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Abstract. Abstraction based approaches like ProVerif are very efficient
in protocol verification, but have a limitation in dealing with stateful
protocols. A number of extensions have been proposed to allow for a
limited amount of state information while not destroying the advantages
of the abstraction method. However, the extensions proposed so far can
only deal with a finite amount of state information. This can in many
cases make it impossible to formulate a verification problem for an un-
bounded number of agents (and one has to rather specify a fixed set of
agents). Our work shows how to overcome this limitation by abstracting
state into countable families of sets. We can then formalize a problem
with unbounded agents, where each agent maintains its own set of keys.
Still, our method does not loose the benefits of the abstraction approach,
in particular, it translates a verification problem to a set of first-order
Horn clauses that can then be efficiently verified with tools like ProVerif.

1 Introduction

A very successful idea in protocol verification, most prominently in the ProVerif
tool, is an abstraction approach that over-approximates every possible protocol
behavior by a set of first-order Horn clauses, rather than considering the set
of reachable states [12,2]. The benefit is that one completely avoids the state-
explosion problem (i.e., that the number of reachable state grows exponentially
with the number of sessions) and allows one to even deal with an unbounded
number of sessions. The fact that this approach “throws away” the state space
does indeed not hurt the modeling and analysis for most protocols: typically,
the amount of context needed to participate in a protocol is contained within a
session, and all information that is shared across different sessions is immutable
like agent names and long-term keys.

We run into limitations with this approach, however, when we consider proto-
cols that use some kind of long-term information that can be changed across mul-
tiple sessions of the protocol. As an example, a web server maintains a database
of ordered goods, or a key server stores valid and revoked keys. In the case of
a key server, some actions can just be performed while the key is valid, but as
soon as this key is revoked, the same actions are disabled. This behavior does
not directly work with the Horn-clause approach, because they have the mono-
tonicity property of classic logics: what is true cannot become false by learning



more information. This is at odds with any “non-monotonic” behavior, i.e., that
something is no longer possible after a particular event has occurred.

Several works have proposed extensions of the abstraction approach by in-
cluding a limited amount of state information, so as to allow the analysis of
stateful protocols, without destroying the large benefits of the approach. The
first was the AIF tool that allows one to declare a fixed number N of sets [10].
One can then specify a transition system with an unbounded number of con-
stants. These constants can be added to, and removed from, each of the sets
upon transitions, and transitions can be conditioned by set memberships. The
main idea is here that one can abstract these constants by their set membership,
i.e., partitioning the constants into 2N equivalence classes for a system with N
sets. The AIF tool generates a set of Horn clauses using this abstraction, and
can use either ProVerif or the first-order theorem prover SPASS [13] to check
whether a distinguished symbol attack can be derived from the Horn clauses. The
soundness proof shows that if the specified transition system has an attack state
then attack can be derived from the corresponding Horn clause model. There
are two more approaches that similarly bring state information into ProVerif:
StatVerif [1] and Set-π [4]. We discuss them in the related work.

While AIF is an infinite state approach, it has the limitation to a fixed number
N of sets. For instance, when modeling a system where every user maintains its
own set of keys, one needs to specify a fixed number of users, so as to arrive at
a concrete number N of sets. The main contribution of AIF-ω is to overcome
precisely this limitation and instead allow for specifying N families of sets, where
each family can consist of a countably infinite number of sets. For instance, we
may declare that User is an infinite set and define a family ring(User) of sets
so that each user a ∈ User has its own set of keys ring(a). To make this feasible
with the abstraction approach, we however need to make one restriction: the
sets of a family must be pairwise disjoint, i.e., ring(a) ∩ ring(b) = ∅ for any two
users a and b. In fact, we do allow for AIF-ω specifications that could potentially
violate this property, but if the disjointness is violated, it counts as an attack.

The contributions of this work are the formal development and soundness
proof of this countable-family abstraction. It is in fact a generalization of the AIF
approach. Besides this generalization, AIF-ω has also a direct practical advantage
in the verification tool: experiments show for instance that the verification for
infinitely many agents in an example is more efficient than the finite enumeration
of agents in AIF. In fact, the infinite agents specification has almost the same
run time as the specification with a single agent for each role in AIF.

The rest of this paper is organized as follows. In section 2 we formally de-
fine AIF-ω and introduce preliminaries along the way. In section 3 we define
the abstraction and translation to Horn clauses and prove the soundness in sec-
tion 4. We discuss how to encode the approach in SPASS and ProVerif as well
as experimental results in section 5. We discuss related work and conclude in
section 6.



