Logical Foundations of Multiset Rewriting

Iliano Cervesato
iti@itd.nrl.navy.mil

ITT Industries, inc @ NRL Washington, DC

http://www.cs.stanford.edu/~iliano
Outline

• Motivations
• Propositional multiset rewriting
  Interpretation in linear logic
  Interpretation as linear logic
• Logical extension
  First-order multiset rewriting
  \(\omega \)-multisets
• Applications
  Specification of security protocols
  A bridge to process algebra
Motivations

Multiset rewriting (a.k.a. *Petri nets*)
- Fundamental model of distributed computing
 - Competitor: Process Algebras
- Basis for security protocol spec. languages
 - MSR family
 - ... several others
- Many extensions, more or less ad hoc

• Shallow relations to logic
 - Simple encodings
 - No deep insight
This Work

• Show that multiset rewriting has deeper relations to logic
 ➢ Interpretation as logic, rather than
 ➢ Interpretation in logic

• Explain and rationalize extensions

• Better specification languages

• Bridge to process algebra
Multiset Rewriting

- **Multiset**: set with repetitions allowed

 \[a ::= \bullet | a, a \]

 ➢ Commutative monoid
 - "\" is operation
 - "\•" is identity
 ("\," is commutative, associative, with "\•" as unit)

- **Rewrite rule**:

 \[a \rightarrow b \]

 ➢ Monoidal rewriting
Semantics of Multiset Rewriting

- **Base step:** \(s \rightarrow_R s' \)

- **Reachability**
 - \(s_0 \rightarrow^*_R s_n \)
 - Iteration of \(\rightarrow \)
 - R&T closure of \(\rightarrow \)

- **Infinity**
 - \(s_0 \rightarrow^*_R \)
 - Limit of \(_- \rightarrow^*_R _- \)
Linear Logic

Logic with formulas as resources

• Formulas
 \[A ::= a \mid A \otimes A \mid 1 \mid A \multimap A \mid \ldots \]

• Judgment (DILL / LV sequent)
 \[\Gamma; \Delta \rightarrow A \]

 Unrestricted context
 - subject to exchange, weakening and contraction
 - behaves like context in traditional logic

 Linear context
 - subject to exchange only
Some Rules

\[
\begin{align*}
\Gamma; \Delta, A, B & \rightarrow C \\
\Gamma; \Delta, A \otimes B & \rightarrow C \\
\Gamma; \Delta & \rightarrow C \\
\Gamma; \Delta, 1 & \rightarrow C \\
\Gamma; \Delta_1 & \rightarrow A \\
\Gamma; \Delta_2 & \rightarrow B \\
\Gamma; \Delta_1, \Delta_2 & \rightarrow A \otimes B \\
\Gamma; \Delta_1 & \rightarrow A \\
\Gamma; \Delta_2 & \rightarrow B \\
\Gamma; \Delta_1, \Delta_2, A & \rightarrow B \\
\Gamma; \Delta & \rightarrow A \\
\Gamma; A; \Delta, A & \rightarrow C \\
\Gamma; A; \Delta & \rightarrow C \\
\Gamma; A & \rightarrow A
\end{align*}
\]
LL Interpretation of MSR

• Several possibilities
 ➢ "Conjunctive" encoding

• Objective
 \[R ; s_0 \rightarrow^* s_n \]
 \[\Gamma ; \Delta \rightarrow A \]

➢ Reachability mapped to derivability
Encoding

- R
 - $\to \Rightarrow \text{False}$

- s_0
 - $\, \Rightarrow \,$
 - $\bullet \Rightarrow \bullet$
 - ... or like s_n

- s_n
 - $\, \Rightarrow \times$
 - $\bullet \Rightarrow 1$
Encoding

- **R**
 - $[a \rightarrow b] = [a] \circ [b]$

- **s_0**
 - $[[a]] = a$
 - $[[\cdot]] = \cdot$
 - $[[a, b]] = [[a]], [[b]]$ or $[a, b]$

Well defined because
- $(\Delta s, \cdot, \cdot)$ is a commutative monoid
- $(As, \otimes, 1)$ is a commutative monoid

- **s_n**
 - $[a] = a$
 - $[[\cdot]] = 1$
 - $[a, b] = [a] \otimes [b]$
Property

\[s_0 \rightarrow_R^* s_n \text{ iff } [R]; [[s_0]] \rightarrow [s_n] \]

- For appropriate inverse encodings

\[\Gamma; A \rightarrow B \text{ iff } [A] \rightarrow^{*_{[\Gamma]}} [B] \]

Encoding of MSR in LL
End of the Story?

- Yes, NO!

