The Logical Meeting Point of Multiset Rewriting and Process Algebra

Iliano Cervesato
iliano@math.tulane.edu

ITT Industries, Inc -> Tulane University

http://theory.stanford.edu/~iliano
Motivations

- Security protocol specifications
 - Transition-based
 - Process-based
 - Different languages and techniques
 - Ad-hoc translations

- Attempt at a unified approach
 - Rewriting re-interpretation of logic
 - Open derivations
 - Left rule semantics
 - Foundation of multiset rewriting
 - Bridge to process algebra
 - Effective protocol specification language
Outline

Linear Logic

System ω

Multiset Rewriting

Process Algebra

Security Protocols

I. Cervesato: The Logical Meeting Point of MSR and PA
Linear Logic

• Formulas

\[A, B ::= a \mid 1 \mid A \otimes B \mid A \rightarrow_o B \mid ! A \mid T \mid A & B \mid \forall x. A \mid \exists x. A \]

• LV sequents

\[\Gamma ; \Delta \rightarrow^\Sigma \Sigma \]

- Constructor: "\,"
- Empty: "\cdot"
Some LV Rules

Left rules

\[
\begin{align*}
\Gamma; \Delta, A, B & \rightarrow_{\Sigma} C \\
\Gamma; \Delta, A \otimes B & \rightarrow_{\Sigma} C \\
\Gamma; \Delta' & \rightarrow_{\Sigma} A \\
\Gamma; \Delta, B & \rightarrow_{\Sigma} C \\
\Gamma; \Delta, \Delta', A \rightarrow_{o} B & \rightarrow_{\Sigma} C \\
\Sigma |- t & \\
\Gamma; \Delta, \lbrack t/x \rbrack A & \rightarrow_{\Sigma} C \\
\Gamma; \Delta, \forall x. A & \rightarrow_{\Sigma} C \\
\Gamma; \Delta, A & \rightarrow_{\Sigma, x} C \\
\Gamma; \Delta, \exists x. A & \rightarrow_{\Sigma} C \\
\Gamma, A; \Delta & \rightarrow_{\Sigma} C \\
\Gamma; \Delta, !A & \rightarrow_{\Sigma} C
\end{align*}
\]

Right rules

\[
\begin{align*}
\Gamma; \Delta & \rightarrow_{\Sigma} C
\end{align*}
\]

Structural rules

\[
\begin{align*}
\Gamma; A & \rightarrow_{\Sigma} A \\
\Gamma, A; \Delta, A & \rightarrow_{\Sigma} C \\
\Gamma, A; \Delta & \rightarrow_{\Sigma} C
\end{align*}
\]

Cut rules

\[
\begin{align*}
\Gamma; \Delta' & \rightarrow_{\Sigma} A \\
\Gamma; \Delta, A & \rightarrow_{\Sigma} C \\
\Gamma; \Delta, \Delta' & \rightarrow_{\Sigma} C \\
\Gamma; \bullet & \rightarrow_{\Sigma} A \\
\Gamma, A; \Delta & \rightarrow_{\Sigma} C \\
\Gamma; \Delta & \rightarrow_{\Sigma} C
\end{align*}
\]
Logical Derivations

- Proof of C from Δ and Γ
 - Emphasis on C
 - C is input
- Finite
 - Closed

- Rules shown
 - Major premise
 - Preserves C
 - Minor premise
 - Starts subderivation
A Rewriting Re-Interpretation

- Transition
 - From conclusion
 - To major premise
 - Emphasis on \(\Gamma, \Delta \) and \(\Sigma \)
 - \(C \) is output, at best
 - Does not change

- Possibly infinite
 - Open

- Minor premise
 - Auxiliary rewrite chain
 - Finite
 - Topped with axiom
State and Transitions

- **States**
 - Σ is a list
 - Γ and Δ are commutative monoids
 - No C
 - Does not change

- **Transitions**
 - $\Sigma; \Gamma; \Delta \rightarrow \Sigma'; \Gamma'; \Delta'$
 - \rightarrow^* for reflexive and transitive closure