2 Formal Definition of AIF-ω

We go right into the definition of the AIF-ω language, and introduce all prelim-
inaries along the way. An AIF-ω specification consists of the following sections:
declaring user-defined types, declaring families of sets, declaring function and
fact symbols, and finally defining the transition rules. We explain these concepts
step-by-step and for concreteness illustrate it with the running example of a
keyserver adapted from our previous paper [10].

2.1 Types

An AIF-ω specification starts with a declaration of user-defined types. These
types can either be given by a complete enumeration (finite sets), or using the
operator “. . . ” one can declare that the type contains a countable number of
elements. Finally, we can also build the types as the union of other types. For
the keyserver example, let us define the following types:

Honest = {a, b, . . .} Dishon = {i, p, . . .} User = Honest ∪Dishon
Server = {s, . . .} Agent = User ∪ Server Status = {valid, revoked}

This declares the type Honest to be a countably infinite set that contains the
constants a and b. Similarly Dishon and Server are defined. It may be intuitively
clear that in this declaration, the sets Honest and Dishon should be disparate
types, but to make the “. . . ” notation formally precise, we give each type T
an extensional semantics [[T ]]. To that end, for each “. . . ”, we introduce new
constants t1, t2, . . . so that for the running example we have for instance:

[[Honest ]] = {a, b} ∪ {honestn | n ∈ N} [[Dishon]] = {s, p} ∪ {dishonn | n ∈ N}

Comparing AIF-ω with the previous language AIF, the ability to define in-
finite types and families of sets over these types, are the essential new features.
Drastically speaking, “. . . ” is thus what you could not do in AIF. The complexity
of this paper however suggests that it is not an entirely trivial generalization.

Besides the user-defined types, we also have two built-in types: Value and
Untyped . The type Value is the central type of the approach, because all sets
of the system can only contain elements of type value, and all freshly created
elements must be of type value. It is thus exactly those entities that we later
want to replace by abstract equivalence classes. Let thus A = {absn | n ∈ N} be
a countable set of constants (again disjoint from all others) and [[Value]] = A.
Second, we have also the “type” Untyped . Below, we define the set of ground
terms TΣ that includes all constants and composed terms that can be built using
function symbols. We want the type Untyped to summarize arbitrary such terms,
and thus define [[Untyped ]] = TΣ .

2.2 Sets

The core concept of AIF-ω is using sets of values from A to model simple
“databases” that can be queried and modified by the participants of the proto-
cols. These sets can even be shared between participants, and the modeler has a



great freedom on how to use them. For our running example we want to declare
sets for the key ring of every user, and for every server a database that contains
for all users the currently valid and revoked keys:

ring(User !) db(Server !,User !,Status!)

This declares two families of sets, the first family consists of one set ring(c) for
every c ∈ [[User ]] and the second family consists of one set db(c1, c2, c3) for every
c1 ∈ [[Server ]], c2 ∈ [[User ]], and c3 ∈ [[Status]].

The exclamation mark behind the types in the set declaration has a cru-
cial meaning: with this the modeler defines a uniqueness invariant on the state
space, namely that the sets of this family will be pairwise disjoint for that
parameter. In the example, ring(c1 ) ∩ ring(c2 ) = ∅ for any c1 6= c2, and
db(c1 , c2 , c3 ) ∩ db(c′1 , c

′
2 , c
′
3 ) = ∅ if (c1, c2, c3) 6= (c′1, c

′
2, c
′
3). This invariant is

part of the definition of the transition system: it is an attack, if a state is reach-
able in which the invariant is violated.

An important requirement of AIF-ω is that all family parameters of infi-
nite type must have the uniqueness invariant. Thus, it is not allowed to de-
clare ring(Agent), because [[Agent ]] is infinite. However, it is allowed to declare
db(Server !,Agent !,Status) since [[Status]] is finite. This declaration with non-
unique Status could be specified using two families dbvalid(Server !,Agent !) and
dbrevoked(Server !,Agent !) instead. We thus regard non-unique arguments of a
finite type as syntactic sugar that is compiled away in AIF-ω.

Since non-unique arguments are syntactic sugar, let us assume for the rest
of the paper an AIF-ω specification (like in the running example) where all set
parameters have the uniqueness invariant (i.e., the ! symbol). Let us denote
the families of sets in general as s1, . . . , sN where N is the number of declared
families, i.e., in the example, N = 2 with s1 = ring and s2 = db. We thus have for
every 1 ≤ i ≤ N the uniqueness invariant that si(a1, . . . , an)∩ si(b1, . . . , bn) = ∅
whenever (a1, . . . , an) 6= (b1, . . . , bn).