- From interpretation of MSR in logic to interpretation of MSR as logic

- Multiset rewriting semantics = left sequent rules

- First, a few rough edges to smooth
Context vs. Formulas (1)

- Either go against tradition of logic
 - *(As, \(\otimes\), 1)* is a congruence w.r.t. derivability

 ➢ Identify contexts and formulas
 - Whenever formula is expected
 - Turn \(\cdot\) into \(\otimes\)
 - Turn \(\cdot\) into 1
 - Consistent with categorical semantics of logic
 - Has to be done with extreme care
Context vs. Formulas (2)

• ... or go against tradition of rewriting
 ➢ Distinguish states and multisets
 ▪ state constructors: , and •
 ▪ mset constructors: ⊗ and 1
 ➢ Additional transition rules
 ▪ $s, a \otimes b \rightarrow_R s, a, b$
 ▪ $s, 1 \rightarrow_R s$

• This research is compatible with both
 ➢ We will lean towards (2)
Rewriting View of Derivations

- **Step up:**
 - Left rules
- **Step across:**
 - Axiom
- **Right rules not used**

\[
\begin{align*}
\Gamma''; \Delta'' &\rightarrow C \\
\Gamma'; \Delta' &\rightarrow C \\
\Gamma; \Delta &\rightarrow C
\end{align*}
\]
Rewriting Semantics as Left Rules

\[s \rightarrow^*_R s \]

\[s, a \otimes b \rightarrow_R s, a, b \]

\[s, 1 \rightarrow_R s \]

\[s, a \rightarrow_R (a \rightarrow b) s, b \]

\[\Gamma; A \rightarrow A \]

\[\Gamma; \Delta, A, B \rightarrow C \]

\[\Gamma; \Delta, A \otimes B \rightarrow C \]

\[\Gamma; \Delta \rightarrow C \]

\[\Gamma; \Delta, 1 \rightarrow C \]

\[\Gamma, A \rightarrow^*_R B; \Delta, B \rightarrow C \]

\[\Gamma, A \rightarrow^*_R B; A, \Delta \rightarrow C \]

Not quite, but not too far off

- Admissible rule

\[\Gamma, A; \Delta, A \rightarrow C \]

\[\Gamma, A; \Delta \rightarrow C \]

\[\Gamma; \Delta_1 \rightarrow A \]

\[\Gamma; \Delta_2, B \rightarrow C \]

\[\Gamma; \Delta_1, \Delta_2, A \rightarrow B \rightarrow C \]
Questions

- **Can we make the correspondence precise?**
 - Yes

- **Does it extend to other connectives?**
 - Yes ... to a large extent

- **What are the implications?**
 - Logical explanation of multiset rewriting
 - Not just interpretation
 - Now MSR is logic
 - Guideline to design rewrite systems
 - Can we do this with other logics?
 - Derivations do not need to be finite
 - Goal is important only for reachability
First Proof of Concept

- **First-Order Multiset Rewriting (MSR 1.0)**
 - Multiset elements are F0 atomic formulas
 - Rules have the form
 \[\forall x_1 \ldots x_n. \; a(x) \rightarrow \exists y_1 \ldots y_k. \; b(x,y) \]
 - Semantics (\(\Rightarrow^*\))

 \[\Sigma; \; a(t), \; s \rightarrow_{R, \; (a(x) \rightarrow \exists y. \; b(x,y))} \Sigma, y; \; b(t,y), \; s \]

 if \(\Sigma \models t \)
 - Encoding is simple extension of prop. case
Semantics from Left Rules

- Updated judgment forms
 - $\Sigma; s \rightarrow_{R} \Sigma; s$
 - $\Gamma; \Delta \rightarrow_{\Sigma} C$

- Semantics (\rightarrow^{**})

| $\Sigma; s, \forall x.a \rightarrow_{R} \Sigma; s, [t/x]a$ | $\Gamma; \Delta, [t/x]A \rightarrow_{\Sigma} C$ if $\Sigma |- t$ |
|--|---|
| $\Sigma; s, \exists x.a \rightarrow_{R} \Sigma,x; s, a$ | $\Gamma; \Delta, \forall x.A \rightarrow_{\Sigma} C$ |
| | $\Gamma; \Delta, \exists x.A \rightarrow_{\Sigma} C$ |
Comparing Semantics

