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Abstract—Modeling methods for Cyber-Physical Systems
(CPS) originate in various engineering fields, and are difficult to
use together due to their heterogeneity. Inconsistencies between
mutually oblivious models and analyses often lead to implicit
design errors, which may cause catastrophic failures of critical
CPS. Such consistency issues are not fully solved by the state-
of-the-art integration methods, which lack generality, formal
guarantees, and effectiveness. To overcome these limitations
and achieve better integration, this paper outlines a two-level
integration approach based on architectural views and analysis
contracts. In particular, we propose languages and algorithms
to specify and verify important integration properties, such as
correct analysis execution and rich consistency of architectural
views. Based on the results to date, this approach shows promise
in detection and prevention of implicit errors, which would be
difficult to discover and fix otherwise.

I. INTRODUCTION

Modern software systems are becoming more distributed,
autonomous, and embedded in the physical world. Such
systems are increasingly important because they offer so-
cioeconomic benefits beyond classic embedded systems. For
example, self-driving cars promise dramatic reductions in
accident rates [1]. Such systems are often called Cyber-
Physical Systems (CPS)! because they combine software with
complex physical dynamics. CPS are difficult, but important,
to engineer correctly. To tackle complex analog and digital
processes, CPS design and quality assurance rely on model-
driven engineering methods from various scientific fields, such
as artificial intelligence, control theory, and mechanical design.
These diverse methods and models may be hard to combine
for one system’s design [2].

Failure to combine multidisciplinary modeling methods
properly may lead to miscommunication and inconsistencies,
which turn into design errors and ultimately system fail-
ures [3]. Although partial solutions to such issues exist, the
CPS community has not yet developed general, effective, and
practical ways to integrate CPS modeling methods [4]. We
term these issues the Problem of Modeling Methods Inte-
gration (MMI) — integration problems between heterogeneous
CPS modeling methods that introduce errors into designs. One
example of the MMI problem is a recent GM ignition switch
recall that was caused by an unexpected interaction between

! They are also referred to as autonomous robotics and mechatronics.

the mechanical and electrical designs of the ignition switch,
leading to loss of lives and expensive recalls [5].

One of the approaches to the MMI problem focuses on
creating and relating appropriate component-based abstrac-
tions for models used in each CPS modeling method. These
abstractions, called views, are based on annotated graphs of
components and connectors [6]. This approach, known as
architectural, takes advantage of flexibility of graph annota-
tions to support diverse models and a variety of consistency
verification methods. Despite its advantages, the architectural
approach currently has several significant limitations. First,
model-view relations are informal and require substantial
manual effort to be created and updated throughout the en-
gineering process. Another limitation is that consistency is
fragile due to frequent changes to models (often made by
model transformations and analytic tools, and we call these
changes analyses). Finally, consistency properties have lim-
ited expressiveness confined solely to the architectural level,
incapable of expressing richer properties.

This paper introduces a two-level integration approach that
overcomes the above limitations. One level of abstraction is
the architectural view level that represents the aspects of each
CPS model that are relevant for integration. The other level is
the analysis level that manages algorithms and procedures that
change models and infer information from them. Combining
these two levels leads to a holistic treatment of CPS model
integration. Specifically, this research makes the following
contributions to the field of cyber-physical systems:

A Formalization of, and automated support for, CPS model-
view relations — a formalism and algorithms for auto-
mated creation and updating of model-view relations.

B A framework for automated analysis-driven change in
CPS models — a language for specifying analysis depen-
dencies with formal contracts, and an algorithm for sound
ordering and execution of analyses.

C A method for domain-specific specification and verifica-
tion of CPS model consistency and analytic soundness —
a language to express model-specific CPS properties, and
an algorithm to verify such properties.

All three contributions are being implemented in popular
architecture modeling languages and environments, and vali-



dated on realistic academic and industrial case studies to show
effectiveness and generality of the approach.

