
Submitted to:
Linearity and TLLA 2018

c© I. Cervesato, S. Khan, G. Reis & D. Žunić

Formalization of Automated Trading Systems
in a Concurrent Linear Framework∗

Iliano Cervesato Sharjeel Khan Giselle Reis Dragiša Žunić
Carnegie Mellon University

iliano@cmu.edu smkhan@andrew.cmu.edu giselle@cmu.edu dzunic@andrew.cmu.edu

We present a declarative and modular specification of an automated trading system (ATS) in the
concurrent linear framework CLF. We implemented it in Celf, a CLF type checker which also sup-
ports executing CLF specifications. We outline the verification of a representative property of trading
systems using generative grammars, an approach to reasoning about CLF specifications.

1 Introduction

Trading systems are platforms where buy and sell orders are automatically matched. Matchings are ex-
ecuted according to the operational specification of the system. In order to guarantee trading fairness,
these systems must meet the requirements of regulatory bodies, in addition to any internal requirement of
the trading institution. However, both specifications and requirements are presented in natural language
which leaves space for ambiguity and interpretation errors. As a result, it is difficult to guarantee regu-
latory compliance [3]. For example, the main US regulator, the Securities and Exchanges Commission
(SEC), has fined several companies, including Deutsche Bank (37M in 2016), Barclay’s Capital (70M in
2016), Credit Suisse (84M in 2016), UBS (19.5M in 2015) and many others [6].

Modern trading systems are complex pieces of software with intricate and sensitive rules of operation.
Moreover they are in a state of continuous change as they strive to support new client requirements and
new order types. Therefore it is difficult to attest that they satisfy all requirements at all times using
standard software testing approaches. Even as regulatory bodies recently demand that systems must
be “fully tested” [1], experience has shown that (possibly unintentional) violations often originate from
unforeseen interactions between order types [10].

Formalization and formal reasoning can play a big role in mitigating these problems. They provide
methods to verify properties of complex and infinite state space systems with certainty, and have already
been applied in fields ranging from microprocessor design [8], avionics [14], election security [11], and
financial derivative contracts [12, 2]. Trading systems are a prime candidate as well.

In this paper we use the logical framework CLF [5] to specify and reason about trading systems.
CLF is a linear concurrent extension of the long-established LF framework [7]. Linearity enables natural
encoding of state transition, where facts are consumed and produced thereby changing the system’s state.
The concurrent nature of CLF is convenient to account for the possible orderings of exchanges.

The contributions of this research are twofold: (1) We formally define an archetypal automated
trading system in CLF [5] and implement it as an executable specification in Celf. (2) We demonstrate
how to prove some properties about the specification using generative grammars [13], a technique for
meta-reasoning in CLF.

∗This paper was made possible by grant NPRP 7-988-1-178 from the Qatar National Research Fund (a member of the Qatar
Foundation). The statements made herein are solely the responsibility of the authors.

2 Formalization of Automated Trading Systems

Γ;∆;Ψ ` P0

Γ;∆;Ψ,1 ` P0
1l

Γ;∆;Ψ,A,B ` P0

Γ;∆;Ψ,A⊗B ` P0
⊗l

Γ,A;∆;Ψ ` P0

Γ;∆;Ψ, !A ` P0
!l

Γ;∆ ` P0

Γ;∆; · ` P0
L

Γ; · ` 1
1r

Γ;∆1 ` A Γ;∆2 ` B
Γ;∆1,∆2 ` A⊗B

⊗r
Γ; · ` A
Γ; · ` !A

!r
Γ;∆ ` a
Γ;∆ ` a R

Γ;a ` a init

Γ;∆1 ` a Γ;∆2,N ` F
Γ;∆1,∆2,a (N ` F

(l
Γ; · ` a Γ;∆,N ` F

Γ;∆,a→ N ` F
→l

Γ;∆,N[x 7→ t] ` F
Γ;∆,∀x.N ` F

∀l
Γ;∆;P ` P0

Γ;∆,{P} ` P0
{}l

Γ;∆,a ` N
Γ;∆ ` a (N

(r
Γ,a;∆ ` N

Γ;∆ ` a→ N
→r

Γ;∆ ` N[x 7→ α]

Γ;∆ ` ∀x.N ∀r
Γ;∆ ` P

Γ;∆ ` {P}
{}r

Γ,N;∆,N `C
Γ,N;∆ `C

cont

Figure 1: Sequent calculus for a fragment of CLF. N is a negative formula, P is a positive formula, P0 is
either an atom or {P}, F is any formula, a is an atom, α is an eigenvariable and t is a term.