Constructor: "","
Empty: "."
Interpreting Unary Rules

- \(\Gamma; \Delta, A, B \rightarrow_{\Sigma} C \)
- \(\Gamma; \Delta, A \otimes B \rightarrow_{\Sigma} C \)
- \(\Sigma; \Gamma; (\Delta, A \otimes B) \rightarrow \Sigma; \Gamma; (\Delta, A, B) \)
- \(\Sigma; \Gamma; (\Delta, [t/x]A) \rightarrow \Sigma; \Gamma; (\Delta, [t/x]A) \)

- \(\Sigma \vdash t \)
- \(\Gamma; \Delta, [t/x]A \rightarrow_{\Sigma} C \)
- \(\Gamma; \Delta, \forall x. A \rightarrow_{\Sigma} C \)
- \(\Sigma; \Gamma; (\Delta, \forall x. A) \rightarrow \Sigma; \Gamma; (\Delta, [t/x]A) \)

- \(\Sigma \vdash t \)
- \(\Gamma; \Delta, \exists x. A \rightarrow_{\Sigma} C \)
- \(\Sigma; \Gamma; (\Delta, \exists x. A) \rightarrow (\Sigma, x); \Gamma; (\Delta, A) \)

- \(\Sigma \vdash t \)
- \(\Gamma, A; \Delta \rightarrow_{\Sigma} C \)
- \(\Sigma; \Gamma; (\Delta, !A) \rightarrow \Sigma; (\Gamma, A); \Delta \)

...
Binary Rules and Axiom

- Minor premise
 - Auxiliary rewrite chain
- Top of tree
 - Focus shifts to RHS
 - Axiom rule
 - Observation

\[
\begin{align*}
\Gamma; \Delta' &\rightarrow_\Sigma A & \Gamma; \Delta, B &\rightarrow_\Sigma C \\
\Gamma; \Delta, \Delta', A &\rightarrow_\Sigma B &\rightarrow_\Sigma C
\end{align*}
\]
Observations

- Observation states

 Σ ; Δ

 - In Δ, we identify
 - , with \otimes
 - \bullet with 1

 Categorical semantics

 - Identified with $\exists x_1. \ldots \exists x_n. \Delta$
 - For $\Sigma = x_1, \ldots, x_n$

 De Bruijn's telescopes

- Observation transitions

 $\Sigma; \Gamma; \Delta \rightarrow^* \Sigma'; \Delta'$

\[\Delta = \otimes \Delta \]

\[\Sigma; \Delta = \exists \Sigma. \otimes \Delta \]
Structural Equivalences

Monoidal laws
- $A \otimes B = B \otimes A$
- $A \otimes 1 = A$
- $(A \otimes B) \otimes C = A \otimes (B \otimes C)$

Mobility laws
- $\exists x. \exists y. \Delta = \exists y. \exists x. \Delta$
- $\exists x. \bullet = \bullet$
- $\exists x. (\Delta, \Delta') = \Delta, \exists x. \Delta'$
 if $x \notin FV(\Delta)$

• Logical bi-equivalences
 - Require limited right rules

• Express structure of context / binders

• Expand rewrite opportunities
Interpreting Binary Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma; A \rightarrow_{\Sigma} A$</td>
<td>$\Sigma; \Gamma; \Delta \rightarrow^* \Sigma; \Delta$</td>
</tr>
<tr>
<td></td>
<td>$\Sigma; \Gamma; \Delta \rightarrow^* \Sigma''; \Delta''$</td>
</tr>
<tr>
<td></td>
<td>if $\Sigma; \Gamma; \Delta \rightarrow \Sigma'; \Gamma'; \Delta'$</td>
</tr>
<tr>
<td></td>
<td>and $\Sigma'; \Gamma'; \Delta' \rightarrow^* \Sigma''; \Delta''$</td>
</tr>
<tr>
<td>$\Gamma; \Delta' \rightarrow_{\Sigma} A; \Gamma; \Delta, B \rightarrow_{\Sigma} C$</td>
<td>$\Sigma; \Gamma; (\Delta, \Delta', A \rightarrow_{o} B) \rightarrow \Sigma; \Gamma; (\Delta, B)$</td>
</tr>
<tr>
<td></td>
<td>if $\Sigma; \Gamma; \Delta' \rightarrow^* \Sigma; A$</td>
</tr>
<tr>
<td>$\Gamma; \Delta' \rightarrow_{\Sigma} A; \Gamma; \Delta, A \rightarrow_{\Sigma} C$</td>
<td>$\Sigma; \Gamma; \Delta, \Delta' \rightarrow \Sigma; \Gamma; (A, \Delta)$</td>
</tr>
<tr>
<td></td>
<td>if $\Sigma; \Gamma; \Delta' \rightarrow^* \Sigma; A$</td>
</tr>
</tbody>
</table>