2.3 Functions, Facts, and Terms

Finally the user can declare a set of functions and facts (predicates) with their
arities. For the example let us have:

Functions: inv/1, sign/2, pair/2 Facts: iknows/1, attack/0

Intuitively, inv(pk) represents the private key corresponding to public key pk ,
sign(inv(pk),m) represents a digital signature on message m with private key
inv(pk), pair is for building pairs of messages; iknows(m) expresses that the
intruder knows m, and attack represents a flag we raise as soon as an attack has
occurred (and we later ask whether attack holds in any reachable state).

Definition 1. Let Σ consist of all function symbols, the extension [[T ]] of any
user-defined type T , and the values A (where all constants are considered as
function symbols with arity 0). Let V be a set of variables disjoint from Σ. We



define TΣ(V ) to be the set of terms that can be built from Σ and V ⊆ V, i.e.,
the least set that contains V and such that f(t1, . . . , tn) ∈ TΣ(V ) if t1, . . . , tn ∈
TΣ(V ) and f/n ∈ Σ. When V = ∅, we also just write TΣ, and we call this the
set of ground terms. A fact (over Σ and V ) has the form f(t1, . . . , tn) where
f/n is a fact symbol and t1, . . . , tn ∈ TΣ(V ).

2.4 Transition Rules

The core of an AIF-ω specification is the definition of its transition rules that
give rise to an infinite-state transition system, where each state is a set of facts
and set conditions (as defined below). The initial state is simply the empty set of
facts and set conditions. We proceed as follows: we first give the formal definition
of syntax and semantics of rules. We then discuss the details at hand of the rules
of the running example. Finally, we give a number of restrictions on rules that
we need for the abstraction approach in the following section.

In the following we often speak of the type of a variable (and may write
X : T ); this is because variables occur only within rules (not within states) and
are then always declared as part of the rule parameters.

Definition 2. A positive set condition has the form t ∈ si(A1, . . . , An) where t
is either a constant of A or a variable of type Value, the family si of sets has
been declared as si(T1!, . . . , Tn!), and each Ai is either an element of [[Ti]] or a
variable of type T ′i with [[T ′i ]] ⊆ [[Ti]]. A positive set condition is called ground if
it contains no variables. A negative set condition has the form t /∈ si( ) where t
and si are as before.

A state is a finite set of ground facts and ground positive set conditions. A
transition rule r has the form

r(X1: T1, . . . , Xn: Tn) = LF · S+ · S− =[F ]⇒ RF ·RS

where

1. X1, . . . , Xn are variables and T1, . . . , Tn are their types; We often abbreviate
(X1: T1, . . . , Xn: Tn) by X: T ;

2. The Xi are exactly the variables that occur in the rule
3. LF and RF are sets of facts;
4. S+ and RS are sets of positive set conditions;
5. S− is a set of negative set conditions;
6. F is a set of variables that are of type Value and they do not occur in LF ,

S+, or S−.
7. For every untyped variable that occurs in RF , it also occurs in LF .

Let VA denote the subset of the Xi that have type Value.
A rule r gives rise to a state-transition relation ⇒r where S ⇒σ

r S
′ holds for

states S and S′ and a substitution σ iff

– σ has domain {X1, . . . , Xn} and σ(Xi) ∈ [[Ti]] for each 1 ≤ i ≤ n;
– (LF · S+)σ ⊆ S,



– For every negative set condition X /∈ si( ) of S−, state S does not contain
σ(X) ∈ si(a1, . . . , am) for any (a1, . . . , am).

– S′ = (S \ σ(S+)) ∪ σ(RF ) ∪ σ(RS),
– σ(F ) are fresh constants from A (i.e. they do not occur in S or the AIF-ω

specification).

A state S is called reachable using the set of transition rules R, iff ∅ ⇒∗R S.
Here ⇒R is the union of ⇒·r for all r ∈ R (ignoring substitution σ) and ·∗ is
the reflexive transitive closure. ut

Intuitively, a rule r can be applied under match σ if the left-hand side facts
σ(LF ) and positive set conditions σ(S+) are present in the current state, and
none of the negative conditions σ(S−) holds. Upon transition we remove the
matched set conditions σ(S+) and replace them with the right-hand side set
conditions σ(RS) and facts σ(RF ). The semantics ensures that all reachable
states are ground, because σ must instantiate all variables with ground terms.
The semantics defines facts to be persistent, i.e., when present in a state, then
also in all successor states. Thus only set conditions can be “taken back”.