2 Concurrent Linear Logic and Celf

The logical framework CLF [5] is based on a fragment of intuitionistic linear logic. It extends the logical
framework LF [7] with the linear connectives (, N, >, ⊗, 1 and ! to obtain a resource aware framework
with a satisfactory representation of concurrency. The rules of the system impose a discipline on when
the synchronous connectives ⊗, 1 and ! are decomposed, thus still retaining enough determinism to
allow for its use as a logical framework. Being a type-theoretical framework, CLF unifies implication
and universal quantification as the dependent product construct. For simplicity we present only the
logical fragment of CLF (i.e., without terms) needed for our encodings. A detailed description of the full
framework can be found in [5].

We divide the formulas in this fragment of CLF into two classes: negative and positive. Negative
formulas have right invertible rules and positive formulas have left invertible rules. Their grammar is:

N,M ::= a (N | a→ N | {P} | ∀x.N | a (negative formulas)
P,Q ::= P⊗Q | 1 |!P | a (positive formulas)

where a is an atom (i.e., a predicate). Positive formulas are enclosed in the lax modality {·}, which
ensures that their decomposition happens atomically.

The sequent calculus proof system for this fragment of CLF is presented in Figure 1. The sequents
make use of either two or three contexts on the left: Γ contains unrestricted formulas, ∆ contains lin-
ear formulas and Ψ, when present, contains positive formulas. The decomposition phase of a positive
formula on the right is indicated in red and in blue on the left. This phase only ends (via L or R) after
the formula is completely decomposed. Note that positive formulas cannot contain negative formulas, so
this phase necessarily ends with inits.

Since CLF has both the linear and intuitionistic implications, we can specify computation in two
different ways. Linear implication formulas are interpreted as multiset rewriting: the bounded resources
on the left are consumed and those on the right are produced. State transitions can be modeled naturally
this way. Intuitionistic implication formulas are interpreted as backward-chaining clauses à la Prolog,
providing a way to compute solutions for a predicate by matching it with the head (rightmost predicate)
of a clause and solving the body.

The majority of our encoding involves clauses in the following shape (for atomic pi and qi):
p1⊗ ...⊗ pn ({q1⊗ ...⊗qm} which is the uncurried version of: p1 (...(pn ({q1⊗ ...⊗qm}.

I. Cervesato, S. Khan, G. Reis & D. Žunić 3

Figure 2: Visualization of the market view

This framework is implemented as the tool Celf (https://clf.github.io/celf/) which we used
for the encodings. Following the tool’s convention, variable names start with an upper-case letter.

3 Automated Trading System (ATS)

Real life trading systems differ in the details of how they manage orders (there are hundreds of order
types in use [9]). However, there is a certain common core that guides all those trading systems, and
which embodies the market logic of trading on an exchange. We have formalized those elements in what
we call an automated trading system, or an ATS. Let us introduce some basic notions.

An order is an investor’s instruction to a broker to buy or sell securities (or any asset type which
can be traded). They enter an ATS sequentially and are exchanged when successfully matched against
opposite orders. In this paper, we will only be concerned with limit orders. A limit order has a specified
limit price, meaning that it will trade at that price or better. In the case of a limit order to sell, a limit price
P means that the security will be sold at the best available price in the market, but no less than P. And
dually for buy orders. If no exchange is possible, the order stays in the market waiting to be exchanged
– these are called resident orders.

A matching algorithm determines how resident orders are prioritized for exchange, essentially defin-
ing the mode of operation of a given ATS. The most common one is price/time priority. Resident orders
are first ranked according to their price (increasingly for sell and decreasingly for buy orders); orders
with the same price are then ranked depending on when they entered.

Figure 2 presents a visualization of a (Bitcoin) market. The left-hand side (green) contains resident
buy orders, while the right-hand side contains resident sell orders. The price offered by the most expen-
sive buy order is called bid and the cheapest sell order is called ask. The point where they (almost) meet
is the bid-ask spread, which, at that particular moment, was around 2468 USD.

Some of the standard regulatory requirements for real world financial trading systems are: the bid
price is always strictly less than the ask price (i.e., no locked – bid is equal to ask – or crossed – bid is
greater than ask – states), the trade always takes place at either the bid or the ask price, the price/time
priority is always respected when exchanging orders, order priority is transitive, and the system does not
prohibit a valid exchange.