...
Formal Correspondence

• Soundness

\[
\text{If } \Sigma ; \Gamma ; \Delta \Rightarrow^* \Sigma, \Sigma'; \Delta' \text{ then } \Gamma ; \Delta \Rightarrow_{\Sigma} \exists \Sigma', \otimes \Delta'
\]

• Completeness?

➢ No! We have only crippled right rules

\[
\bullet ; \bullet ; a \rightarrow o b, b \rightarrow o c \quad \overset{\text{}}{\not\rightarrow} \quad \bullet ; a \rightarrow o c
\]
System ω

- With cut, rule for o can be simplified to $\Sigma; \Gamma; (\Delta, A, A \rightarrow \text{o} B) \rightarrow \Sigma; \Gamma; (\Delta, B)$

- Cut elimination holds
 - = in-lining of auxiliary rewrite chains
 - But ...
 - Careful with extra signature symbols
 - Careful with extra persistent objects

- No rule for \rightarrow needs a premise
 - \rightarrow does not depend on \rightarrow^*
Discussion

- Other connectives?
 - \oplus, 0, \exists, \bot
 - Odd rewrite properties
 - \otimes, ($__$)\bot
 - Not yet explored
- Other presentations?
- Other logics?
- Other forms of proof-as-computation?
 - Dual of logic programming
 - Similar to ACL [Kobayashi & Yonezawa, 93]
- Can logic benefit?
Type Theoretic Side

- Very close to CLF
 - Concurrent Logical Framework
 - Linear type theory with
 - Dependent function types: Π (LF)
 - Asynchronous connectives: $\rightarrow, \&, T$ (LLF)
 - Synchronous connectives: $\otimes, 1, !, \exists$
 - Monadic sandboxing
 - Concurrency equations
 - Faithful encoding of true concurrency
 - Petri nets, MSR 2 specs, π-calculus, concurrent ML

- Details of relation still unclear
Multiset Rewriting

- **Multiset**: set with repetitions allowed
 \[a ::= \bullet | a, a \]
 - Commutative monoid

- **Multiset rewriting** (a.k.a. Petri nets)
 - Rewriting within the monoid
 - Fundamental model of distributed computing
 - Competitor: Process Algebras
 - Basis for security protocol spec. languages
 - MSR family
 - ... several others
 - Many extensions, more or less ad hoc
First-Order Multiset Rewriting

- Multiset elements are FO atomic formulas
- Rules have the form
 \(\forall x_1 \ldots x_n. \ a(x) \rightarrow \exists y_1 \ldots y_k. \ b(x, y) \)
- Semantics

\[\Sigma ; a(t), s \xrightarrow{R} (a(x) \rightarrow \exists y. \ b(x, y)) \quad \Sigma, y ; b(t, y), s \]

if \(\Sigma \vdash t \)

- Several encodings into linear logic
 - [Martí-Oliet, Meseguer, 91]
ω-Multisets vs. Multiset Rewriting

• MSR 1 is an instance of ω-multisets
 - Uses only ⊗, 1, ∀, ∃, and ⎯ο
 - ⎯ο never nested, always persistent

$$\Sigma ; s \rightarrow_{R} \Sigma' ; s'$$
iff
$$\Sigma ; "R" ; "s" \rightarrow^{*} \Sigma' ; "s'"$$