Lemma

- If $a \xrightarrow{R}^* (b)$, then $a \xrightarrow{R}^{**} (b)$

- And vice versa

 - Careful with non-observable steps
Second Proof of Concept

- **Minimal ω-multiset rewriting**
 - **Language**
 \[
 \omega ::= a \mid \bullet \mid \omega, \omega \mid \omega \rightarrow \omega
 \]
 - No distinction between atoms and formulas
 - **Semantics (v.1)**
 - $s, (a \rightarrow b), a \rightarrow s, b$
 - **Check against left rule for \longrightarrow_o**
 \[
 \Delta_1 \rightarrow A \quad \Delta_2, B \rightarrow C
 \]
 \[
 \Delta_1, \Delta_2, A \longrightarrow_o B \rightarrow C
 \]
 - **Semantics (v.2)**
 - $s_1, s_2, (a \rightarrow b) \rightarrow s_2, b$ if $s_1 \rightarrow^* a$
 - Step depends on reachability!
Comparing Semantics

• Lemma

\[a \rightarrow^*_{v.1} (b) \iff a \rightarrow^*_{v.2} (b) \]

(⇒) Trivial by reflexivity
(⇐) Recursively turn every step
 - \(s_1, s_2, (a \rightarrow b) \rightarrow_{v.2} s_2, b \) if \(s_1 \rightarrow^*_{v.2} a \)
 into
 - \(s_1, s_2, (a \rightarrow b) \rightarrow^*_{v.1} a, s_2, (a \rightarrow b) \rightarrow_{v.1} s_2, b \)

• However

- Do all extensions support transformation?
 - Use \(v.1 \) when adequate, \(v.2 \) other times
- Seems to be an instance of cut elimination
 - (see later)
Adding Persistent Multisets

- **Language**
 \[\omega ::= a \mid \bullet \mid \omega, \omega \mid \omega \rightarrow \omega \mid \forall x. \omega \mid \exists x. \omega \mid ! \omega \]

- **Judgment**
 \[\Sigma; p; s \rightarrow \Sigma; p; s \]

- **Semantics from left rules**

<table>
<thead>
<tr>
<th>...</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma; p; s, !a \rightarrow \Sigma; p, a; s)</td>
<td>(\Gamma, A; \Delta \rightarrow_{\Sigma} C)</td>
</tr>
<tr>
<td>(\Gamma; \Delta, !A \rightarrow_{\Sigma} C)</td>
<td></td>
</tr>
<tr>
<td>(\Sigma; p, a; s \rightarrow \Sigma; p, a; s, a)</td>
<td>(\Gamma, A; \Delta, A \rightarrow_{\Sigma} C)</td>
</tr>
<tr>
<td>(\Gamma, A; \Delta \rightarrow_{\Sigma} C)</td>
<td></td>
</tr>
</tbody>
</table>
A Word of Caution

\[!(a \otimes b) \neq !a \otimes !b \]

- \(\otimes \) corresponds to "," in \(\Delta \), but not in \(\Gamma \)
 - Distinguish \(\otimes \) and "," in \(\omega \text{MSR} \)
 - Consider only sublanguages
 - Use different symbol ",," in \(p \)
 - \(p \) is multiset of multisets, not multiset
Additive Conjunction and Unit

- **Language**
 \[\omega ::= \ldots | \omega \& \omega | T \]

- **Semantics from left rules**

<table>
<thead>
<tr>
<th>...</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\Sigma ; p : s, a_1 & a_2 \rightarrow \Sigma ; p : s, a_i]</td>
<td>[\Gamma; \Delta, A_i \rightarrow_\Sigma C]</td>
</tr>
<tr>
<td>Non-deterministic choice</td>
<td>[\Gamma; \Delta, A_1 & A_2 \rightarrow_\Sigma C]</td>
</tr>
<tr>
<td>• Usually written +</td>
<td>(no left rule)</td>
</tr>
</tbody>
</table>

(no T-transition)

Absence of any choice
Additive Disjunction and Unit

• **Language**
 \[\omega ::= \ldots \mid \omega \oplus \omega \mid 0 \]

• **Semantics from left rules**

\[\Sigma ; p ; s, 0 \Rightarrow^* s_n \]

- Inconsistency?
- Forced reachability?

\[\Gamma ; \Delta , 0 \rightarrow^*_\Sigma C \]
The case of \oplus

The 2 computations shall be synchronized
- If one “ends”, the other “ends” in the same way
 - Breakpoint, or final state
- If one diverges, the other shall diverge

Flavor of
- Confluence
- Bisimulation?
Multiplicative Disjunction and Unit

- **Language:**
 \[\omega ::= \ldots \mid \omega \mathcal{O} \omega \mid \bot \]

- **Semantics from left rules**

\[
\Sigma ; p ; \bot \Rightarrow^* \bullet
\]