4 Formalization of an ATS

We have formalized the most popular components of an ATS in the logical framework CLF and im-
plemented them in Celf. This formalization is divided into three parts. First, we represent the market
infrastructure using some auxiliary data-structures. Then we determine how to represent limit orders

https://clf.github.io/celf/

4 Formalization of Automated Trading Systems

(although our formalization extends to other types of orders) and how they are organized for processing.
Finally we encode the exchange rules which act on incoming orders.

Since we are using a linear framework, the state of the system is naturally represented by a set of
facts which hold at that point in time. Each rule consumes some of these facts and generates others, thus
reaching a new state. Many operations are dual for buy and sell orders, so, whenever possible, predicates
and rules are parameterized by the action (sell or buy, generically denoted A). The machinery needed
in our formalization includes natural numbers, lists and queues. Their encoding relies on the backward-
chaining semantics of Celf.

The full encoding can be found at https://github.com/Sharjeel-Khan/financialCLF.

4.1 Infrastructure

The trading system’s infrastructure is represented by the following four linear predicates: queue(Q),
priceQ(A, P, Q), actPrices(A, L), and time(T). queue(Q) represents the queue in which orders
are inserted for processing. As orders arrive in the market, they are assigned a timestamp and added
to Q. For an action A and price P, the queue Q in priceQ(A, P, Q) contains all resident orders with
those attributes. Due to how orders are processed, the queue is sorted in ascending order of timestamp.
We maintain the invariant that price queues are never empty. Price queues correspond to columns in the
graph of Figure 2. For an action A, the list L in actPrices(A, L) contains the exchange prices available
in the market, i.e., all the prices on the x-axis of Figure 2 with non-empty columns. Note that the bid
price is the maximum of L when A is buy and the minimum when A is sell. The time is represented by
the fact time(T) and increases as the state changes.

The begin fact is the entry point in our formalization. This fact starts the ATS. It is rewritten to an
empty order queue, empty active price lists for buy and sell, and the zero time:

begin({queue(empty)⊗actPrices(buy, nil)⊗actPrices(sell, nil)⊗time(z)}

4.2 Orders’ Structure

An order is represented by a linear fact order(O, A, P, ID, N), where O is the type of order, A is an
action, P is the order price, ID is the identifier of the order and N is the quantity. P, ID and N are natural
numbers. In this paper, O is always limit. An order predicate in the context is consumed and added to
the order queue for processing via the following rule:

order(O, A, P, ID, N)⊗queue(Q)⊗time(T)⊗enq(Q, ordIn(O, A, P, ID, N, T), Q′)({queue(Q′)⊗time(s(T))}

The predicate is transformed into a term ordIn(O, A, P, ID, N, T) containing the same arguments
plus the timestamp T . This term is added to the order queue Q by the (backward-chaining) predicate
enq. This queue allows the sequential processing of orders given their time of arrival in the market, thus
simulating what happens in reality. The timestamp is also used to define resident order priority. Sequen-
tiality is guaranteed as all state transition rules act only on the first order in the queue. Nevertheless, due
to Celf’s non-determinism, orders are added to the queue in an arbitrary order.

4.3 Rules for Handling Order Matching

According to the matching logic, there are two basic actions for every order in the queue: exchange
(partially or completely) or add to the market (becomes resident). The action taken depends on the
order’s limit price (at which it is willing to trade), as well as the bid and ask prices.

https://github.com/Sharjeel-Khan/financialCLF

I. Cervesato, S. Khan, G. Reis & D. Žunić 5

We show only the rules used in Section 5. The complete set can be found at
https://github.com/Sharjeel-Khan/financialCLF/blob/master/doc/ATScomplete.pdf.

Adding orders to the market An order is added to the market when its limit price P is such that it
cannot be exchanged against opposite resident orders. Namely when P < ask in the case of a buy order,
and when P > bid in the case of a sell order. There are two rules for adding an order, depending on
whether there are other rules at the same price in the market or not. The rule below corresponds to the
latter case. The (backward chaining) predicate store is provable when the order cannot be exchanged.

limit/empty: queue(front(ordIn(limit, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′)⊗
store(A, L′, P)⊗actPrices(A, L)⊗notInList(L, P)⊗insert(L, P, LP)⊗time(T)

({queue(Q)⊗actPrices(A′, L′)⊗priceQ(A, P, consP(ID, N, T, nilP))⊗actPrices(A, LP)
⊗time(s(T))}