The next section discusses existing work related to the
MMI problem. Sec. III details the MMI problem, and Sec. IV
presents the two-level approach to MMI. The last section
discusses research completed to date and future directions.

II. BACKGROUND AND RELATED WORK

A modeling method is a cohesive set of formalisms, algo-
rithms, and processes to represent, design, and analyze a sys-
tem towards satisfaction of certain properties. CPS engineering
combines various modeling methods to address systemic prop-
erties like safety, stability, schedulability, security, and others.

The related work can be split in two categories: individual
CPS modeling methods that can be supported by an integration
approach, and CPS model integration approaches that are seen
as alternative solutions to the MMI problem.

A. Modeling Methods for Cyber-Physical Systems

Since CPS engineering revolves around the boundary be-
tween discrete digital and continuous physical worlds, one
important characteristic of modeling methods is their treatment
of continuous phenomena, such as time and space. On the
one hand of this spectrum are classic software engineering
models like statecharts and process algebras [7]. These models
are easier to compose and verify using techniques like model
checking. However, their treatment of continuous quantities is
limited and not satisfactory for CPS [8]. A special place among
discrete formalisms is taken by architectural models, such as
UML and AADL [9], that have flexible elements (profiles,
types, and annexes) for specialization and extension, making
these models a promising foundation of CPS integration.

On the other hand of the spectrum are classic control models
written in differential or difference equations [10] and their
engineering counterparts like Simulink [11]. These models
are well-suited for traditional control settings (e.g., physical
process control), but it is increasingly difficult to apply such
models to complex intelligent systems. For instance, it is chal-
lenging to analyze behavioral planning in signal-flow control
models. To compensate for such drawbacks, hybrid systems
(e.g., hybrid automata [12]) aim to combine discrete and
continuous dynamics in one model. Although hybrid systems
have enjoyed success in symbolic and numeric analysis, hybrid
models are notoriously complex and have limited scalability,
and thus have to be applied selectively in practice.

B. Integration Approaches

Currently there are two major ways of addressing the MMI
problem. One is to create a single language or formal system
with universal semantics that would serve as a lingua franca
of all CPS modeling methods. Such solutions typically lead to
complex descriptions and quick explosion of state space [13],
thus becoming inapplicable to large systems. The second way,
which we review below, is to preserve the diversity and
heterogeneity of models by relating some of their aspects.

Some integration approaches focus on structural elements of
models that they integrate. For example, models can be com-
posed as components with formal interfaces and contracts [14].
Component contracts work well for composition of system
parts, but are often inappropriate for cross-cutting qualities like
safety and security. Another idea is logical integration through
metamodels and formal semantics, as in OpenMETA and
CyPhyML [15]. These frameworks provide strong theoretical
guarantees when a metamodel is known, but there is little
guidance for models that do not have explicit metamodels, or
when models or metamodels undergo frequent change.

Other related approaches integrate behavioral aspects of
models. Unfortunately, it is hard to create a comprehensive
integration framework based only on behavior. One example
is Ptolemy II [16] — a rich simulation platform that can
co-execute heterogeneous computation models, but sacrifices
completeness guarantees. In contrast to Ptolemy, the behavior
relations approach [17] uses mappings between behavior traces
of heterogeneous models. This approach is practical when
behaviors are well-known and easily specified in relatively
limited models, but does not scale to realistic systems.

Our work unites the research strands of architectural CPS
consistency and analysis contracts into a single approach. Prior
work on architecture-based CPS model consistency defined a
vocabulary of CPS terms, and used them to check structural
consistency [6]. However, it did not address creation and
maintenance of model-view relations, leaving it to error-
prone and expensive manual effort. Prior work on analysis
contracts offers limited, bounded verification with Alloy [18].
In contrast, our work provides an extensible contracts language
with formally defined semantics and verification mechanisms.