To illustrate the AIF-ω rules more concretely, we now discuss the rules of the
key server example. We first look at the three rules that describe the behavior
of honest users and servers:

keyReg(A: User ,S : Server ,PK : Value) =
=[PK ]⇒ iknows(PK ) · PK ∈ ring(A) · PK ∈ db(S ,A, valid)

userUpdateKey(A: Honest ,S : Server ,PK : Value,NPK : Value) =
PK ∈ ring(A) · iknows(PK)
=[NPK ]⇒ NPK ∈ ring(A) · iknows(sign(inv(PK ), pair(A,NPK )))

serverUpdateKey(A: User, S: Server, PK: V alue,NPK: V alue) =
iknows(sign(inv(PK ), pair(A,NPK ))) · PK ∈ db(S ,A, valid) ·NPK /∈ db( )
⇒ PK ∈ db(S ,A, revoked) ·NPK ∈ db(S ,A, valid) · iknows(inv(PK ))

Intuitively, the keyReg rule describes an “out-of-band” key registration, e.g. a
physical visit of a user A at an authority S. Here, the left-hand side of the rule
is empty: the rule can be applied in any state. Upon the arrow, we have PK ,
meaning that in this transition we create a fresh value from A that did not occur
previously. Intuitively this is a new public key that the user A has created. We
directly give the intruder this public key, as it is public. The two set conditions
formalize that the key is added to the key ring of A and that the server S stores
PK as a valid key for A in its database. Of course, the user A should also know
the corresponding private key inv(PK ), but we do not explicitly express this
(and rather later make a special rule for dishonest agents). Note that, having
no prerequisites, this rule can be applied in any state, and thus every user can
register an unbounded number of keys with every server.

The userUpdateKey rule now describes that an honest user (for the behav-
ior of dishonest users, see below) can update any of its current keys PK (the
requirement iknows(PK) is explained below) by creating a new key NPK and



sending an update message sign(inv(PK ), pair(A,NPK )) to the server, signing
the new key with the current key. As it is often done, this example does not ex-
plicitly model sending messages on an insecure channel and rather directly adds
it to the intruder knowledge (see also the model of receiving a message in the
next rule). Further, NPK is added to the key ring of A. Finally, observe that the
set condition PK ∈ ring(A) is not repeated on the right-hand side. This means
that PK is actually removed from the key ring. Of course this is a simplistic
example: in a real system, the update would include some kind of confirmation
message from the server, and the user would not throw away the current key
before receiving the confirmation.

The third rule serverUpdateKey formalizes how a server processes such an
update message: it will check that the signing key PK is currently registered as
a valid key and that NPK is not yet registered, neither as valid nor as revoked.
If so, it will register NPK as a valid key for A in its database. PK is now
removed from the database of valid keys for A, because PK ∈ db(S ,A, valid) is
not present on the right-hand side; PK is added to the revoked keys instead.
Note that the check NPK /∈ db( ) on the left-hand side actually models a server
that checks that no server of Server has seen this key so far.3 As a particular
“chicane”, we finally give the intruder the private key to every revoked key. This
is modeling that we want the protocol to be secure (as we define shortly) even
when the intruder can get hold of old private keys.

Remaining rules of the example model the behavior of dishonest agents and
define what constitutes an attack:

iknowsAgents(A: Agent) = ⇒ iknows(A)

sign(M1 ,M2 : Untyped) = iknows(M1 ) · iknows(M2 )⇒ iknows(sign(M1 ,M2 ))

open(M1 ,M2 : Untyped) = iknows(sign(M1 ,M2 ))⇒ iknows(M2 )

pair(M1 ,M2 : Untyped) = iknows(M1 ) · iknows(M2 )⇒ iknows(pair(M1 ,M2 ))

proj (M1 ,M2 : Untyped) = iknows(pair(M1 ,M2 ))⇒ iknows(M1 ) · iknows(M2 )

dishonKey(A: Dishon,PK : Value) = iknows(PK ) · PK ∈ ring(A)
⇒ iknows(inv(PK )) · PK ∈ ring(A)

attdef (A: Honest ,S : Server) = iknows(inv(PK )) · PK∈db(S ,A,valid)⇒attack

The first rules are basically a standard Dolev-Yao intruder for the operators we
use (i.e., the intruder has access to all algorithms like encryption and signing, but
cannot break cryptography and can thus apply the algorithms only to messages
and keys he knows). The rule dishonKey expresses that the intruder gets the
private key to all public keys registered in the name of a dishonest agent. This

3 If one would rather like to model that servers cannot see which keys the other servers
consider as valid or revoked, one runs indeed into the boundaries of AIF-ω here. This
is because in this case one must accept that at least a dishonest agent can register
the same key at two different servers, violating the uniqueness invariant. If one wants
to model such systems, one must resort to finitely many servers.



reflects the common model that all dishonest agents work together. Finally the
rule attdef defines security indirectly by specifying what is an attack: when the
intruder finds out a private key that some server S considers currently as a
valid key of an honest agent A. One may give more goals, especially directly
talking about authentication—note that this secrecy goal implicitly refers to
authentication, as the intruder would for instance have a successful attack if he
manages to get a server S to accept as the public key of an honest agent any
key to which the intruder knows the private key. For an in-depth discussion of
formalizing authentication goals, see [4].

