An Encapsulated Authentication Logic for Reasoning about Key Distribution Protocols

Catherine Meadows
NRL

Dusko Pavlovic
Kestrel Institute

Iliano Cervesato
Tulane University

ONR Review Meeting
August 23, 2005
Contributions

- Separate
 - Authentication reasoning
 - Secrecy reasoning
- Define a logic of pure authentication
 - Secrecy as assumptions
 - Proof obligations
- Embed it in derivational framework
- Apply to key distribution protocols
 - Taxonomy
 - Comparative study
 - Clear understanding of underlying mechanisms
Server-Assisted Shared Key Distribution Protocols

I. Cervesato: Encapsulated Authentication Logic
Key Distribution Protocols

Secrecy
- k secret only if sent over authenticated channels

Authentication
- Authentication depends on secrecy
 - Cryptographic authentication relies on secrecy of long-term keys

- Secrecy depends on authentication
 - k secret only if sent over authenticated channels
Verifying KD Protocols

Historically single monolithic proofs

... BUT ...

secrecy and authentication rely on very different proof methods

- **Authentication**
 - Completing partial order of actions
 - Get piping right
 - Local reasoning
 - Positive inference

- **Secrecy**
 - Secret goes only to intended recipients
 - Pipes do not leak
 - Global reasoning
 - Negative inference
Divide et Conquera

- Two coordinated logics
 - Logic of authentication
 - Relies on secrecy assumptions
 - Proof obligation in secrecy logic
 - Logic of secrecy
 - Relies on authentication assumptions
 - Proof obligation in auth. logic

- Benefits
 - Much simpler proofs
 - Modularity
 - Independent of notion of secrecy
Describing Protocol Runs

• **Messages**
 - km - encryption
 - m,m' - pairing

• **Principal actions**
 - $\langle m: A \rightarrow B \rangle_A$ - send
 - $\langle X: Y \rightarrow Z \rangle_A$ - receive
 - $(m/p(x))_A$ - match
 - $(\nu n)_A$, $(\tau t)_A$ - new nonce, timestamp

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>Description</th>
</tr>
</thead>
</table>
| $\langle m \rangle_A$ | m sends
| $((m))_A$ | m receives
| $\langle m \rangle_A$ | m matches

• **Runs**
 - Partial order of actions
 - Every receive has a send
 - Every match has succeeded
 - Observations

• **Protocols**
 - Set of parametric roles
 - Akin to observations
Authentication Logic

• First-Order logic with 3 predicates
 - \(a_A \) - action \(a_A \) has occurred
 - \(a_A < b_B \) - \(a_A \) has occurred before \(b_B \)
 - \(a_A = b_B \) - \(a_A \) and \(b_B \) are the same action
 Nothing else!

• Usage
 - Given A's observations, extend them with other principal's actions
 - Derive compatible runs
 - \(A: \text{Obs}_A \Rightarrow \Phi \)
 - \(A: \Psi \land \text{Obs}_A \Rightarrow \Phi \)
 - Iterated application of axioms
Logical Assumptions

- **Honesty**
 - Principal does not deviate from role

- **Secrecy**
 - Key uncompromised for given principals

honest S

\[
\text{secret}(k, G) = \langle\langle k \ m \rangle\rangle_x \Rightarrow X \in G \\
\& \ (x/k \ y)_x \Rightarrow X \in G
\]

\[
k m
\]

secret(k, [A,S])
Axioms

- Basic truths about domain
 - **Receive axiom**

 \[Y: ((m)_A \rightarrow \langle\langle m\rangle\rangle_X < ((m)_A) \]

 - **Timestamp axiom**

 \[A: \text{honest } B \land \langle\langle t\rangle\rangle_B < ((t)_A) \]

 \[\rightarrow (t-\delta)_A < (t)_B < \langle\langle t\rangle\rangle_B < ((t)_A) < (t-\Delta)_A \]

- Allow inferring new actions/ordering
Schemas and Instances

• Desired functionalities
 - **Nonce-based Challenge-Response property**
 \[A: \Phi \& (v \ n)_A ^{\{C \ n\}_A} ^{\{R \ n\}_A} \]
 \[(v \ n)_A ^{\{C \ n\}_A} ^{\{C \ n\}_B} ^{\{R \ n\}_B} ^{\{R \ n\}_A} \]

• Verified instances
 - **Challenge in the clear/Response encrypted**
 \[A: \text{secret}(K, [A,B]) \& (v \ n)_A ^{\{\text{K n}\}_A} ^{\{\text{K n}\}_B} ^{\{\text{K n}\}_A} \]
 \[(v \ n)_A ^{\{\text{K n}\}_B} ^{\{\text{K n}\}_A} \]
Abstract Key Distribution