- Abort?
- Deadlock?
The Case of \varnothing

\[
\begin{align*}
\Gamma; \Delta_1, A & \rightarrow_\Sigma \Psi_1 \quad \Gamma; \Delta_2, B & \rightarrow_\Sigma \Psi_2 \\
\Gamma; \Delta_1, \Delta_2, A \varnothing B & \rightarrow_\Sigma \Psi_1, \Psi_2 \\
\end{align*}
\]

\[
\Sigma; p; s_1, a, s_2, b \rightarrow
\begin{cases}
\Sigma; p; s_1, a \\
\Sigma; p; s_2, b
\end{cases}
\]

- Start of completely independent computations involving a and b
The Axiom Rule

$$\Sigma; p; a \rightarrow^* a$$

- Makes a reachability statement
- Turns \rightarrow into $\rightarrow^* a$
The Cut Rules

\[\Gamma; \Delta_1 \rightarrow_{\Sigma} A \quad \Gamma; \Delta_2, A \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta_1, \Delta_2 \rightarrow_{\Sigma} C \]
\[\Gamma; \cdot \rightarrow_{\Sigma} A \quad \Gamma, A; \Delta \rightarrow_{\Sigma} C \]
\[\Gamma; \Delta \rightarrow_{\Sigma} C \]

\begin{align*}
\Sigma; p; s_1, s_2 & \rightarrow \Sigma; p; a, s_2 & \text{if } \Sigma; p; s_2 & \rightarrow^* a \\
\Sigma; p; s & \rightarrow \Sigma; p, a; s & \text{if } \Sigma; p; \cdot & \rightarrow^* a
\end{align*}

- Compositionality laws

- Does cut elimination hold?

- Note
 - Not as deep as in Logic
 - No right rules
Summary: ω-Multisets

$$\omega ::= a \quad \text{atomic object}$$

$$\bullet \quad \text{empty mset}$$

$$\omega, \omega \quad \text{mset formation}$$

$$\omega \rightarrow \omega \quad \text{mset rewrite}$$

$$T \quad \text{no-op}$$

$$\omega + \omega \quad \text{choice}$$

$$! \omega \quad \text{replication}$$

$$\forall x. \omega \quad \text{instantiation}$$

$$\exists x. \omega \quad \text{generation}$$

$$0 \quad \omega \oplus \omega \quad \bot \quad \omega \not\in \omega$$

$$? \omega \quad \omega^\perp$$

???
Summary: ω-Multisets Semantics

- \(\Sigma ; p ; (s, 1) \rightarrow \Sigma ; p ; s \)
- \(\Sigma ; p ; (s, a \otimes b) \rightarrow \Sigma ; p ; (s, a, b) \)
- \(\Sigma ; p ; (s, a, a \rightarrow b) \rightarrow \Sigma ; p ; (s, b) \)
- \(\Theta \) (no rule)

& \(\Sigma ; p ; (s, a_1 \& a_2) \rightarrow \Sigma ; p ; (s, a_i) \)

! \(\Sigma ; p ; (s, !a) \rightarrow \Sigma ; (p, a) ; s \)

∀ \(\Sigma ; p ; (s, \forall x. a) \rightarrow \Sigma ; p ; (s, [t/x]a) \)

∃ \(\Sigma ; p ; (s, \exists x. a) \rightarrow (\Sigma, x) ; p ; (s, a) \)

\(\Sigma ; (p, a) ; s \rightarrow \Sigma ; (p, a) ; (s, a) \)
Applications to Security

- MSR: family of security protocol specification languages
 - MSR 1: first-order multiset rewriting
 - MSR 2: MSR 1 + dependent types
 - MSR 3: ω-multiset (+ dependent types)

- Unified logical view
 - Better understanding of where we are
 - Hint about where to go next
NSPK in MSR 2.0

∀A: princ.
{∃L: princ × ∑B: princ.pubK B × nonce → mset.

∀B: princ. ∀K_B: pubK B.

→ ∃N_A: nonce.
 net ({N_A, A}_{K_B}), L (A, B, K_B, N_A)

∀B: princ. ∀K_B: pubK B.
∀K_A: pubK A. ∀K_A': prvK K_A.
∀N_A: nonce. ∀N_B: nonce.
 net ({N_A, N_B}_{K_A}), L (A, B, K_B, N_A)
→ net ({N_B}_{K_B})}
NSPK in MSR 3

∀A: princ.
∀B: princ. ∀KB: pubK B.