• Interpretation of MSR as linear logic
 - Logical explanation of multiset rewriting
 - MSR is logic
 - Guideline to design rewrite systems
ω-Rewriting

\(A, B ::= a \) \quad \text{atomic object}

\[1 \quad \text{empty} \]

\[A \otimes B \quad \text{formation} \]

\[A \rightarrow_0 B \quad \text{rewrite} \]

\[T \quad \text{no-op} \]

\[A \& B \quad \text{choice} \]

\[\forall x. A \quad \text{instantiation} \]

\[\exists x. A \quad \text{generation} \]

\[! A \quad \text{replication} \]
The Asynchronous π-Calculus

Another fundamental model of distributed computing

- **Language**

 $$P ::= 0 \mid P || Q \mid \nu x. P \mid !P \mid x(y).P \mid x<y>$$

- **Semantics**

 - **Structural equivalence**
 - Comm. monoidal congruence of $||$ and 0
 - Binder mobility congruence of ν

 - $\nu x. \nu y. P \equiv \nu y. \nu x. P$
 - $0 \equiv \nu x. 0$
 - $P || \nu x. Q \equiv \nu x. (P || Q)$ if $x \notin FN(P)$
 - $!P \equiv !P || P$

 - **Reaction law**

 $$x<y> || x(z).P || Q \Rightarrow [y/z]P || Q$$

I.Cervesato: The Logical Meeting Point of MSR and PA
\[\pi\text{-calculus in } \omega\text{-Multisets}\]\begin{itemize}
 \item $0 \equiv 1$
 \item $\mid\mid \equiv \otimes$
 \item $\nu \equiv \exists$
 \item $! ! \equiv ! !$
 \item $x(y). P \equiv \forall y. ch(x,y) \rightarrow P$
 \item $x\langle y \rangle \equiv ch(x,y)$
\end{itemize}

- **Reaction law**
 \[\Sigma; \Gamma; ch(x,y), \forall z. ch(x,z) \rightarrow P, \Delta \rightarrow^2 \Sigma; \Gamma; [y/z]P, \Delta\]

- **Structural equivalence**
 \[\text{Monoidal congr. of } \mid\mid \text{ and } 0 \equiv \text{monoidal laws of } \otimes \text{ and } 1\]
 \[\text{Mobility congr. of } \nu \equiv \text{mobility laws of } \exists\]
 \[!P \equiv !P \mid\mid P\]
 \begin{itemize}
 \item Only \Rightarrow in ω-multisets
 \item Oversight in the π-calculus?
 \end{itemize}
Properties

• If $P \Rightarrow^* Q$

 then $\bullet; \bullet; "P" \Rightarrow^* \Sigma; \Gamma; \Delta$

 where "Q" = $\exists \Sigma. !\Gamma \otimes \Delta$ \text{ mod } !A = !A \otimes A$

 ➢ Note: with $!P \parallel P \Rightarrow !P$ as a transition
 - If $P \Rightarrow^* Q$

 then $\bullet; \bullet; "P" \Rightarrow^* \Sigma; \Gamma; \Delta$

 where "Q" = $\exists \Sigma. !\Gamma \otimes \Delta$
ω-Multisets vs. Process Algebra

- Simple encoding of asynchronous π-calculus into ω-multisets
 - Doesn’t show that π-calculus is logic
 - Uses only a fraction of ω-multiset syntax
 - Inverse encoding?
 - As hard as going from multiset rewriting to π-calculus

- Other languages
 - Join calculus
 - Strand spaces
 - To do: Synchronous π-calculus
MSR 3

- Instance of ω-multisets for cryptographic protocol specification
 - Security-relevant signature
 - Typing infrastructure
 - Modules, equations, ...

- 3rd generation
 - MSR 1: First-order multiset rewriting with \exists
 - Undecidability of protocol analysis
 - MSR 2: MSR 1 + typing
 - Actual specification language
 - More theoretical results
 - Implementation underway
The Atomic Objects of MSR 3

Atomic terms
- Principals \(A \)
- Keys \(K \)
- Nonces \(N \)
- Other
 - Raw data, timestamp, ...

