
Modeling Datalog Fact Assertion and Retraction in
Linear Logic

Edmund S. L. Lam and Iliano Cervesato
Carnegie Mellon University, Qatar

1. Introducing Datalog and Deductive Databases

I A Logic Programming Language for Deductive Databases.
I An Example: Graph relation, let E be Edge and P be Path,

P =

{
r1 : P(x, y) : − E(x, y)

r2 : P(x, z) : − E(x, y),P(y , z)

I Assertion of new facts:
E(2, 3),P(2, 3), E(3, 4)

==⇒P P,E(2, 3),P(2, 3),E(3, 4), P(3, 4)
==⇒P E(2, 3),P(2, 3),E(3, 4),P(3, 4),P(2, 4)

I Retraction of facts:
E(2, 3),P(2, 3),E(3, 4),P(3, 4),P(2, 4)

==⇒P P(2, 3),E(3, 4),P(3, 4),P(2, 4)
==⇒P E(3, 4),P(3, 4), P(2, 4)
==⇒P E(3, 4),P(3, 4)

I Over recent ten years, Datalog has been applied to new domains, e.g.:
I Implementing network protocols [GW10, LCG+06]
I Distributed ensemble programming [ARLG+09]
I Deductive spreadsheets [Cer07]

I Main challenge and focus so far:
I Maintaining recursive views in presence of assertion and retraction.
I Efficient algorithms and implementations are well-known

[ARLG+09, CARG+12, GMS93, LCG+06]

2. Traditional Logical Interpretation of Datalog

I First order logic interpretation:

P =

{
r1 : ∀x, y . E(x, y) ⊃ P(x, y)

r2 : ∀x, y , z. E(x, y) ∧ P(y , z) ⊃ P(x, z)

I Assertion = Forward chain application of implications, until saturation.
e.g. adding of new base fact E(3, 4):

P,E(2, 3),P(2, 3),E(3, 4),P(3, 4),P(2, 4) ` C
P,E(2, 3),P(2, 3),E(3, 4), P(3, 4) ` C
P ,E(2, 3),P(2, 3), E(3, 4) ` C

I But what about retraction? E.g. removal of fact E(2, 3):
P,E(3, 4),P(3, 4) ` C

??
P,E(2, 3),P(2, 3),E(3, 4),P(3, 4),P(2, 4) ` C

3. Our Objective

I To define a logical specification of Datalog that supports assertion and
retraction internally.

I Our Solution: Define a Linear Logic [Gir87] Interpretation of Datalog.
I Linear logic because

I Assumptions can grow or shrink as inference rules apply.
I Facts are not permanent truths, but can be retracted (consumed)

4. Linear Logic Interpretation of Datalog

Example: Linear logic interpretation (simplified) of the Graph program
P :

I r1 : P(x, y) : − E(x, y) is interpreted as
I(x,y)

1 = E(x, y) (P(x, y)⊗ E(x, y)⊗R(x,y)
1

R(x,y)
1 = (Ẽ(x, y) (P̃(x, y)⊗ Ẽ(x, y))

I r2 : P(x, z) : − E(x, y),P(y , z) is interpreted as
I(x,y ,z)

2 = E(x, y)⊗ P(y , z) (P(x, z)⊗ E(x, y)⊗ P(y , z)⊗R(x,y ,z)
2

R(x,y ,z)
2 = (Ẽ(x, y) (P̃(x, z)⊗ Ẽ(x, y)) & (P̃(y , z) (P̃(x, z)⊗ P̃(y , z))

I Absorption rules:

AP =

{
E(x, y)⊗ Ẽ(x, y) (1
P(x, y)⊗ P̃(x, y) (1

I Program interpretation denoted as:

VPW = ∀x, y .I(x,y)
1 , ∀x, y , z.I(x,y ,z)

2

5. Datalog Assertion in Linear Logic Interpretation

I Two-sided intutionistic linear logic sequent calculus, LV obs: Γ; ∆ −→ C
I Assertion, e.g. adding of new base fact E(3, 4):

VPW,AP; E(2, 3),P(2, 3),R(2,3)
1 ,E(3, 4),P(3, 4),R(3,4)

1 ,P(2, 4),R(2,3,4)
2 −→ C

VPW ,AP; E(2, 3) ,P(2, 3),R(2,3)
1 ,E(3, 4), P(3, 4) ,R(3,4)

1 −→ C

VPW ,AP; E(2, 3),P(2, 3),R(2,3)
1 , E(3, 4) −→ C

I Similar to traditional logic interpretation, Datalog assertions map to
forward chaining fragment of Linear Logic proof search.