Exchanging orders An order is exchanged when its limit price P satisfies P ≤ bid, in the case of sell
orders, or P≥ ask for buy orders. We present only the exchange rules used in the proof, but in total there
are five of them. The (backward chaining) predicate exchange binds X to the exchange price (either bid
or ask). The two cases below distinguish between an incoming order that is totally filled (limit/1), or
one that is partially filled (limit/3). The arithmetic comparison and operations are implemented in the
usual backward-chaining way using a unary representation of natural numbers.

limit/1: queue(front(ordIn(limit, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′)⊗
exchange(A, L′, P, X)⊗priceQ(A′, X , consP(ID′, N, T ′, nilP))⊗remove(L′, X , L′′)⊗time(T)

({queue(Q)⊗actPrices(A′, L′′)⊗time(s(T))}
limit/3: queue(front(ordIn(limit, A, P, ID, N, T),Q))⊗dual(A, A′)⊗actPrices(A′, L′)⊗

exchange(A, L′, P, X)⊗priceQ(A′, X , consP(ID′, N′, T ′, nilP))⊗remove(L′, X , L′′)⊗
nat-great(N, N′)⊗nat-minus(N,N′, N′′)

({queue(front(ordIn(limit, A, P, ID, N′′, T),Q))⊗actPrices(A′, L′′)}

5 Towards a Mechanized Verification of ATS Properties

Using our formalization we are able to check that this combination of order-matching rules does not
violate the expected ATS properties. Here we show that the bid price is always less than the ask price,
or, equivalently, the system is never in a locked-or-crossed state.

Although CLF is a powerful logical framework fit for specifying the syntax and semantics of con-
current systems, stating and proving properties about these systems goes beyond its current expressive
power. For this task, one needs to consider states of computation, and the execution traces that lead
from one state to another. Recent developments show that CLF contexts can be described in CLF itself
through the notion of generative grammars [13]. Using such grammars plus reasoning on steps and traces
of computation, it is possible to state and prove meta-theorems about CLF specifications. This method
is structured enough to become the meta-reasoning engine behind CLF [4].

Since our goal is to eventually formalize the proofs, we develop them using the method just men-
tioned. We start by defining a generative grammar that precisely captures the set of states satisfying the
property considered. This is achieved by observing that bid is the maximum of L in actPrices(buy, L)
and ask is the minimum of actPrices(sell, L). So the grammar only generates actPrices facts if
the lists LB used for buy and LS for sell are such that max(LB)< min(LS). The start symbol is gen.

https://github.com/Sharjeel-Khan/financialCLF/blob/master/doc/ATScomplete.pdf

6 Formalization of Automated Trading Systems

Definition 1 The generative grammar ΣNCL
1 produces only contexts where bid < ask.

buy : action. actPrices : action→ listP→ prop.
sell : action. minP : listP→ exp nat→ prop.
gen : prop. maxP : listP→ exp nat→ prop.

gen/00 : gen({actPrices(buy, nil)⊗actPrices(sell, nil)}.
gen/10 : gen⊗ (LB 6= nil)({actPrices(buy, LB)⊗actPrices(sell, nil)}.
gen/01 : gen⊗ (LS 6= nil)({actPrices(buy, nil)⊗actPrices(sell, LS)}.
gen/11 : gen⊗maxP(LB, B)⊗minP(LS, S)⊗B < S⊗ (LB 6= nil)⊗ (LS 6= nil)

({actPrices(buy, LB)⊗actPrices(sell, LS)}.
Intuitively, to show that the market is never in a locked-or-crossed state, we show that, given a

context generated by the grammar above, any possible step that can be taken by the specified ATS will
result in another context that can also be generated by the proposed grammar. Coupled with the fact that
computation starts at a valid context, this shows that the property is always preserved.

Theorem 1 (No locked-or-crossed market) For every reachable state, if actPrices(buy, LB) and
actPrices(sell, LS) and maxP(LB, B) and minP(LS, S), then B < S.

Proof The proof will follow a general scheme which can be illustrated as follows:

gen

ε

��

gen

ε ′

��

Γ,∆
σ // Γ′,∆′

meaning that, if ∆ ∈ L(ΣNCL), then any transition rule σ that operates on ∆ extended by some Γ will
generate a new context Γ′,∆′ such that ∆′ ∈ L(ΣNCL). Therefore, the proof proceeds by case analysis on
σ . We consider only the rules that change linear facts actPrices(buy, LB) and actPrices(sell, LS),
namely limit/empty, limit/1, and limit/3 above. Moreover, we restrict ourselves to the case of
buy orders. The case for sell is analogous.

