Decentralized Execution of Multiset Rewriting Rules for Ensembles
Carnegie Mellon University, Qatar

Edmund S. L. Lam and lliano Cervesato

1. Challenges of Parallel and Distributed Programming

5. Example: Distributed Hyper-Quicksort

» A notoriously laborious and difficult endeavor
» Wide range of technical difficulties (e.g. deadlock, atomicity, fault-tolerance).
» Traditional computational problems (e.g. correctness, completeness, termination).
» While ensuring scalability and performance effectiveness.
» Open research problem:
» Distributed programming frameworks (e.g. Map reduce [DGO08], Graph Lab
LGK*10], Pregel [MAB*10], Mizan [KKAJ10])
» Distributed programming languages (e.g. Erlang [AV90], X10 [SSvP07], NetLog
‘GW10], Meld [CARGT12])
» High-level programming abstractions (e.g. Join Patterns [TR11], Parallel CHR
LS11])

» We seek an approach that is declarative, based on logical foundations,

expressive and concise.
» Motivated by chemical reaction equations:

6C0O, + 6H,O — CsH205 + 60

2. Introducing Rule-Based Multiset Rewriting

» Constraint Handling Rules (CHR) [Fri98]

» Rule-based constraint logic programming language.

» Based on multiset rewriting over first order predicate terms, called CHR constraints.

» Goncurrent, committed choice and declarative. |
» CHR programs consist of a set of CHR rules of the following form:

r:P\S<~—= G | B
» Informally means: If we have P and S such that G is satisfiable, replace S with B.
» Example: Greatest common divisor (GCD)

base : gcd(0) < true
reduce : gcd(N) \ gcd(M) <—= 0 < NAN < M | gcd(M-N)

lged(9), ged(6), ged(3)] reduce : gcd(6)\gcd(9) <= 0< 6N 6 < 9| gecd(3)
— |gcd(3), ged(6), ged(3)] reduce : gcd(3)\gcd(6) <= 0< 3N6< 9| gcd(3)
— |gcd(3), ged(3), ged(3)) reduce : gcd(3)\gcd(3) <= 0< 3N 6 < 9| gecd(0)
— |gecd(0), ged(3), ged(3)] base : gcd(0) <= true
— lgcd(3), ged(3)] reduce : gcd(3)\gcd(3) <= 0< 3N 6 < 9| gcd(0)
— |gcd(0), ged(3)] base : gcd(0) <= true
— (gcd(3)]

3. CHR®, Distributed Multiset Rewriting for Ensembles

~ Elements are distributed across distinct locations (kq, k2, etc..), each
possessing its own multiset of elements.
ledge(kz, 1),..1@k; <—— |edge(ki, 2), edge(ks, 8),../@k>
AN 1
zedge(kh 10)S@k3

» Rewrite rules explicitly reference the relative location of constraints:
base rule : [X]1edge(Y,D)\. <— [X]path(Y, D).
elim rule : [X1 path(Y,D1)\ [X]path(Y,D2) <— D1 < D2 | true.
trans rule : [X]1edge(Y,D), [Yipath(Z,D') <— X'=2 | [X]path(Z,D + D’).
[1] ¢ specifies that matching ¢ is located at /.
» Rewrite rules can specity “local” rewriting:

ledge(ka, 1), path(ko, 1), path(ko, 10){Qk; ...
— ZEdQE(kz, 1),path(k2, 1)5@’(1 [Kq1] path(kg, 1)\ [Kq] path(kg, 10) ~— 1< 10 | true.

» Rewrite rules can specify link-restricted rewriting:

ledge(ks, 1),..{@k; <—— |path(ks, 8), edge(kq, 2), edge(ks, 8), ..|@k>

N J
ledge(k1, 10)[@k;

bamrd

zedge(kZa 1)3 path(k3a 9)9 "S©k1 — zpath(k& 8)9 edge(kh 2)9 Edge(k& 8)9 "S@k2

N [
ledge(ky, 10) @k

[K] edge(kg, 1), [K>o] path(k3, 8) <— kq1'=Kkj3 | [Kq1] path(kg, 9)

4. Example: Parallel Mergesort

Parallel mergesort: Assumes tightly coupled ensembles (multicore,
shared memory, etc..)

