
16x62: Lab3
Due: Tuesday, Week 6

Introduction:

Last week, you solved the basic problem of navigating down a narrow corridor. In this
lab, you will create a more robust program that can operate even in the absence of walls.
At the beginning of this course, you programmed using low-level perceptual inputs
(sonars) and low-level motion control outputs (SetVel()). The program you write this
week, along with TurnTo() and WhatDoISee(), implement a higher level set of inputs and
outputs.

Assignment 3.0: Go To Next Node

Write the function: GTNN(int <num-nodes>)
When called this function will move the robot from the center of a node to the center of
the node <num-nodes> in front of the robot in one continuous action. If it is not able to
proceed all the way it should stay at or return to the center of the furthest node it was
able to reach. This function should return the number of nodes it was able to advance.
This function must be immune to cumulative errors in the translation and rotation
encoders.

As with CorridorFollow() and WhatDoISee(), you may assume that during our tests the
robot will begin within 5 inches of a node’s center and within 22 degrees of rotational
alignment with the maze. Actually, we’ll keep it as well-aligned as is reasonable! In
order for GTNN()to work indefinitely, you will need to ensure that when GTNN() finishes,
it is again within 5 inches of the center of a node and within 22 degrees of alignment.

GTNN(), TurnTo(900), and TurnTo(-900) should provide all the output primitives you will
need for robust navigation in arbitrary mazes. The challenge is writing a GTNN() that is
unaffected by encoder error and therefore can be used indefinitely without performance
degradation. Your GTNN() faces two tasks in order to meet these requirements. First, it
must consistently place the robot near the center of the node – near enough to guarantee
that the next GTNN() is successful! This eliminates x-y encoder error. Second, GTNN()
must rotationally realign the robot with the world sufficiently to guarantee that the robot
is aligned closely enough to allow both GTNN() and WhatDoISee() to succeed. This
eliminates rotational encoder error.

Note the subtle fact that GTNN() cannot correct drift in all directions on every move. If
the robot moves to an open node (no walls on any side), no drift correction is possible. If
the robot moves to a node with walls on the left and right, no drift correction in the
forward/backward direction is possible. Although we will be working in larger
environments in the final labs, we will never give you a map that has more than three
consecutive nodes in which no drift correction is possible in one of the axis directions.
So, you needn't worry about the huge cumulative error that would result if the robot
travels a corridor that is twenty nodes long with no forward-backward walls, for
example.

We will test your GTNN() by running your robot around in a maze using a sequence of
GTNN()’s and TurnTo()’s while observing the robot for gradual performance degradation.
We will also test GTNN() by asking it to move more nodes than there is room in the maze.
Please create an input interface for us so that we can enter a sequence of commands (such
as: G1 L G2 R G1 L G2 ((translation: GTNN(1), TurnTo(900), GTNN(2), TurnTo(-900),
etc.))) and you will execute that sequence in a loop. I repeat: IN A LOOP.

Hints

• KEEP IT SIMPLE. This lab is not easy, and you won’t be doing yourselves any
favors by jumping right in with a really fancy solution. Start with the basics and add
on as time permits.

• Don’t hit anything. This includes brushing walls on the side of a corridor as well as
smacking right into obstacles that block the robot’s path.

• One of the most difficult parts of this assignment is getting GTNN(1) to work. Be sure
to test this case well.

• You might want to use stepwise refinement for your GTNN() program: 1) Make
GTNN() work like corridor-follow with walls missing; 2) Convert units from inches to
nodes and add features to localize the robot within a node; 3) Add obstacle
avoidance; 4) Add bells and whistles (e.g. using rotational encoders).

• It may be useful to think of the problem in terms of three phases of action: starting
out, moving, and stopping. When you are starting out, you will want to locate the
robot’s position within a node (using WhatDoISee() and some sonar values and some
math). As you are moving, you need to be smart about identifying when there are
side walls which you can use to navigate. For example, don’t use a side wall when
the robot is halfway between two nodes. Finally, when you stop, you can use the
nearby walls to localize (learn how far off the center of the maze node you are).

• You will, of course, use the encoders to determine the distance the robot travels, but
you can also use the rotation encoder to align the robot with the maze when there are
no walls around. Note that you first need to determine what direction is “straight”,
and you will have to update this direction whenever you turn.

• You can improve performance by maintaining information between calls to GTNN()
(such as what direction is straight).