III. PROBLEM: MODELING METHOD INTEGRATION

The Modeling Method Integration (MMI) problem is caused
by integration errors between CPS modeling methods, leading
to substantial operational losses. Consider for example a self-
driving car that autonomously navigates through an urban
environment, supported by intelligent infrastructure like smart
traffic signals. All aspects of the car design — electrical,
mechanical, thermal, power, control, and communication —
need to be properly aligned and, ideally, verified before
manufacturing in order to ensure safety and acceptable perfor-
mance of the system. If modeling methods that address these
aspects contradict each other, it is likely that difficult-to-find
discrepancies would be introduced into the design.

Although some parts of the MMI problem have been
addressed, several important issues have not been resolved.
One of them is the informality of relations between hetero-
geneous models and their integration representations, such as
views. These relations are easier to establish and maintain for
component models, such as Simulink and Verilog. However,
some CPS models do not have native support for components.
For example, hybrid programs [10] are hard to componentize
because they formally are sequences of non-deterministic dis-
crete jumps and continuous evolutions. Usually, such informal



model-view relations are handled by an engineer’s judgment
and insight, which is effort-intensive and error-prone.

Another aspect of the MMI problem is that system designs
undergo constant change. It is increasingly common to use
automated tools and algorithms to transform, analyze, and
augment models. These analyses are based on theories and
methods from diverse engineering and scientific domains. For
example, in the domain of real-time processor scheduling,
thread-to-processor allocation via bin-packing and processor
frequency scaling [19] are analyses that derive an optimized ar-
chitecture of a real-time system. When many analyses change
models, it is impractical to re-establish consistency manually:
for every change, many properties may need to be re-verified.
Besides, analyses often make implicit assumptions about the
system and its environment, and it’s important to verify these
assumptions — otherwise analytic results may be incorrect.

Finally, some model consistency properties and analytic as-
sumptions need to be expressed in domain- and model-specific
behavioral terms (e.g., current battery cell charge [19]). Usu-
ally such terms are too semantically low-level to be fully
defined in architectural views. The reason for that is complex
model semantics, bringing which into a view would defeat the
original purpose of the abstraction. As a result, verification of
complex integration properties has to be done manually or
with ad-hoc automation.

To clarify the expressiveness issue, consider an assump-
tion of a frequency scaling analysis — behavioral deadline-
monotonicity of threads on each processor [19]. That is, if a
thread preempts another, it should have an earlier deadline. To
express this statement logically, in addition to the architectural
concepts (threads, processors, bindings, and deadlines), we
refer to the non-architectural concept of thread preemption.
In this case, preemption is modelled as a logical predicate
CanPrmpt over a pair of threads that holds iff the first thread
preempts the second at the current moment of time. The
assumption can be written as:

Vi, to € Tty 7é to N\ CPUBInd(tl) = CPUBInd(tQ) : )
G (CanPrmpt(ty,t2) = Dline(t;) < Dline(tz)),

where T is the set of all threads in the system; CPUBind(t)
is the processor that thread ¢ executes on; G (P) is a global
modality in linear temporal logic (LTL) [20] requiring that
predicate P holds at all times; and Dline(¢) is the offline
deadline of thread ¢. This statement has two parts: a first-order
statement, and an LTL predicate. We need to systematically
and scalably interpret and verify statements like these, and
existing approaches do not support combining logics and
abstraction levels in one language.

A. Challenges

The MMI problem also appears in a variety of engineering
settings outside of CPS. For example, traditional software
engineering uses several notations and reasoning styles (e.g.,
various static and dynamic analyses), and sometimes their
interoperability is required [21]. In the CPS context this
problem becomes particularly challenging for two reasons:

1) No single discipline in CPS owns a full solution. Hetero-
geneous methods and models need to reconcile conflict-
ing paradigms to achieve practical integration.

2) Correct integration often depends upon satisfaction of
implicit assumptions. Many engineers aren’t aware of
assumptions in other disciplines. For instance, a pro-
grammer may rely on functionally correct code, without
considering bit flips from radiation inside processing
units. Discovering such assumptions and their violations
is therefore a difficult task with unpredictable outcomes.

