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Password protocols

Protocols using passwords for authentication and key
establishment.

Guessing attacks: Introduction

na

{na}passwd(a,b)

Guesses: monday, tuesday, wednesday , ...

{na}monday
{na}tuesday

{na}wednesday . . .
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Type-flaws

Data of one type, later interpreted as different type.

Examples: na as ka, {nb, a}k as na etc.

Type-glaw guessing attacks

Guessing attacks using type-flaws. i.e.

1. Induce type-flaws in on-line communication;

2. Verify a guess off-line using the messages.
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Continued ...

Example:

P1 (Lomas et al.’s protocol [GLNS93]):

Msg 1. A → B : {C, N}pk(B)
Msg 2. B → A : {f(N)}PAB.

C - confounder, N - integer, f - invertible function,
PAB - passwd(A, B).

P2:

Msg 1. A → B : {N, C}pk(B)
Msg 2. B → A : {f(N)}PAB.
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P1 and P2 are combined:

On-line phase:

Msg P1.1. a → b : {c, n}pk(b)
Msg P1.2. b → a : {f(n)}pab
Msg P2.1. I(a) → b : {c, n}pk(b)
Msg P2.2. b → I(a) : {f(c)}pab.

Off-line phase:

guess pab,
decrypt {f(n)}pab, {f(c)}pab
encrypt (c, n) with pk(b)
verify.
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Heather et al.’s solution:

• Tag each field with it’s type;

• eg. na as (nonce, na);

• Problem when used in password protocols: Tags
verify guess directly!!

• eg. {na}passwd(a,b) as {nonce, na}passwd(a,b);

• Decrypt with guess, check for “nonce”;

• If found, verifies the guess rightaway!!

• Conclusion: Heather et al.’s solution cannot be
used in password protocols.
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Hypothesis:

Avoiding tags inside password encryptions pre-
vent most type-flaw guessing attacks.

Proof Strategy:

Aim:

Protocol is secure without type-flaws ⇒ Pro-
tocol secure under tagging

Therefore, prove that

Attack on tagging scheme ⇒ Attack when all
fields correctly tagged.
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Proof parts

1. On-line communication;

2. Off-line guessing and verification.

Part 1:

Using Heather et al.’s results in [HLS00].

Part 2:

Using our def of guessing attacks [CMAE03].
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Protocol model

• Based on Heather et al.’s [HLS00];

• Message structure – Tags, Facts and Taggedfacts.

• Tags – agent, nonce, . . . ;

• Facts – Atom, Pairs, Encryptions;

• TaggedFacts – (tag,fact);

• Well-tagged fact – Tag is indeed the type of the
fact.
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Protocol model – Continued ...

• Our change: Treat password encryptions as sub-
set of Atoms;

• i.e. Password encryptions as an “abstract type”;

• Possible because we disallow attacker operations
on them;

• Do not consider password learnt by breaching se-
crecy;.
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• Framework – Strand spaces

1. Strands – Communications of honest agent or
penetrator;

2. Bundle – Partial or complete protocol run.

• Honest strands – Modelled using “strand templates”;

• Strand templates output honest strands after in-
stantiation.

• Penetrator strands – Dolev-Yao attacker with stan-
dard inference rules.
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Transforming arbitrarily tagged bundles to well-
tagged bundles

• Define a renaming function φ;

• φ changes an aribtrary bundle C to a well-tagged
bundle;

• Possible because, if honest agent accepts ill-tagged
fact, it should accept any value in it’s place;

• Show if s is an honest strand, so is φ(s) (from
[HLS00,Lemma 3.2]);

• Show if s is a penetrator strand, so is φ(s) (from
[HLS00,section 3.3]).
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Part 1: Results in [HLS00,Theorem 1]

If C is a bundle (under the tagging scheme) then there
is a renaming function φ and a bundle C

′′
, such that:

• C
′′

contains the tagged facts of C (considered as
a set), renamed by φ;

• C
′′

contains the same honest strands as C, mod-
ulo some renaming;

• facts are uniquely originating in C
′′

if they were
uniquely originating in C;

• all tagged facts in C
′′

are well-tagged.
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Part 2: Guessing attacks

Off-line attacker capabilities:

• Use a guess to encrypt and decrypt password en-
cryptions;

• Split and concatenate facts;

• Tag facts and untag taggedfacts.

• Given bundle C and taggedfact tf ;

– Define |= on C and tf such that C |= tf if,

– There exist a valid sequence of attacker ac-
tions to produce tf from C;
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Defining guessing attacks

• Attacker must synthesize a term in two ways us-
ing a guess;

• But in atmost one way without using the guess;

Formally,
Definition 1. g is verifiable from C and tf is a verifier
for g iff:

1. Ĉ ∪ {g} |= tf ∧ Ĉ ∪ {g} |= t̂f ; and

2. Ĉ 6|= tf ∨ Ĉ 6|= t̂f .

where t̂f is a fresh constant and Ĉ is obtained by re-
placing the particular occurrence of tf in C, with t̂f .
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Lemma 1.

C ∪ {g} |=tr tf ⇒ C
′′
∪ {g} |=φ(tr) φ(tf).

i.e attacker can derive a term from C′′ if the corre-
sponding term is derivable from C.

Corollary 1.

C 6|= tf ⇒ C
′′
6|= φ(tf).

i.e. attacker cannot derive a term from C′′ if the cor-
responding term is not derivable from C.
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Main result

• Let C′′ be denoted as C.

• If guessing attack on C, then,

1. Ĉ ∪ {g} |= tf ∧ Ĉ ∪ {g} |= t̂f ; and

2. Ĉ 6|= tf ∨ Ĉ 6|= t̂f .

• Rewrite above expressions,

1′. Ĉ ∪ {g} |= tf ′ ∧ Ĉ ∪ {g} |= t̂f ′; and

2′. Ĉ 6|= tf ′ ∨ Ĉ 6|= t̂f ′.

• Possible because of Lemma 1 and Corollary 1;

• Therefore, attack on C ⇒ attack on C′′.
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Conclusion

1. Type-flaws can be used to launch guessing at-
tacks;

2. Most of them can be prevented by type-tagging;

3. Proof consisted of two parts;

4. Similar on-line communication is possible on two
protocol runs with and without type-flaws;

5. Above point follows from Heather et al.’s results;

6. Corresponding guessing attack on both or on none;

7. Indirectly proves attack not due to type-flaws.
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Future work

1. Limitation: replaying {t1}passwd(a,b) in {t2}passwd(a,b).

2. Tagging can be simplified – just use component
numbers inside encryptions;

3. Proving “protocol-ids” inside strong encryptions
prevent multi-protocol guessing attacks;

4. Effects of the solutions on secrecy and authenti-
cation;

5. Effects when using non-standard inference rules;

6. Decidability of guessing attacks (tagging helps);
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7. Limitations of Heather et al.’s and our proofs:

(a) Do not consider all possible constructed keys
(only sequence of atoms);

(b) Message elements without algebraice proper-
ties (eg. XORand products);

(c) Above two required for “real-world” protocols.
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