2.5 Restrictions and Syntactic Sugar

There are a few forms of rules that are problematic for the treatment in the
abstraction approach later. Actually, problematic rules may also indicate that
the modeler could have made a mistake (i.e. has something different in mind than
what the rule formally means). Most of the problematic rules are either paradox
(and thus useless) or can be compiled into non-problematic variants as syntactic
sugar. We first define problematic, or inadmissible, rules, then discuss what is
problematic about them and how they are handled. Afterwards, we assume to
deal only with admissible rules.

Definition 3. A rule r(X : Type) = LF · S+ · S− =[F ]⇒ RF · RS is called
inadmissible, if any of the following holds:

1. Either X ∈ si(. . .) occurs in S+ or X /∈ si( ) occurs in S−, but X does not
occur in LF , or

2. X ∈ si(A1, . . . , An) occurs in S+ and X /∈ si( ) occurs in S−, or
3. both X ∈ si(A1, . . . , An) and X ∈ si(A′1, . . . , A′n) occur in S+ for

(A′1, . . . , A
′
n) 6= (A1, . . . , An), or

4. both X ∈ si(A1, . . . , An) and X ∈ si(A′1, . . . , A′n) occur in RS for
(A′1, . . . , A

′
n) 6= (A1, . . . , An), or

5. X ∈ Si(A1, . . . , An) occurs in RS and neither:
– X ∈ F , nor
– X /∈ si( , . . . , ) occurs in S−, nor
– X ∈ si(A′1, . . . , A′n) occurs in S+;

For the rest of this paper, we consider only admissible rules.
Also we define the distinguished semantics as the following restriction of the

⇒ relation: S ⇒σ
r S′ additionally requires that σ(X) 6= σ(Y ) for any distinct

variables X,Y ∈ VA. ut

Condition (1) is in fact completely fine in a specification and it only causes
problems in the abstraction approach later (since set conditions are removed
from the rules and put into the abstraction of the data). To “rule out” such an
occurrence without bothering the modeler, the AIF-ω compiler simply introduces
a new fact symbol occurs/1 and adds occurs(X) on the left-hand and right-hand
side of every rule for every X ∈ VA of the rule. (In the running example, the rule



userUpdateKey has iknows(PK) on the left-hand side, simply because without
it, it would satisfy condition (1); since in this example the intruder knows all
public keys, this is the easiest way to ensure admissibility without introducing
occurs.)

Condition (2) means that the rule is simply never applicable. The compiler
refuses it as this is a clear specification error.

An example for condition (3) is the rule: r(. . .) = X ∈ s1(A)·X ∈ s1(B)⇒ . . .
Recall that our uniqueness invariant forbids two distinct sets of the same family
(like s1 here) to have an element in common. So this rule cannot be applicable
in any state that satisfies the invariant unless σ(A) = σ(B). As this may be a
specification error, the compiler also refuses this with the suggestion to unify
A and B. Similarly, condition (4) forbids the same situation on the right-hand
side, as for σ(A) 6= σ(B) the invariant would be violated. Also in this case, the
compiler refuses the rule with the suggestion to unify A and B.

An example of a rule that is inadmissible by condition (5) is the following:

r(X: Value) = p(X) =⇒ X ∈ s1(a)

The problem here is that we insert X into s1(a) without checking if possibly
X is already member of another set of the s1 family. Suppose for instance the
state S = {p(c), c ∈ s1(b)} is reachable, then r is applicable and produces state
S = {p(c), c ∈ s1(a), c ∈ s1(b)} violating the invariant that the sets belonging to
the same family are pairwise disjoint. However, note that r is only potentially
problematic: it depends on whether we can reach a state in which both p(c) and
c ∈ s1(. . .) holds for some constant c ∈ A, otherwise r is fine.

