error information two
navigation buttons are shown: “Next” and “Previous”. These
buttons can take user to neighboring errors.

Enhanced status bar meets the description from section
III: it has dynamic and static parts. The static part accepts
small widgets for changed files in working copy, number of

tasks and number of background parser errors. Presence and
order of these widgets can be customized by user. The
dynamic part shows messages from removed tool views: that
build is started and finished, messages from debugger,
background parsing results. Clicking on a message allows
user to open the tool view that sent the message.

Here follows a survey of the most popular IDEs.

V. EXISTING IDES

This section examines the sets of tool views and their
usability in several popular IDEs [1][5][7]. Along way we
note whether any of these IDEs can be used without tool
views.

A. Visual Studio

Microsoft Visual Studio [13] is one of the most popular
commercial IDEs for developing in the C++ and C#
programming languages. Visual Studio has several often
used tool views described below.

 “Solution Explorer” – a view displaying the tree of
projects and files in current solution. A user operates
with this view to create new files, open files (unless
they are present in text editor’s tabs), and observe
the structure of projects.

 “Class View” is a two-part window with a list of
classes in the first part and contents of classes
(attributes and methods) in the second part. This
window is useful for looking through class structure
and navigating to their declaration or their methods
implementation in code.

 “Output View” – a view containing the results of
code build with errors and warnings among them or
program execution results. This window is vital for
building process because a user views errors and
navigates to them with this window.

 “Code Definition Window” – a utility window,
browsing the definition for the currently selected
object or function. It is used to quickly look at and
probably edit the definition of class or function.

Tool views in Visual Studio behave like described in
section II and can be put in auto-hide mode, in which they
expand only mouse cursor moves to their header and
collapse to the screen border when cursor leaves them. That
decreases the time user spends with tool views, but user can’t
remove them permanently: too much information is
concentrated in them. For example, user can’t open a new
file without “Solution Explorer” and can’t navigate through
errors without the “Output” view. So there’s no way to use
Visual Studio without tool views.

B. Eclipse

Eclipse [14] is an open-source cross-platform IDE,
mainly used for C++ and Java development. Tool views
organization in Eclipse is similar to the one in Visual Studio
but Eclipse auto-hide mode is less usable than in Visual
Studio: it requires an extra click to open a hidden tool view.
Also, a user can only toggle auto-hide mode of a certain tool
view, not a whole dock area, like in Visual Studio.

Eclipse tool views resemble Visual Studio tool views.
“Navigator”, “Outline” and “Make targets” windows provide
the navigation service through project files, identifiers, and

`

make targets correspondingly. “Problems” and “Console”
views are similar to Visual Studio “Output” view: they allow
a user to look at errors and program output and go to errors
in code. Thus, tool views in Eclipse play an important role in
user’s workflow and cannot be removed without replacing
their functions with some other interface elements.

C. Code::Blocks

Code::Blocks [15] is an open source cross platform IDE,
which is designed for convenient usage with different C++
libraries: GTK+, Qt4, OpenGL, FLTK, wxWidgets,
Lightfeather. The user interface of Code::Blocks is less
complex (fewer tool views and less their customizability)
than one of Visual Studio and Eclipse, but that’s just because
of lower number of integrated features. Code::Blocks GUI
has several tool views necessary for normal work:

 “Projects” – a window for tree navigation through
opened projects. This is counterpart of Visual Studio
“Solution Explorer” and Eclipse “Navigator”
window.

 “Symbols” – a tree navigation window through
functions, classes and global variables. It is similar
to Visual Studio “Class View”.

 “Logs” is a tabbed set of several windows: “Search
results” (the list of found items), “Build log”
(plaintext output of build tool), “Build messages” (a
clickable list of errors and warnings), and some
others.

Code::Blocks has no auto-hide mode for tool views, and
this makes its interface even less suitable for reducing user’s
interaction with tool views.

D. NetBeans

NetBeans [16] is an open source cross platform IDE,
used massively for development on Java platform, but also
can be used for some other languages including C++.

Tool views in NetBeans are organized just like in Visual
Studio. The most used tool views are:

 “Projects” and “Files” windows – tree views for
navigating through projects and file system.

 “Classes” – a window for viewing classes and
functions, like “Class View” in Visual Studio and
“Symbols” in Code::Blocks.

 “Build” – a window with build results log, allowing
a user to move to any error or warning.

 “Navigator” window – a dynamic version of classes
window, shows at which place in class and function
tree a user’s cursor is situated. This window is useful
while browsing through highly nested code.

Tool views in NetBeans can be put in auto-hide mode,
called “Minimized” in the NetBeans interface.
Unfortunately, a user can change the mode of only one
window at a time. Tool views contain information and
operations, which are essential for development process (for
example, opening a new file through “Files” window), so
IDE can’t be used without constant interaction with utility
windows. So we can conclude that NetBeans IDE envisages
use of tool views in common developer workflows.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed the single-window user interface
for IDE to solve the usability problem of tool views. The first
result is a model of IDE tool views. The second result of this
paper is the conceptual design of single-window IDE
interface. Key GUI elements of this interface are:

 breadcrumbs navigation bar,
 enhanced status bar,
 text editor window with inline message display

functionality.
The third result of this work is the partial implementation

of this single-window design in KDevelop IDE.
Future work involves usability testing [2][6] of single-

window interface to find whether usability problems are
solved or at least reduced compared to traditional IDE GUI.

REFERENCES

[1] Developpez LLC, “Les meilleurs environnements de
developpement” [HTML] (http://general.developpez.com/edi/)

[2] J. Nielsen, “Usability Engineering”, Academic Press, 1993, pp. 23 –
37, 165 – 227.

[3] M. Szymczyk, “Reducing XCode’s Window Clutter”, 2007, [HTML]
(http://meandmarkpublishing.blogspot.com/2007/06/reducing-xcodes-
window-clutter.html)

[4] Website article: M. Stephens, “10 Things NetBeans Must Do to
Survive”, 2003 [HTML]
(http://www.softwarereality.com/soapbox/netbeans.jsp)

[5] M. Caron, “Survey on Usability of Integrated Development
Environment” [HTML]
(http://docs.google.com/present/view?id=addqfjnjc3d6_108gj3w67c3
)

[6] Steve Krug, “Don’t Make Me Think A Common Sense Approach to
Web Usability”, Indianapolis: New Riders, 2000, pp. 10 – 20, 50 –
96, 138 – 174.

[7] Janel Garvin, “Software Development Platforms - 2009 Rankings”,
Evans Data Corporation, 2009, [HTML]
(http://www.evansdata.com/reports/viewRelease_download.php?repo
rtID=19)

[8] Morgan Kauffman, “GUI Bloopers 2.0 Common User Interface
Design Don’ts and Dos.”, Morgan Kauffman Publishers, 2007, pp. 7
– 51.

[9] Donald A. Norman, “The Design of Everyday Things”, Doubleday,
1989, pp. 187 – 219.

[10] KDE Community, KDevelop website [HTML]
(http://www.kdevelop.org/)

[11] Philippe Fremy, “KDE Technology: KParts Components” [HTML]
(http://phil.freehackers.org/kde/kpart-techno/kpart-techno.html)

[12] Kate webstite [HTML] (http://kate-editor.org/)

[13] Microsoft, MSDN, Microsoft Visual Studio [HTML]
(http://msdn.microsoft.com/ru-ru/vstudio/default.aspx)

[14] Ecliplse Foundation, Eclipse website [HTML]
(http://www.eclipse.org/)

[15] Code::Blocks website [HTML] (http://www.codeblocks.org/)

[16] NetBeans website [HTML] (http://netbeans.org/)