• S spontaneously
 ➢ Generates k
 ➢ Sends it to A, B
 ▪ A, B hardwired
 ➢ Encrypted with K_{AS}, K_{BS}

• A observes only (K_{AS} k)

• A reconstructs run
 ➢ Must assume
 ▪ honest S
 ▪ secret(K_{AS}, [A,S])
 ▪ Not secret(K_{BS}, [B,S])
 ➢ B’s reception unknown

• Dual for B

\[
A : \text{secret}(K_{AS}, [A,S]) \land \text{honest S} \land (K_{AS} k)_A^\nu < \left(\left\langle \langle K_{AS} k \rangle_{S^X} \rangle_{K_{BS} k} \right\rangle_{S^X} \right) < (K_{AS} k)_A
\]
Derivational Approach

• Use rules, not just axioms
 ▪ Operate on protocol and properties
 • Refinements
 • Transformations

• Advantages
 • Abstract general constructions
 • Reuse protocol fragments
 • Structured understanding of
 ▪ Mechanism
 ▪ Properties
 ▪ Relations between protocols
 • Open-ended taxonomies
Key Request

- A may not be talking to B
 - Even if S honest
- Same for B
Binding

- **A** (B) authenticated to **B** (A)
- A knows S sent $K^{AS}(B,k), K^{BS}(A,k)$
- A received $K^{AS}(B,k), M$
- A doesn’t know if $M = K^{BS}(A,k)$
- Documented anomaly of Kerberos 5
A authenticates B assuming

\[\text{secret}(K^{BS}, [B, S]) \]
B’s Point of View

- With only
 - $\text{secret}(K^B_S, [B,S])$ knows S generated k

- With also
 - $\text{secret}(K^A_S, [A,S])$
 - knows A knows k
 - A may not be honest
Additional Properties

• Recency
 ➢ \((v \ k)_S\) bracketed by events controlled by A/B
 ➢ Otherwise, intruder can infer k and attack protocol
 ➢ Even if S is honest
 ➢ Not satisfied so far

• Key confirmation
 ➢ A/B knows that B/A has k
 ➢ Essential for using k
 ➢ Only B in KD^4 (under assumption)
Recency with Nonces

- Use challenge-response as bracket

\[K_{AS}(n, B, k, K_{BS}(A, k)) \]

\[K_{BS}(A, k) \]
Core NSSK

- Ensures recency of k to A
- A can reconstruct run up to B's action
- No such guarantees for B
 - Denning-Sacco attack
Core NSSKfix

Nonce-based CR

I.Cervesato: Encapsulated Authentication Logic
Key Confirmation

- Under the assumption
 - $\text{secret}(k, [A, B, S])$

Post-composition
NSSK does more!

- B concludes with CR
 - k not confirmed to A
 - Unless tagging
 - B already knows A has k

- Exchange typical of repeated authentication
 - B repeatedly request service from A
 - ... but A is initiator!

- Similarly for NSSK-fix
Recency with Timestamps

- Timestamp as bracketing device
 - Requires loosely synchronized clocks

\[K^{AS} (m, t) \]

\[\text{secret}(K^{AS}, [A, S]) \]
I.Cervesato: Encapsulated Authentication Logic

Denning-Sacco

- Guarantee recency to both A and B
- Same assurance as core NSSK-fix
 - Only 3 messages

\[K^{AS}(B, k, t, K^{BS}(A, k, t)) \]

Timestamping

\[K^D_0 \rightarrow K^D_1 \rightarrow K^D_3 \rightarrow K^D_4 \]

\[K^D_0 \rightarrow K^D_1 \rightarrow K^D_3 \rightarrow K^D_4 \]

\[A \rightarrow A, B \rightarrow S \rightarrow B \]

\[K^{BS}(A, k, t) \]

\[K^{BS}(A, k, t) \]

\[K^{AS}(B, k, t, K^{BS}(A, k, t)) \]
Core Kerberos 4

- Key confirmation
- Repeated auth.

Kerberos 4
- 2 rounds
- Many more fields, options, ...

\[K^{AS}(B,k,t,K^{BS}(A,k,t)) \]

\[k \cdot m[t'] \]
Core Kerberos 5

- Kerberos 5
 - 2 rounds
 - Even more fields, options, ...

Key confirmation

Repeated auth.

\[K_{A}^{S}(B,k,t), K_{B}^{S}(A,k,t) \]
Define Secrecy Logic

- Authentication as assumptions
- Modular model of secrecy
 - Dolev-Yao
 - Information-theoretic
 - Computational
- Apply to examples
 - Diffie-Hellman hierarchy
 - Full Kerberos 5
 - PKINIT
- Implement within Kestrel’s PDA