
Optimization for Deep Networks
Ishan Misra

Overview

ÅVanilla SGD

ÅSGD + Momentum

ÅNAG

ÅRprop

ÅAdaGrad

ÅRMSProp

ÅAdaDelta

ÅAdam

More tricks

ÅBatch Normalization

ÅNatural Networks

Gradient (Steepest) Descent

ÅMove in the opposite direction of the gradient

Conjugate Gradient Methods

ÅSee Moller 1993 [A scaled conjugate gradient algorithm for fast supervised learning],
Martens et al., 2010 [Deep Learning via Hessian Free optimization]

Notation

Parameters of Network

Function of network parameters

Properties of Loss function for SGD

Loss function over all samples must decompose into a loss function
per sample

Vanilla SGD

Parameters of

Network

Function of network

parameters

Iteration number

Step size/Learning rate

SGD + Momentum

ÅPlain SGD can make erratic updates on non-smooth loss functions
ÅConsider an outlier example which òthrows offó the learning process

ÅMaintain some history of updates

ÅPhysics example
ÅA moving ball acquires òmomentumó, at which point it becomes less

sensitive to the direct force (gradient)

SGD + Momentum

Parameters of

Network

Function of network

parameters

Iteration number

Step size/Learning rate

Momentum

SGD + Momentum

ÅAt iteration ὸyou add updates from previous iteration ὸ by
weight ‘

ÅYou effectively multiply your updates by

NesterovAccelerate Gradient (NAG)

ÅIlyaSutskever, 2012

ÅFirst make a jump as directed by momentum

ÅThen depending on where you land, correct the parameters

NAG

Parameters of

Network

Function of network

parameters

Iteration number

Step size/Learning rate

Momentum

NAG vs Standard Momentum

Why anything new (beyond
Momentum/NAG)?

ÅHow to set learning rate and decay of learning rates?

ÅIdeally want adaptive learning rates

Why anything new (beyond
Momentum/NAG)?

ÅNeurons in each layer learn differently
ÅGradient magnitudes vary across layers

ÅEarly layers get òvanishing gradientsó

ÅShould ideally use separate adaptive learning rates
ÅOne of the reasons for having ògainó or lr multipliers in caffe

ÅAdaptive learning rate algorithms
ÅJacobs 1989 ðagreement in sign between current gradient for a weight

and velocity for that weight

ÅUse larger mini-batches

Adaptive Learning Rates

Resilient Propagation (Rprop)

ÅRiedmillerand Braun 1993

ÅAddress the problem of adaptive learning rate

ÅIncrease the learning rate for a weight multiplicatively if signs of last
two gradients agree

ÅElse decrease learning rate multiplicatively

RpropUpdate

RpropInitialization

ÅInitialize all updates at iteration 0 to constant value
ÅIf you set both learning rates to 1, you get òManhattan update ruleó

ÅRpropeffectively divides the gradient by its magnitude
ÅYou never update using the gradient itself, but by its sign

Problems with Rprop

ÅConsider a weight that gets updates of 0.1 in nine mini batches, and
-0.9 in tenth mini batch

ÅSGD would keep this weight roughly where it started

ÅRpropwould increment weight nine times by , and then for the
tenth update decrease the weight
ÅEffective update ω ψ

ÅAcross mini-batches we scale updates very differently

Adaptive Gradient (AdaGrad)

ÅDuchiet al., 2010

ÅWe need to scale updates across mini-batches similarly

ÅUse gradient updates as an indicator to scaling

Problems with AdaGrad

ÅLowers the update size very aggressively

RMSProp= Rprop+ SGD

ÅTieleman& Hinton et al., 2012 (Courseraslide 29, Lecture 6)

ÅScale updates similarly across mini-batches

ÅScale by decaying average of squared gradient
ÅRather than the sum of squared gradients in AdaGrad

RMSProp

ÅHas shown success for training Recurrent Models

ÅUsing Momentum generally does not show much improvement

Fancy RMSProp

ÅòNo more pesky learning ratesó ðSchaulet al.
ÅComputes a diagonal Hessian and uses something similar to RMSProp

ÅDiagonal Hessian computation requires an additional Forward-Backward
pass
ÅDouble the time of SGD

Units of update

ÅSGD update is in terms of gradient

Unitlessupdates

ÅUpdates are not in units of parameters

Hessian updates

Hessian gives correct units

AdaDelta

ÅZeileret al., 2012

ÅGet updates that match units

ÅKeep properties from RMSProp

ÅUpdates should be of the form

AdaDelta

ÅApproximate denominator by sqrt(decaying average of gradient
squares)

ÅApproximate numerator by decaying average of squared updates

AdaDelta

ÅApproximate denominator by sqrt(decaying average of gradient
squares)

ÅApproximate numerator by decaying average of squared updates

AdaDeltaUpdate Rule

Problems with AdaDelta

ÅThe moving averages are biased by initialization of decay
parameters

Problems with AdaDelta

ÅNot the first intuitive shot at fixing òunit updatesó problem

ÅThis just maybe me nitpicking

ÅWhy do updates have a time delay?
ÅThere is some explanation in the paper, not convinced ê

Adam

ÅKingma& Ba, 2015

ÅAverages of gradient, or squared gradients

ÅBias correction

Adam update rule

Updates are not in the correct unit L

Simplification, does not have decay over gamma_1

AdaMax Adam

Adam Results ðLogistic Regression

Adam Results - MLP

Adam Results ðConvNets

Visualization

Alec Radford