Nevertheless, it is possible to improve CPS modeling
method integration. The next section presents a two-level
approach to the MMI problem.

IV. APPROACH: ARCHITECTURAL AND
ANALYTIC INTEGRATION

The overall scheme of the proposed integration approach
(Fig. 1) shows how we add two levels of abstraction on top
of existing CPS models. Consider a pair of heterogeneous
models to be integrated. These models are not completely
independent, and there exists some relationship between them.
This relationship is, however, too complex to express or verify
directly. Instead, as a first step, we create architectural view
abstractions with integration-relevant information for each
model. The views need to be general enough to accommodate
different formalisms (e.g., hybrid programs or Simulink) and
CPS application domains (e.g., avionics or transportation).

In the second step, we add support for systematic change of
models and views by making analyses first-class entities. Anal-
yses read and change views, which propagate these changes to
models. Analytic applicability is often limited by assumptions.
If assumptions of an analysis are not satisfied, this analysis
may produce an incorrect result and should not be executed.
Some analyses have guarantees — statements that hold after an
analysis is executed. If guarantees of an analysis do not hold,
the changes from this analysis should be rolled back.

Thus, the two-level approach uses architectural and analytic
constructs to integrate CPS models. In the rest of the section,
we will discuss each level in more detail.

A. View Level

The view level is used to mediate complex interaction be-
tween analyses and models. An view is an architectural model
with components, connectors, and properties that are defined
in a particular architectural style — a custom vocabulary of
architectural elements. Using views for integration requires
creating and maintaining two kinds of relations: view-view
and model-view. The former is more straightforward because
views are specified in architecture description languages that
have generally homogeneous structure of components and
connectors. Therefore this relationship can be maintained
using a number of well-established techniques such as model
transformation and synchronization [22].

Model-view relations, on the other hand, require a more
sophisticated link between views and potentially less struc-
tured models. A view needs to abstract out some semantics
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Fig. 1. Architectural and analytic approach to CPS model integration.

and structure of a model. We use view-model mappings and
transformations to automatically support model-view relations.
To be effective, these mappings and transformations have to be
customized to each formalism. We advantage of the flexibility
of architectural styles (vocabularies of component and connec-
tor types that describe domain-specific architectural properties)
to support customization and tailor transformation algorithms.
For instance, the hybrid program view [23] describes which
component “owns” each variable in a hybrid program.

Another function of the view level is establishing consis-
tency between models through their views. That is done by
specifying and verifying consistency rules, which are specified
as constraints over multiple views and can be verified with
constraint solving [19]. Properties that contain model-specific
terms like CanPrmpt (see Eq. 1) require more sophisticated
verification methods, such as model checking or theorem prov-
ing. Our approach provides a general scheme to incorporate
such verification into multi-view consistency checking.

B. Analysis Level

The analysis level automates sound execution of model-
based analyses, which depends on correct ordering and satis-
faction of assumptions and guarantees. We provide a language
of analysis contracts that facilitates soundness checking. Every
analysis is accompanied by its contract C' that specifies inputs
I, outputs O, assumptions A, and guarantees GG of the analysis,
in short C' = (1,0, A, G).

Correct analysis ordering is one where all analyses are in or-
der of their dependencies. For example, if analysis A; depends
on analysis A (i.e., one of A, outputs is one of A; inputs),
then A5 should be executed before A;. For instance, a CPU
scheduling analysis, which determines the voltage required
by CPUs, should be followed by a battery design analysis,
which uses the voltage as a requirement. A sound sequence of
analyses is built by creating an analysis dependency graph
and selecting any topological ordering that ends with the

desired analysis. The only exception is when there are cyclical
dependencies, which requires more sophisticated methods of
dependency resolution [24]. Assume/guarantee verification is
done in the same way as consistency property verification on
the view level.

