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1. Challenges of Parallel and Distributed Programming

IA notoriously laborious and difficult endeavor
IWide range of technical difficulties (e.g. deadlock, atomicity, fault-tolerance).
I Traditional computational problems (e.g. correctness, completeness, termination).
IWhile ensuring scalability and performance effectiveness.

IOpen research problem:
IDistributed programming frameworks (e.g. Map reduce [DG08], Graph Lab

[LGK+10], Pregel [MAB+10], Mizan [KKAJ10])
IDistributed programming languages (e.g. Erlang [AV90], X10 [SSvP07], NetLog

[GW10], Meld [CARG+12])
IHigh-level programming abstractions (e.g. Join Patterns [TR11], Parallel CHR

[LS11])
IWe seek an approach that is declarative, based on logical foundations,

expressive and concise.
IMotivated by chemical reaction equations:

6CO2 + 6H2O → C6H12O6 + 6O2

2. Introducing Rule-Based Multiset Rewriting

IConstraint Handling Rules (CHR) [Frü98]
IRule-based constraint logic programming language.
IBased on multiset rewriting over first order predicate terms, called CHR constraints.
IConcurrent, committed choice and declarative.

ICHR programs consist of a set of CHR rules of the following form:
r : P \ S ⇐⇒ G | B

I Informally means: If we have P and S such that G is satisfiable, replace S with B.
IExample: Greatest common divisor (GCD)

base : gcd(0)⇐⇒ true
reduce : gcd(N) \ gcd(M)⇐⇒ 0 < N ∧ N ≤ M | gcd(M-N)

*gcd(9), gcd(6), gcd(3)+ reduce : gcd(6)\gcd(9)⇐⇒ 0 < 6 ∧ 6 ≤ 9 | gcd(3)
� *gcd(3), gcd(6), gcd(3)+ reduce : gcd(3)\gcd(6)⇐⇒ 0 < 3 ∧ 6 ≤ 9 | gcd(3)
� *gcd(3), gcd(3), gcd(3)+ reduce : gcd(3)\gcd(3)⇐⇒ 0 < 3 ∧ 6 ≤ 9 | gcd(0)
� *gcd(0), gcd(3), gcd(3)+ base : gcd(0)⇐⇒ true

� *gcd(3), gcd(3)+ reduce : gcd(3)\gcd(3)⇐⇒ 0 < 3 ∧ 6 ≤ 9 | gcd(0)
� *gcd(0), gcd(3)+ base : gcd(0)⇐⇒ true

� *gcd(3)+

3. CHRe, Distributed Multiset Rewriting for Ensembles

IElements are distributed across distinct locations (k1, k2, etc..), each
possessing its own multiset of elements.

*edge(k2, 1), ..+@k1 ←→ *edge(k1, 2), edge(k3, 8), ..+@k2

↖ ↓
*edge(k1, 10)+@k3

IRewrite rules explicitly reference the relative location of constraints:
base rule : [X]edge(Y ,D)\.⇐⇒ [X]path(Y ,D).
elim rule : [X]path(Y ,D1)\[X]path(Y ,D2)⇐⇒ D1 < D2 | true.
trans rule : [X]edge(Y ,D), [Y]path(Z ,D′)⇐⇒ X!=Z | [X]path(Z ,D + D′).

[l]c specifies that matching c is located at l .
IRewrite rules can specify “local” rewriting:

*edge(k2, 1), path(k2, 1), path(k2, 10)+@k1 ...

� *edge(k2, 1), path(k2, 1)+@k1 ... [k1]path(k2, 1)\[k1]path(k2, 10)⇐⇒ 1 < 10 | true.

IRewrite rules can specify link-restricted rewriting:
*edge(k2, 1), ..+@k1 ←→ *path(k3, 8), edge(k1, 2), edge(k3, 8), ..+@k2

↖ ↓
*edge(k1, 10)+@k3

�
*edge(k2, 1), path(k3, 9), ..+@k1 ←→ *path(k3, 8), edge(k1, 2), edge(k3, 8), ..+@k2

↖ ↓
*edge(k1, 10)+@k3

[k1]edge(k2, 1), [k2]path(k3, 8)⇐⇒ k1!=k3 | [k1]path(k3, 9)

4. Example: Parallel Mergesort

Parallel mergesort: Assumes tightly coupled ensembles (multicore,
shared memory, etc..)
[X]unsorted([I])⇐⇒ [X]sorted([I]).
[X]unsorted(Xs) ⇐⇒ len(Xs) > 2 | exists Y . exists Z . let (Ys, Zs) = split(Xs).