The AIF-ω compiler indeed allows for such inadmissible rules that potentially
violate the invariant, but transforms them into the following two admissible rules:

r1(X: Value) = p(X) ·X /∈ s1( ) =⇒ X ∈ s1(a)

r2(X: Value, A: T ) = p(X) ·X ∈ s1(A) =⇒ attack

where T is the appropriate type for the parameter of s1. Thus, we have turned
this into one rule for the “safe” case (r1) where X is not previously in any set
of s1, and one for the “unsafe” case (r2) where X is already in s1 and applying
the original rule r would lead to a violation of the invariant (unless σ(A) = a);4

in this case we directly raise the attack flag. Note that neither r1 nor r2 still
have the problem of condition (5). The compiler simply performs such case splits
until no rule has the problem of condition (5) anymore. We thus allow the user
to specify rules that would potentially violate the invariant, but make it part of
the analysis that no reachable state actually violates it.

Finally, consider the restriction to a distinguished semantics of Definition 3.
Here is an example why the standard semantics of Definition 2 can make things
very tricky:

r(. . .) = p(X,Y ) ·X ∈ s1(a) · Y ∈ s1(a)→ X ∈ s1(a)

4 In fact, we are here over-careful as the case σ(A) = a in the second rule would still
be fine; but a precise solution in general would require inequalities—which we leave
for future work.



Suppose the state S = {p(c, c) · c ∈ s1(a)} is reachable, then the rule clearly is
applicable in S (with σ(X) = σ(Y ) = c), but the rule tells us that Y should be
removed from s1(a) while X stays in there. (Here, the semantics tells us that the
positive X ∈ s1(a) “wins”, and the successor state is also S.) However, it would
be quite difficult to handle such cases in the abstraction and it would further
complicate the already complex set of conditions of Definition 3.

Therefore we like to work in the following with the distinguished semantics
of Definition 3, where the instantiation σ(X) = σ(Y ) in the above example
is simply excluded. To make this possible without imposing the restriction on
the modeler, the AIF-ω compiler applies the following transformation step. We
check in every rule for every pair of variables X,Y ∈ VA whether σ(X) = σ(Y )
is possible, i.e. neither X nor Y is in the fresh variables, and left-hand side
memberships of X and Y do not contradict each other. (Observe that in none
of the rules of the running example, such a unification of two VA variables is
possible.) If the rule does not prevent X = Y , the AIF-ω compiler generates a
variant of the rule where Y is replaced by X. Thus, we do not loose the case
X = Y even when interpreting the rules in the distinguished semantics.

As a fruit of all this restriction we can prove that admissible rules cannot
produce a reachable state that violates the invariant:

Lemma 1. Considering only admissible rules in the distinguished semantics.
Then there is no reachable state S and constant c ∈ A such that S contains both
c ∈ si(a1, . . . , an) and c ∈ si(a′1, . . . , a′n) for any (a1, . . . , an) 6= (a′1, . . . , a

′
n).

Proof. By induction over reachability. The property trivially holds for the initial
state. Suppose S is a reachable state with the property, and S ⇒σ

r S
′. Suppose S′

contains both c ∈ si(a1, . . . , an) and c ∈ si(a′1, . . . , a′n). Since S enjoys the prop-
erty, at least one of the two set conditions has been introduced by the transition.
Thus there is a value variable X in r and σ(X) = c, and X ∈ si(A1, . . . , An)
is in RS and either σ(Aj) = aj or σ(Aj) = a′j , so without loss of generality,
assume σ(Aj) = aj . By excluding (4) of Def. 3, RS cannot contain another set
condition X ∈ si(A′1, . . . , A′n) (such that σ(A′j) = a′j), so c ∈ si(a′1, . . . , a′n) must
have been present in S already. By excluding (5), we have however either of the
following cases:

– X /∈ si( ) is in S−, but that clearly contradicts the fact that σ(X) ∈
si(a

′
1, . . . , a

′
n) is in S.

– X ∈ si(B1, . . . , Bn) is in S+, and by excluding (3) and (2) this is the only
positive or negative condition for X on the si family. This means that only
σ(Bj) = a′j is possible, so c ∈ si(a′1, . . . , a′n) actually gets removed from the
state upon transition, and is no longer present in S′.

– X ∈ F , but that is also absurd since then σ(X) cannot occur in S.

So in all cases, we get to a contradiction, so we cannot have c being a member
of two sets of the si family. ut



3 Abstraction

We now define a translation from AIF-ω rules to Horn clauses augmented with
a special kind of rules, called term implication. (We show in a second step how
to encode these term implication rules into Horn clauses, to keep the approach
easier to grasp and to work with.) The basic idea is that we abstract the constants
of A into equivalence classes that are easier to work with. In fact, in the classic
AIF, we had finitely many equivalence classes, but in AIF-ω we have a countable
number of equivalence classes, due to the countable families of sets.