→ ∃NA: nonce.

net (\{NA, A\}_KB),
(∀KA: pubK A. ∀KA': prvK K_A. ∀NB: nonce.
net (\{NA, NB\}_KA)
→ net (\{NB\}_KB))
• **Succinct representations**
 - Simpler specifications
 - Economy of reasoning

• **Logical foundations**

• **Bridge between**
 - State-based representation
 - Process-based representations
 - Logical foundation of process algebra?
MSR vs. Process Algebra

MSR
- NRL Prot. Analyzer, CAPSL/CIL, Paulson’s approach, ...

and Process Algebra
- Strand spaces, spi-calculus, other process-based lang.

operate in very different ways:

• State transitions

• Contact evolution
Representing Protocols

- **MSR 2**

 \[
 \begin{align*}
 n & \rightarrow a_1, n' \\
 n'', a_1 & \rightarrow a_2, n'' \\
 \ldots
 \end{align*}
 \]

 - \(a_i \) pass control/data to the next rule

- **PA**

 \[n.n'.n''.n'''.\ldots.0 \]

 - Control is implicit

NS: MSR rules for Alice

\[
\begin{align*}
\pi_{A0}(A) & \rightarrow A_0(A), \pi_{A0}(A) \\
A_0(A), \pi_{A1}(B) & \rightarrow \exists N_A. A_0(A, B, N_A), N((N_A, A)_{KB}), \pi_{A1}(B) \\
A_0(A, B, N_A), N((N_A, N_B)_{KA}) & \rightarrow A_1(A, B, N_A, N_B) \\
A_0(A, B, N_A, N_B) & \rightarrow A_2(A, B, N_A, N_B, N((N_B)_{KB})) \\
\text{where} & \\
\pi_{A0}(A) & = Pr(A), \text{PrvK}(A, K_{A^{-1}}) \\
\pi_{A1}(B) & = Pr(B), \text{PubK}(B, K_B)
\end{align*}
\]

NS: Parametric Strand for Alice

\[
\begin{align*}
\text{Alice} (A, B, N_A, N_B) : & \rightarrow \{N_A, A\}_{KB} \\
N_A \text{ Fresh, } \pi_A (A, B) & \rightarrow \downarrow \\
& \text{where} \\
\pi(A, B) & = Pr(A), \text{PrvK}(A, K_{A^{-1}}), Pr(B), \text{PubK}(B, K_B) \\
& \rightarrow \{N_A, N_B\}_{KA} \rightarrow \{N_B\}_{KB}
\end{align*}
\]

Relating Strands and Multiset Rewriting for Security Protocols
Representing Protocols

- **MSR 2**
 \[
 \begin{align*}
 n \rightarrow & \ a_1, n' \\
 n'' \rightarrow & \ a_1 \rightarrow a_2, n'''
 \end{align*}
 \]

 - \(a_i\) pass control/data to the next rule

- **MSR 3**
 \[
 n \rightarrow n', (n'' \rightarrow n''' , (...))
 \]

 - Control is implicit

NS: MSR rules for Alice

- \(\pi_{A_0}(A) \rightarrow A_0(A), \pi_{A_0}(A)\)
- \(A_0(A), \pi_{A_1}(B) \rightarrow \exists N_A. A_1(A,B,N_A), N((N_A,A)_{KB}), \pi_{A_1}(B)\)
- \(A_0(A,B,N_A), N((N_A,N_B)_{KB}) \rightarrow A_2(A,B,N_A,N_B)\)
- \(A_0(A,B,N_A,N_B) \rightarrow A_3(A,B,N_A,N_B), N((N_B)_{KB})\)

 where \(\pi_{A_0}(A) = Pr(A), Prv_K(A, K_A^{-1})\)
 \(\pi_{A_1}(B) = Pr(B), Pub_K(B, K_B)\)

NS: Parametric Strand for Alice

- Alice \((A,B,N_A,N_B) : N_A\text{ Fresh}, \pi_A(A,B)\)
 \[
 \begin{align*}
 (N_A, A)_{KB} \longrightarrow \\
 (N_A, N_B)_{KA} \leftarrow
 \end{align*}
 \]

 where
 \(\pi(A,B) = Pr(A), Prv_K(A, K_A^{-1}), Pr(B), Pub_K(B, K_B)\)
ω-Multisets and Process Algebra

- **Similarities**
 - ω-Multisets behave like very general process algebra
 - π-calculus
 - Join calculus

- **Differences**
 - PA’s structural equivalences

- **Towards a logical foundation of Process Algebra?**
Encoding Distributed Algorithms

State vs. process distance

Other distance

State ↔ Process translation done once and forall

MSR 3
Conclusions

- Interpretation of multiset rewriting guided by left rules of linear logic
- Definition of ω-multisets
- Hint at application in security protocol specification
 - MSR 3.0
- Possible relationship with process algebras