[Y]parent(X), [Y]unsorted(Ys), [Z]parent(X), [Z]unsorted(Zs).
[X]sorted(Xs), [X]parent(Y )⇐⇒ [Y]unmerged(Xs).
[X]unmerged(Xs1), [X]unmerged(Xs2)⇐⇒ [X]sorted(merge(Xs1,Xs2))

INew locations “dynamically” created to solve sub-problems.
I completed sub-problems are transmitted to the “parent” location.

5. Example: Distributed Hyper-Quicksort

Distributed Hyper-Quicksort: Assumes loosely coupled ensembles
(network, message passing interface, etc..)

- - “Local” sorting algorithm Parallel merge sort rules
...

- - Distributed Hyper quicksort rules
[X]sorted(Xs), [X]leader()\[X]leaderLinks(G)⇐⇒ len(G) > 1 |

let LG,GG=split(G). [X]leaderLinks(LG),
[head(GG)]leader(), [head(GG)]leaderLinks(GG),
{[Y]median(Xs[len(Xs)/2]) | Y in G}
{[Y]partnerLink(Z) | Y , Z in zip(LG,GG)}

[X]median(M), [X]sorted(Xs)⇐⇒ let Ls,Gs=partition(Xs,M).[X]leqM(Ls), [X]grM(Gs)
[X]partnerLink(Y ), [X]grM(Xs), [Y]leqM(Ys)⇐⇒ [X]leqM(Ys), [Y]grM(Xs)
[X]leqM(Ls1), [X]leqM(Ls2)⇐⇒ [X]sorted(merge(Ls1, Ls2))
[X]grM(Gs1), [X]grM(Gs2)⇐⇒ [X]sorted(merge(Gs1,Gs2))

IData (unsorted numbers) initially distributed across 2n locations.
I In termination (quiescence), 2n locations are in total order.

6. Main Challenges

IEffective execution of multiset rewriting in decentralized context:
I Incremental matching
I Termination on quiescence
I Interrupt (event) driven matching

IExecution of link-restricted rewrite rules is non-trivial:
[X]partnerLink(Y ), [X]grM(Xs), [Y]leqM(Ys)⇐⇒ [X]leqM(Ys), [Y]grM(Xs)
IRequires that locations X and Y rewrites respective multisets atomicity .
I In general (n locations involved), its essentially n-consensus problem.

IDesigning effective mappings from locations to computation resources
I Initialization: How are “locations” distributed across actual distributed system?
I Load-balancing: How are dynamically created “locations” distributed?

IDesigning the Language:
IWhat are the minimal core language features?
IWhat extended language features do we need?
IWhat kind of type safety guarantees can we provide?

IExisting woes and challenges of distributed programming:
I Fault tolerance and recovery.
ISerializability of distributed execution.

7. Current Contributions and Results

IDeveloped an operational semantics for 0-link restricted rewriting
IBased on CHR refined operational semantics [DSdlBH04].
IDecentralized, Incremental, interrupt driven execution.
IProven soundness and completeness (exhaustiveness) of rewriting

IFormalized encoding of n-link restricted rewriting into 0-link restricted
rewriting
IBased on 2 Phase commit n-consensus protocol [ML85].
IOptimized encoding for 1-link restricted rewriting
IGeneral encoding for n-link restricted rewriting

IPrototype implementation
I Implemented in Python, decentralized execution via OpenMPI bindings and thread

scheduling via multi-threading libraries.
ICHR based optimization of multiset matching (e.g. optimal join ordering, indexing

for non-linear patterns, early guard scheduling)
IBasic resource mapping: Initial locations mapped to OpenMPI nodes, dynamically

created locations mapped to threaded computation at source of creation.

8. Future Works

IFinalizing language design and high performance implementation
IC, C++ or Haskell(GHC) as source language
I Improving high-level feature encodings
IExplore implementation via Pregel [MAB+10] or Mizan [KKAJ10].

I Improve language design
IAggregates, linear comprehensions, Datalog style retraction
IExtending core language
INew features via encoding in core language

IDealing with unreliable communications and faulty computation
resources
I Fault tolerance backends and fault recovery interfaces
I Improved n-link restriction encodings (via 3 Phase commit [KD95] or Paxos

Algorithm [Lam98])
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