Constructors
- Encryption \(\{\} \)\
- Pairing \((_ , _) \)
- Other
 - Signature, hash, MAC, ...

Predicates
- Network \(\text{net} \)
- Memory \(\text{MA} \)
- Intruder \(I \)
- ...

Fully definable
Types

- **Simple types**
 - $A : \text{princ}$
 - $n : \text{nonce}$
 - $m : \text{msg, ...}$

- **Dependent types**
 - $k : \text{shK A B}$
 - $K : \text{pubK A}$
 - $K' : \text{privK K, ...}$

Fully definable

- **Powerful abstraction mechanism**
 - At various user-definable level
 - Finely tagged messages
 - Untyped: msg only

- **Simplify specification and reasoning**
- **Automated type checking**
Example

Needham-Schroeder public-key protocol

1. $A \rightarrow B: \{n_A, A\}_kB$
2. $B \rightarrow A: \{n_A, n_B\}_kA$
3. $A \rightarrow B: \{n_B\}_kB$

• Can be expressed in several ways
 - State-based
 - Explicit local state
 - As in MSR 2
 - Process-based: embedded
 - Continuation-passing style
 - As in process algebra
 - (Intermediate approaches)
∀A: princ.

{ ∀B: princ. ∀k_B: pubK B.
•
→ ∀n_A: nonce.
net ({n_A, A}_{k_B}), L (A, B, k_B, n_A)

∀B: princ. ∀k_B: pubK B. ∀k_A: prvK k_A.
∀n_A: nonce. ∀n_B: nonce.
net ({n_A, n_B}_{k_A}), L (A, B, k_B, n_A)
→ net ({n_B}_{k_B})

}
Process-Based

\(\forall A: \text{princ.} \)
\(\forall B: \text{princ.} \forall k_B: \text{pubK B.} \)

- \(\rightarrow \exists n_A: \text{nonce.} \)
 \[
 \text{net (} \{n_A, A\}_kB) ,
 \]

- \((\forall k_A: \text{pubK A.} \forall k'_A: \text{prvK k}_A. \forall n_B: \text{nonce.} \)
 \[
 \text{net (} \{n_A, n_B\}_kA) \rightarrow \text{net (} \{n_B\}_kB) \)
 \]

- **Succinct**
- **Continuation-passing style**
 - Rule asserts what to do next
 - Lexical control flow
- **State is implicit**
 - Abstract

I. Cervesato: The Logical Meeting Point of MSR and PA
NSPK in Process Algebra

∀A: princ.
∀B: princ. ∀kB: pubK B.
∀kA: pubK A. ∀kA': prvK kA. ∀nB: nonce.

∀nA: nonce.
net [{nA, A}kB].

net <{nA, nB}kA>.
net [{nB}kB]. 0

Same structure!

- Not a coincidence
- MSR 3 very close to Process Algebra
 - ω-multiset encodings of π-calculus
 and Join Calculus

- MSR 3 is promising middle-ground for relating
 - State-based
 - Process-based

representations of a problem
State-Based vs. Process-Based

- **State-based languages**
 - Multiset Rewriting
 - NRL Prot. Analyzer, CAPSL/CIL, Paulson’s approach, ...
 - State transition semantics

- **Process-based languages**
 - Process Algebra
 - Strand spaces, spi-calculus, ...
 - Independent communicating threads
MSR 3 Bridges the Gap

- Difficult to go from one to the other
 - Different paradigms

State vs. process distance

State ↔ Process translation done once and for all in MSR 3

I. Cervesato: The Logical Meeting Point of MSR and PA
Conclusions

• \(\omega\)-multisets
 - Logical foundation of multiset rewriting
 - Relationship with process algebras
 - Unified logical view
 - Better understanding of where we are
 - Hint about where to go next

• MSR 3.0
 - Language for security protocol specification
 - Succinct representations
 - Simpler specifications
 - Economy of reasoning
 - Bridge between
 - State-based representation
 - Process-based representation