The integration approach illustrated in Fig. 1 has the fol-
lowing advantages:

« By combining architectural and analytic perspectives, it
incorporates a large body of prior work and offers diverse
opportunities to integrate modeling methods.

« Important yet subtle integration properties that span mul-
tiple domains and formalisms can now be expressed and
verified at an appropriate abstraction level, thanks to
Contribution C.

« The bottom-up philosophy behind the approach enables
adding new modeling methods without up-front planning,
in contrast with existing top-down approaches that are
dependent on specific formalisms.

The approach also has several limitations:

« It may be difficult to provide integration for incomplete
and informal models, which often require unique formal-
izations and algorithms.

o The scalability of formal verification techniques depends
on carefully designed abstractions and high-quality tools,
which may not always be available.

« It may be impractical to invest into an up-front formal
integration of views and analyses in CPS projects that do
not use many heterogeneous modeling methods.

To summarize, the two-level approach promises to make
CPS MMI more effective and less costly. The next section
presents preliminary work that supports this claim.

V. RESULTS TO DATE

This section describes two major results: architectural views
for hybrid programs and the analysis contracts framework.

A. Architectural Views for Hybrid Programs

The hybrid program modeling method, based on hybrid
programs (HP) and differential dynamic logic (d£) [10], is
particularly difficult to integrate with other modeling methods,
in part due to HP expressiveness and lack of support for
components. Each hybrid program contains highly intertwined
fragments of various concerns, from the physical environ-
ment to the type of sensing and actuation. Specification of
interacting components, e.g., a robot and an obstacle, is
also dispersed through the body of a HP. Leading to poor
HP modularity, these issues inspired work on creating an
architectural abstraction for hybrid programs [23].

To incorporate hybrid programs into our approach, we
defined an architectural HP view, which defines how archi-
tectural elements are transformed into hybrid programs. This
view enabled high-level design and reasoning about HPs and
eliminated manual effort of maintaining model-view consis-
tency. An architectural HP view, which contains actors HPA,
composers CPR, and connectors HPC, can be transformed



into a single HP via transformation functions customized in the
view. Given a view, it is possible to reuse its parts and express
its properties in d£, thus the level of abstraction is elevated
from individual statements to components and systems. We
have also defined an analysis to check whether a view has a
proper structure, e.g., whether an actor violates causality by
manipulating variables of another actor outside of connectors.
Implemented as a plugin to AcmeStudio [25] (towards
Contribution A), architectural abstractions for hybrid programs
showed feasibility of automated maintenance of model-view
relationship. This work opens future research directions for
theoretical study of HP view analyses, and, more broadly,
frameworks for automated relating of models and views.

B. Analysis Contracts Framework

Our work investigated theoretical and practical aspects of
using analysis contracts for integration (towards Contribution
B) [19]. In the theoretical part, analysis contracts were for-
malized as quadruples C (see Sec. IV above for details). The
semantics of these contracts was described over verification
domains — collections of sets and functions that capture the
essential elements of a technical domain (such as battery
design). In terms of practical aspects, the ACTIVE tool [26] was
designed and implemented® to support correct execution of
analyses in OSATE2 [27] — an AADL modeling environment.

This research showed that analysis contracts are suitable
for detection and prevention of integration errors in several
domains: threads scheduling, battery scheduling [19], sensor
trustworthiness, reliability, and control [28]. Through this work
we showed improvements in effectiveness and cost-efficiency
of CPS modeling method integration and, more generally,
feasibility of unified reasoning about model-model consistency
and model transformation/analysis in the CPS domain.

To summarize, this paper outlined the two-level integration
approach for CPS modeling methods. The next steps in this
research are finalizing the design of the integration property
language (Contribution C), and conducting validation case
studies of model integration in realistic academic and indus-
trial cyber-physical systems, such as NASA Europa Orbiter?
and Carnegie Mellon CoBot*. Our long-term research vision
extends beyond integrating models and analyses, to incorpo-
rating heterogeneous datasets and humans into a unified CPS
integration framework [29].
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