Hot Topics in Computer Security

Iliano Cervesato

http://www.qatar.cmu.edu/~iliano
Computer Security

- Networked computer systems
 - Provide fast access to lots of information
 - Information society
 - Higher productivity
 - Much higher convenience

- Substantial opportunity for abuse

- Computer security
 - Mitigate risk
 - Prevent disruption, fraud, ...
Is Cryptography the Solution?

Cryptography is not the same as security

- No crypto today
- 85% of all CERT advisories cannot be fixed by crypto
- 30-50% of recent security holes from buffer overflow
Computer Security is a Big Field!

- We are going to look at a tiny speck

- Security Protocols
Outline

• What are security protocols?
• What can go wrong?
• Where is protocol verification now?
• What are the open questions?
Protocols

Expected behaviors when engaging in communication

- When 2 people want to talk
 - Buying something at the souq
 - Going on a date
 - Calling up your friend, ...
- When interacting with an organization
 - Bureaucracy
 - Official visits by head of states, ...
- ...
- When computers want to talk
Computer Protocols

• What sets them apart?
 ➢ No human involved!
 ▪ Automated
 ▪ Inflexible
 ▪ No common-sense

• What protocols are there in a computer?
 ➢ Hundreds!
 ➢ Communication protocols
 ▪ Email, http, Ethernet, ...
 ➢ Security protocols
Security Protocols

• Communication protocols ensure that communication actually happens
• Security protocols ensure that communication is not abused
 ➢ Protect contents
 ➢ Protect communicating parties
 ➢ Protect intent of communication
 ➢ Protect possibility of communication
Common Security Goals

• Confidentiality
 - Message cannot be observed in transit
 - Achieved using some form of encryption
Authentication

• Ensure that we are talking with who we think
 ➢ Much more subtle than secrecy
 ➢ How to establish a secret channel in the first place
 ▪ Negotiate parameters of channel
 ▪ Ensure channel remains trusted

• Authentication protocols
Other Security Goals

- **Non-Repudiation**
 - Party cannot claim he didn’t do it
 - For auditing, electronic contract signing, …
- **Non-Malleability**
 - Message cannot be changed en route
 - For electronic voting, …
- **Anonymity**
 - Hide who is communicating
- **Availability**
 - User can always get through
- …
Example: Kerberos

- Log in to your computer
- Access other computers without logging in again
 - Email, “i-drive”, printers, directory, …
 - … for 1 day

- Goals
 - Repeatedly authenticate a client to multiple servers
 - Transparent to user

- Ubiquitous
How Kerberos works

User

U

Kerberos

Service

S

Client

C

KAS

TGS

Server

Authenticate C for U

Credentials (TGT)

Want to use S; here’s the TGT

Credentials to use S (ST)

Want to use S; here’s the ST

Ok

Application messages

Log on

Access request

1st time

other times
Other Popular Protocols

• SSL / TLS protocol
 ▪ Authenticates client to server
 ▪ Encrypts communication
 ➢ HTTPS (secures web page)
 ➢ Secure email download (POP3S, IMAPS)

• SSH protocol
 ➢ PuTTY (Log to remote computer, copy files, ...)

• PGP
 ▪ Send encrypted/authenticated email
 ➢ Enigmail
What is there to care about?
The Problem

- Security protocols are extremely hard to get right
 - Minuscule programs
 - Extremely complex interactions
 - Bugs can take years to discover
 - Generally it’s not the crypto
 - It’s the piping
Correctness vs. Security

- **Correctness:** satisfy specifications
 - For reasonable inputs, get reasonable output

- **Security:** resist attacks
 - For unreasonable inputs, output not completely disastrous

Difference:
- Random events vs. active attacker
Attacks

• Attacker can break secrecy of the channel

• Attacker can break authentication
 ➢ Got the piping wrong
Example: Kerberos

- Discovered 10 years after exchange was designed
- Immediately fixed in all implementations
Another one: WEP

- Standard wireless network
 - Principally a communication mechanism
 - Has built-in security protocol: WEP
 - Confidentiality (prevent eavesdropping)
 - Access control (prevent unauthorized access)
 - Integrity (prevent tampering with messages)

Fails at all 3!
Should you stop using WiFi? NO!!

- Fine communication suite
- Use standard protocols on top of it
- (now replacements to WEP are available)
State of the Art in Protocol Verification
Protocol Analysis

• Ensure that protocol does not have flaws
 ➢ Formal verification
 ▪ Mathematical scrutiny so that nothing bad can happen
 ➢ Secure-by-design
 ▪ Securely compose secure building blocks

➢ Testing is not an option!
 ▪ Assumes statistical distribution of errors
 ▪ Security is about worst-case scenario
Formal Verification

- **Model checking**
 - Show that no bad things can happen
 - Try everything attacker can do to break security goals
 - Fast setup
 - Discovers attacks (but often only partial assurance)

- **Theorem proving**
 - Show that only good things can happen
 - Mathematical proof that protocol meets security goals
 - Absolute assurance (but no attacks)
 - Extremely time consuming

- **Hybrid approaches**
Things to Be Made Precise

- What the protocol does
- Security goals
- Attacker capabilities
- Framework to draw general conclusions
Protocol Specification Languages

- Initially, just English
- Till mid 90’s: ad-hoc languages
- Since then, several well-understood languages with deep roots in theory
 - MSR

To a large extent, problem solved
Security Goals

• 5 years to define “secrecy”
• 10 for “authentication”
  Standard notions now well-understood
  General understanding still shaky

• Usually expressed as logical statements
  Perfect language has not been found yet
What can an Attacker do?

- **Dolev-Yao model**
 - Controls the communication medium
 - Can decrypt/encrypt only with known keys
 - Tractable, but idealizes crypto
- **Computational model**
 - Can apply computational methods to gain partial information
 - More precise
 - But no mathematical tools till recently
What we Know about Security

- Protocol verification is undecidable
 - Apparently decidable for typical protocols
- Dolev-Yao intruder derivable from protocol
- Secrecy and authentication build on each other
What can we Verify?

• Lots of toy protocols
 ➢ Now very fast
• A couple in the computational model
• A few commercial protocols manually
 ➢ Kerberos

• Extremely fast progress recently
Open Questions
Understanding Security

- **What is protocol security?**
 - Much better understanding than 10 years ago in common cases
 - Still pre-scientific stage
- **What should the security goals be?**
 - General theory
 - Interplay
- **Come up with general and usable language for**
 - Security goals
 - Security assumptions
Protocol Composition

• Putting 2 good protocols together is no guarantee to get a good protocol
 ➢ When is it the case?

• Modular approach to protocol analysis / construction
 ➢ Start with well-understood building blocks
 ➢ Combine them into desired protocol

• Recent progress in this direction
 ➢ Protocol derivation
 ➢ Still patchy
 ▪ What do basic components do
 ▪ Prove that only good things result from composition
Automation for Large Protocol

- 10 years ago, automated analysis was struggling with toy protocols
 - Now, can verify them very fast
- What about commercial protocols?
 - Threshold situation
 - Tools are almost good enough
 - Manual techniques are there
 - Need to be automated
 - Opportunity to have real-world impact
 - Have a say in protocol design
Qualitative Protocol Analysis

- Current approaches designed to answer yes/no
- Real-world does not work this way
 - Persistent/resourceful attacker can always break crypto
 - Developer can fine-tune parameters to get system more secure
 - Denial-of-Service has no yes/no answer
- Completely ignored by “traditional” protocol analysis research
 - First initial steps
Thank you!