The abstraction of a constant c ∈ A for a state S shall be (e1, . . . , eN ) where
ei represents the set membership for the family si: either ei = 0 if c belongs to
no member of si or ei = si(a1, . . . , an) if ei belongs to set si(a1, . . . , an) in S.
For instance in a state with set conditions

{c1 ∈ db(a, s, revoked), c2 ∈ db(b, s, valid), c2 ∈ ring(b)}

the abstraction of c1 is (0 , db(a, s, revoked)) and similarly the abstraction of c2
is (ring(b), db(b, s, valid)). Thus, we do not distinguish concrete constants in the
abstraction whenever they have the same set memberships.

The second main idea (as in other Horn-clause based approaches) is to for-
mulate Horn clauses that entail all facts (under the abstraction) that hold in any
reachable state. This is like merging all states together into a single big state.

3.1 Translation of the Rules

We first define how admissible AIF-ω rules are translated into Horn clauses and
then show in the next section that this is a sound over-approximation (in the
distinguished semantics).

Definition 4. For the translation, we use the same symbols as declared by the
user in AIF-ω plus the following:

– new untyped variables Ei,X for X ∈ VA and 1 ≤ i ≤ N .
– a new function symbol val/N (where N is the number of families of sets)
– new fact symbols isT i/1 for every user-defined type Ti,
– and finally the infix fact symbol →→ /2.

For an admissible AIF-ω rule

r(X1: T1, . . . , Xm: Tm) = LF · S+ · S− =[F ]⇒ RF · RS

define its translation into a Horn clause [[r]] as follows.

Li(X) =


si(A1, . . . , An) if X ∈ si(A1, . . . , An) occurs in S+

0 if X /∈ si( ) occurs in S−

Ei,X otherwise



Ri(X) =


si(A1, . . . , An) if X ∈ si(A1, . . . , An) occurs in RS

Ei,X otherwise, if Li(X) = Ei,X and t /∈ F
0 otherwise

L(X) = (L1(X), . . . , LN (X))

R(X) = (R1(X), . . . , RN (X))

λ = [X 7→ val(L(X)) | X ∈ VA]

ρ = [X 7→ val(R(X)) | X ∈ VA]

C = {λ(X)→→ ρ(X) | X ∈ VA \ F, and λ(X) 6= ρ(X)}
Types = {isT i(Xi) | Ti is a user defined type}

[[r]] = Types · λ(LF )→ ρ(RF ) · C

where → is the “normal implication” in Horn clauses. We keep the set opera-
tor · from AIF-ω in our notation, denoting in Horn clauses simply conjunction.
Finally, note that our Horn clauses have in general more than one fact as con-
clusion, but this is of course also just syntactic sugar.

We give the translation for the behavior of the honest agents in the running
example (other rules are similar and shown in the appendix for completeness).

[[keyReg ]] = isUser(A) · isServer(S )→ iknows(val(ring(A), db(S ,A, valid)))

[[userUpdateKey ]] = isHonest(A) · isServer(S ) · iknows(val(ring(A),Edb,PK ))
→ iknows(sign(inv(val(0 ,Edb,PK )), pair(A, val(ring(A), 0 )))) ·
(val(ring(A),Edb,PK )→→ val(0 ,Edb,PK ))

[[serverUpdateKey ]] = isUser(A) · isServer(S ) ·
iknows(sign(inv(val(Ering,PK , db(S ,A, valid))), pair(A, val(Ering,NPK , 0 ))))
→ iknows(inv(val(Ering,PK , db(S ,A, revoked)))) ·
(val(Ering,PK , db(S ,A, valid))→→ val(Ering,PK , db(S ,A, revoked))) ·
(val(Ering,NPK , 0 )→→ val(Ering,NPK , db(S ,A, valid)))

First note that all right-hand side variables of the Horn clauses also occur on the
left-hand side; this is in fact the reason to introduce the typing facts like isUser .
In fact, the variables of each Horn clause are implicitly universally quantified (e.g.
in ProVerif) and we explicitly add these quantifiers when translating to SPASS.
Thus, [[keyReg ]] expresses that the intruder knows all those values (public keys)
that are in the key ring of a user A and registered as valid for A at server S.