Case σ = limit/empty: This rule rewrites LB, the list of buy prices, to a list L′B which extends LB

by a new price P. Since store was provable, we know that P is less than the minimum sell price in the
market. Notice that limit/empty does not assume that there is a preexisting order on either buy or sell
side (LB,LS could be nil).

We have the following cases for ε:
• ε = gen/00: In this case, ∆ = {actPrices(buy, nil),actPrices(sell, nil)}. The rule
limit/empty rewrites ∆ to ∆′ = {actPrices(buy, L′B),actPrices(sell, nil)}, where L′B =
P :: nil (computed by the insert(LB, P, L′B) rule). In this case, ε ′ which generates ∆′ in ΣNCL is
gen/10.

• ε = gen/10: In this case, ∆ = {actPrices(buy, LB),actPrices(sell, nil)}. Thus, the rule
limit/empty rewrites ∆ to ∆′ = {actPrices(buy, L′B),actPrices(sell, nil)}. In this case,
ε ′ which generates ∆′ in ΣNCL is gen/10.

• ε = gen/01: In this case, ∆ = {actPrices(buy, nil),actPrices(sell, LS)}. Thus, the rule
limit/empty rewrites ∆ to ∆′ = {actPrices(buy, L′B),actPrices(sell, LS)}, where L′B =
P :: nil. In this case, ε ′ which generates ∆′ in ΣNCL is gen/11.

• ε = gen/11: Similarly to the previous case, we can conclude that the derivation ε ′ which generates
the context ∆′ is gen/11.

1NCL stands for non-crossed and non-locked market.

I. Cervesato, S. Khan, G. Reis & D. Žunić 7

Case σ = limit/1: This rule rewrites LS, the list of sell prices, to a list L′S which consists of LS without
a price P. Notice that limit/1 assumes that there is a pre-existing order on the sell side, LS 6= nil.
Therefore, the rules gen/00 and gen/10 are not applicable in this case (they generate contexts that
cannot be operated by limit/1). We are left with two cases for ε .

• ε = gen/01: In this case, ∆ = {actPrices(buy, nil),actPrices(sell, LS)}. According to
limit/1 we transition from ∆ to ∆′ = {actPrices(buy, nil),actPrices(sell, L′S)}, where
L′S is LS without S, which is obtained from minP(LS, S).

We distinguish two subcases, either L′S = nil or L′S 6= nil. If L′S = nil then ε ′ = gen/00 rewrites
∆ to ∆′. Otherwise if L′S 6= nil then ε ′ = gen/01.

• ε = gen/11: In this case, ∆ = {actPrices(buy, LB),actPrices(sell, LS)}. According to
limit/1 we transition to ∆′ = {actPrices(buy, LB),actPrices(sell, L′S)}.
Analogous to the previous case, we have two solutions for ε ′ depending on whether L′S = nil or
L′S 6= nil. They are: ε ′ = gen/10 and ε ′ = gen/11, respectively.

Case σ = limit/3: This rule also reduces the list of sell prices LS to L′S by removing its min-
imum S. It rewrites the context ∆ = {actPrices(buy, LB),actPrices(sell, LS)} to the context
∆′ = {actPrices(buy, LB),actPrices(sell, L′S)}. Notice that limit/3 assumes that there is a pre-
existing order on the sell side, LS 6= nil. Similarly to the previous case we are left with two cases for
ε .

• ε = gen/01: Then ε ′ is either gen/00 (in the case of L′S = nil), or gen/01.

• ε = gen/11: Then ε ′ is either gen/10 (in the case of L′S = nil), or gen/11.

The proof proceeds similarly for the other cases.

6 Conclusion and Future Work

We have formalized the core rules guiding the trade on most of the exchanges worldwide. We have done
this by formalizing an archetypal automated trading system in the concurrent logical framework CLF,
with an implementation in Celf.

Encoding orders in a market as linear resources results in straightforward rules that either consume
such orders when they are bought/sold, or store them in the market as resident orders. Moreover the
specification is modular and easy to extend with new order types, which is often required in practice.
This was our experience when adding market and immediate-or-cancel types of orders to the system.
The concurrent aspect of CLF simulates the non-determinism when orders are accumulated in the order
queue, but, as explained, orders from the queue are processed sequentially2.

Using our formalization we were able to prove a standard property about a market working under
these rules. Namely we prove that at any given state the bid price is smaller than the ask, i.e., the market
is never in a locked-or-crossed state. This was done using generative grammars, an approach motivated
by our goal to automate meta reasoning on CLF specifications (not implemented in the current version
of Celf). Recent investigations indicate that this approach can handle many meta-theorems [13, 4], and
ours is yet another example.