I Key difference: Inference of new facts leaves behind “bookkeeping”
information:
I Specifically retraction rules (R(2,3)

1 ,R(2,3,4)
2 , etc..)

I Act as “cookie crumbles” that guides retraction

6. Datalog Retraction in Linear Logic Interpretation

Retraction, e.g. removal of fact E(2, 3):

VPW, AP ; E(3, 4),P(3, 4),R(3,4)
1 −→ C

VPW, AP ; E(2, 3) ,E(3, 4),P(3, 4),R(3,4)
1 , Ẽ(2, 3) −→ C

VPW, AP ; E(2, 3), P(2, 3) ,E(3, 4),P(3, 4),R(3,4)
1 , Ẽ(2, 3), P̃(2, 3) −→ C

VPW,AP; E(2, 3),P(2, 3), R(2,3)
1 ,E(3, 4),P(3, 4),R(3,4)

1 , Ẽ(2, 3) −→ C

VPW, AP ;

(
E(2, 3),P(2, 3),R(2,3)

1 ,E(3, 4),P(3, 4),

R(3,4)
1 , P(2, 4) , Ẽ(2, 3), P̃(2, 4)

)
−→ C

VPW,AP;

(
E(2, 3),P(2, 3),R(2,3)

1 ,E(3, 4),P(3, 4),

R(3,4)
1 ,P(2, 4), R(2,3,4)

2 , Ẽ(2, 3)

)
−→ C

Retraction can now be represented in forward chaining fragment of
linear logic as well!!

7. Completeness and Soundness Results

I Define ∆
α

==⇒LL

VPW ∆′ as an abstract state transition system that
computes inference closures of Datalog states ∆.

I We define this, based on linear logic proof search:
a /∈ ∆ VPW,AP; ∆, a −→

⊗
∆′ Quiescent(∆′, (VPW,AP))

∆
+a

==⇒
LL

VPW ∆′
(Infer)

a ∈ ∆ VPW,AP; ∆, ã −→
⊗

∆′ Quiescent(∆′, (VPW,AP))

∆
−a

==⇒
LL

VPW ∆′
(Retract)

I Technical hurdles that we had to over-come to achieve this:
I Trivial non-termination in assertions
I In-exhaustive retraction

I Correctness and Soundness of assertion and retraction: Given a
Datalog Program P , for reachable states ∆1,∆R1 ,∆]

1 and ∆2,∆R2 ,∆]
2

such that ∆1 = VP(B1)W and ∆2 = VP(B2)W, then we have the
following:

(∆1,∆R1 ,∆]
1)

α
==⇒LL

VPW (∆2,∆R2 ,∆]
2) iff P(B1)

α
==⇒P P(B2)

where P(B) = {p(~t) | P,B ` p(~t)} and α is either + a or − a

I See our PPDP’12 paper or tech report (CMU-CS-12-126) for details.

8. Contributions and Future Works

I So why do we need a linear logic interpretation of Datalog?
I We’ve got a few reasons:

I Provide a refined logical understanding of Datalog assertion and retraction, hence
we can prove properties of Datalog programs via theorem provers (e.g. CLF)

I Provide an operational semantics of Datalog style assertion and retraction based on
higher order, forward chaining multiset rewrite rules.

I Provide a cleaner and more theoretically well-founded way of implementing and
reasoning about modern extensions of Datalog (e.g. Meld [ARLG+09], Dedalus
[AMC+09], Distributed Datalog [NJLS11]).

I Future Works:
I Implementation of Datalog based on higher order multiset rewritings.
I Refine our linear logic interpretation.

∗ Funded by the Qatar National Research Fund as project NPRP 09-667-1-100
(Effective Programming for Large Distributed Ensembles)

∗ In proceedings of 14th International Symposium on Principles and Practice of
Declarative Programming (PPDP’12)

http://www.qatar.cmu.edu/˜sllam/ sllam@qatar.cmu.edu