[X1unsorted([l]) < [X1sorted([]]).
[X]unsorted(Xs) < len(Xs) > 2 | exists Y. exists Z. let (Ys, Zs) = split(Xs).
[Y1 parent(X), [Y] unsorted(Ys), [Z] parent(X), [Z] unsorted(Zs).
[X]sorted(Xs), [X]parent(Y) <= [Y]unmerged(Xs).
[X1unmerged(Xs1), [X1 unmerged(Xs2) <= [X] sorted(merge(Xs1, Xs2))

» New locations “dynamically” created to solve sub-problems.
» completed sub-problems are transmitted to the “parent” location.

Carnegie Mellon University

6. Main Challenges

Distributed Hyper-Quicksort: Assumes loosely coupled ensembles
(network, message passing interface, etc..)

- - “Local” sorting algorithm Parallel merge sort rules

- - Distributed Hyper quicksort rules
[X] sorted(Xs), [X]leader()\ [X]leaderLinks(G) <— len(G) > 1 |

let LG, GG=split(G). [X]leaderLinks(LG),

[head(GG)] leader(), [head(GG)] leaderLinks(GG),

{ (Y1 median(Xs[len(Xs)/2]) | Y in G}

{(Y]1partnerLink(Z) | Y,Z in zip(LG, GG)}
median(M), [X] sorted(Xs) <> let Ls, Gs=partition(Xs, M).[X1legM(Ls), [X]1grM(Gs)
partnerLink(Y), [X1grM(Xs), [Y]1legM(Ys) <= [X]legM(Ys), [Y]grM(Xs)
leqM(Ls1), [X]1leqM(Ls2) <= [X] sorted(merge(Ls1, Ls2))

]
]
]
1grM(Gs1), [X1grM(Gs2) < [X]sorted(merge(Gs1, Gs2))

[X
[X
(X
(X
» Data (unsorted numbers) initially distributed across 2" locations.
» In termination (quiescence), 2" locations are in total order.

» Effective execution of multiset rewriting in decentralized context:
» Incremental matching
» Termination on quiescence
» Interrupt (event) driven matching
» Execution of link-restricted rewrite rules is non-trivial:
[X1 partnerLink(Y), [X1grM(Xs), [Y]1leqM(Ys) <= [X]1leqM(Ys), [Y]1grM(Xs)
» Requires that locations X and Y rewrites respective multisets atomicity .
» In general (n locations involved), its essentially n-consensus problem.
» Designing effective mappings from locations to computation resources
» Initialization: How are “locations” distributed across actual distributed system?
» Load-balancing: How are dynamically created “locations” distributed?
» Designing the Language:
» What are the minimal core language features?
» What extended language features do we need?
» What kind of type safety guarantees can we provide?
» Existing woes and challenges of distributed programming:
» Fault tolerance and recovery.
» Serializability of distributed execution.

7. Current Contributions and Results

» Developed an operational semantics for O-link restricted rewriting
» Based on CHR refined operational semantics [DSdIBHO04].
» Decentralized, Incremental, interrupt driven execution.
» Proven soundness and completeness (exhaustiveness) of rewriting

» Formalized encoding of n-link restricted rewriting into 0-link restricted
rewriting
» Based on 2 Phase commit n-consensus protocol [ML85].
» Optimized encoding for 1-link restricted rewriting
» General encoding for n-link restricted rewriting
» Prototype implementation
» Implemented in Python, decentralized execution via OpenMPI bindings and thread
scheduling via multi-threading libraries.
» CHR based optimization of multiset matching (e.g. optimal join ordering, indexing
for non-linear patterns, early guard scheduling)
» Basic resource mapping: Initial locations mapped to OpenMPI nodes, dynamically
created locations mapped to threaded computation at source of creation.

8. Future Works

» Finalizing language design and high performance implementation
» C, C++ or Haskell(GHC) as source language
» Improving high-level feature encodings
» Explore implementation via Pregel [MAB*10] or Mizan [KKAJ10].

» Improve language design
» Aggregates, linear comprehensions, Datalog style retraction
» Extending core language
» New features via encoding in core language

» Dealing with unreliable communications and faulty computation
resources
» Fault tolerance backends and fault recovery interfaces

» Improved n-link restriction encodings (via 3 Phase commit [KD95] or Paxos
Algorithm [Lam98])

x Funded by the Qatar National Research Fund as project NPRP 09-667-1-100
(Effective Programming for Large Distributed Ensembles)

g Jlfr-':r:i ChLliL .f_rjl-f.l
Catar Joundation

http://www.gatar.cmu.edu/ sllam/

sllam@gatar.cmu.edu