2As far as we know, no real life trading system performs parallel order matching and execution.

8 Formalization of Automated Trading Systems

This specification is an important case study for developing the necessary machinery for automated
reasoning in CLF. It is one more evidence of the importance of quantification over steps and traces
of a (forward-chaining) computation. It is interesting to note that our example combines forward and
backward-chaining predicates, but the generative grammar approach still behaves well. In part because
we are only concerned with a linear part of the context. In the meantime, we are investigating other
properties of financial systems that present interesting challenges. For example, when trying to show
that the trade always take place at prices bid or ask, we are effectively deliberating about a transition
step as opposed to a context. This may result on new and interesting methods to add to CLF’s meta-
reasoning engine.

Concurrently, we plan to formalize other models of financial trading systems, as this is a relevant
application addressing some critical challenges.

References
[1] Financial Conduct Authority (2018): Algorithmic Trading Compliance in Wholesale Mar-

kets. Available at https://www.fca.org.uk/publication/multi-firm-reviews/

algorithmic-trading-compliance-wholesale-markets.pdf.
[2] Patrick Bahr, Jost Berthold & Martin Elsman (2015): Certified symbolic management of financial multi-party

contracts. In: ICFP 2015, Vancouver, Canada, pp. 315–327.
[3] Jan De Bel (1993): Automated Trading Systems and the Concept of an Exchange in an International Context

Proprietary Systems: A Regulatory Headache. U. Pa. J. Int’l Bus. L 14(2), pp. 169–211.
[4] Iliano Cervesato & Jorge Luis Sacchini (2013): Towards Meta-Reasoning in the Concurrent Logical Frame-

work CLF. In: EXPRESS/SOS 2013, Buenos Aires, Argentina, pp. 2–16.
[5] Iliano Cervesato, Kevin Watkins, Frank Pfenning & David Walker (2003): A Concurrent Logical Framework

I: Judgments and Properties. Technical Report CMU-CS-02-101, Carnegie Mellon University.
[6] Matthew Freedman (2015): Rise in SEC Dark Pool Fines. Review of Banking and Financial Law 35(1), pp.

150–162.
[7] Robert Harper, Furio Honsell & Gordon Plotkin (1993): A Framework for Defining Logics. J. ACM 40(1),

pp. 143–184.
[8] Robert Jones, John O’Leary, Carl-Johan Seger, Mark Aagaard & Thomas Melham (2001): Practical formal

verification in microprocessor design. IEEE Design Test of Computers 18(4), pp. 16–25.
[9] Phil Mackintosh (2014): Demystifying Order Types. Available at http://www.smallake.kr/

wp-content/uploads/2016/02/KCG_Demystifying-Order-Types_092414.pdf.
[10] Grant Olney Passmore & Denis Ignatovich (2017): Formal Verification of Financial Algorithms. In: CADE

26, Gothenburg, Sweden, pp. 26–41.
[11] Dirk Pattison & Carsten Schürmann (2015): Vote Counting as Mathematical Proof. In: 28th Australasian

Joint Conference on Artificial Intelligence, Canberra, Australia.
[12] Simon Peyton Jones, Jean-Marc Eber & Julian Seward (2000): Composing Contracts: An Adventure in

Financial Engineering (Functional Pearl). ICFP ’00, pp. 280–292.
[13] Robert J. Simmons (2012): Substructural logical specifications. Ph.D. thesis, Carnegie Mellon University.
[14] Jean Souyris, Virginie Wiels, David Delmas & Hervé Delseny (2009): Formal Verification of Avionics Soft-

ware Products. In: Proceedings of the 2nd World Congress on Formal Methods, FM ’09, pp. 532–546.

https://www.fca.org.uk/publication/multi-firm-reviews/algorithmic-trading-compliance-wholesale-markets.pdf
https://www.fca.org.uk/publication/multi-firm-reviews/algorithmic-trading-compliance-wholesale-markets.pdf
http://www.smallake.kr/wp-content/uploads/2016/02/KCG_Demystifying-Order-Types_092414.pdf
http://www.smallake.kr/wp-content/uploads/2016/02/KCG_Demystifying-Order-Types_092414.pdf

	Introduction
	Concurrent Linear Logic and Celf
	Automated Trading System (ATS)
	Formalization of an ATS
	Infrastructure
	Orders' Structure
	Rules for Handling Order Matching

	Towards a Mechanized Verification of ATS Properties
	Conclusion and Future Work