For the [[userUpdateKey ]] rule, let us first look at the abstraction of the
involved keys PK and NPK . We have L(PK ) = (ring(A),Edb,PK ) (we write the
family name db rather than its index for readability) and R(PK ) = (0 ,Edb,PK ).
This reflects that the rule operates on any key in the key ring of an honest agent
A, where the variable Edb,PK then is a placeholder for what status the key has
in the database. The fact that in the original transition system, the key PK
gets removed from the key ring when applying this rule, is reflected by the 0
component in the right-hand side abstraction: this is any key that is not in the
key-ring but has the same status for db as on the left-hand side. Actually, in the



key update message that the agent produces for the signing key inv(PK ) it holds
that PK is no longer in the key ring. The Horn clause reflects that: for every
value in the ring of an honest user, the intruder gets the key update message
with the same key removed from the key ring (but with the same membership
in db). Finally, the→→ fact here intuitively expresses that everything that is true
about an abstract value val(ring(A), Edb,PK) is also true about val(0, Edb,PK).
We formally define this special meaning of →→ below.

3.2 Fixedpoint Definition

We define the fixedpoint for the Horn clauses in a standard way, where we give
a special meaning to the s →→ t facts: for every fact C[s] that the fixedpoint
contains, also C[t] must be contained. We see later how to encode this (and the
typing facts) for existing tools like ProVerif and SPASS.

Definition 5. Let

– Types = {isTi(c) | c ∈ [[Ti]] for every user-defined type Ti}.
– For a set of ground facts Γ , let Timplies(Γ ) = {C[t] | s→→ t ∈ Γ ∧C[s] ∈ Γ}

where C[·] is a context, i.e. a “term with a hole”, and C[t] means filling the
hole with term t.

– For any Horn clause r = A1 . . . An → C1 . . . Cm, define
Apply(r)(Γ ) = {σ(Ci) | σ(A1) ∈ Γ, . . . , σ(An) ∈ Γ, 1 ≤ i ≤ m}.

For a set of Horn clauses R, we define the least fixed-point LFP(R) as the least
closed set Γ that contains Types and is closed under Timplies and Apply(r) for
each r ∈ R.

For our running example we can describe the “essential” fixedpoint as follows,
for every A ∈ [[Honest]], D ∈ [[Dishon]] and S ∈ [[Server]]:

val(ring(A), 0)→→ val(ring(A), db(S,A, valid))
val(ring(A), 0)→→ val(0, 0)
val(ring(A), db(S,A, valid))→→ val(0, db(S,A, valid))
val(0, 0)→→ val(0, db(S,A, valid))
val(0, db(S,A, valid))→→ val(0, db(S,A, revoked))
val(ring(D), 0)→→ val(ring(D), db(S,D, valid))
val(ring(D), db(S,D, valid))→→ val(ring(D), db(S,D, revoked))
iknows(val(ring(A), 0))
iknows(sign(inv(val(0, 0)), pair(A, val(ring(A), 0))))
iknows(inv(0, db(S,A, revoked)))
iknows(val(ring(D), 0))iknows(inv(val(ring(D), 0)))

Here, we have omitted the type facts, “boring” intruder deductions, and con-
sequences of →→ (i.e., when C[s] and s →→ t omit C[t]). Note that the →→ facts
reflect the “life cycle” of the keys.



4 Soundness

We now show that the fixedpoint of Definition 5 represents a sound over-approxi-
mation of the transition system defined by an AIF-ω specification: if an attack
state is reachable in the transition system, then the fixedpoint will contain the
fact attack. The inverse is in general not true, i.e., we may have attack in the
fixedpoint while the transition system has no attack state. However, soundness
thus gives us the guarantee that the system is correct, if the fixedpoint does not
contain attack. To show soundness we take several steps:

– We first annotate in the transition system in every state all occurring con-
stants c ∈ A with the equivalence class that they shall be abstracted to.

– We then give a variant of the rules that correctly handles these labels.
– We can then eliminate all set conditions s ∈ . . . and s /∈ . . . from the transi-

tion rules and states, since this information is also present in the labels.
– Finally, we show for any fact that occurs in a reachable state, the fixedpoint

contains its abstraction (i.e., replacing any labeled concrete constant with
just its label).

Note that the first three steps are isomorphic transformations of the state transi-
tion system, i.e., we maintain the same set of reachable states only in a different
representation.

4.1 The Labeled Concrete Model

The basic idea of our abstraction is that every constant c ∈ A shall be abstracted
by what sets it belongs to, i.e., two constants that belong to exactly the same
sets will be identified in the abstraction. The first step is that in every reachable
state S, we shall label every occurring constant c ∈ A with this equivalence class.
Note that upon state transitions, the equivalence class of a constant can change,
since its set memberships can.

Definition 6. Given a state S and a constant c ∈ A that occurs in S. Then the
N -tuple (e1, . . . , eN ) is called the correct label of c in S if for every 1 ≤ i ≤ N
either

– ei = 0 and c ∈ si(a1, . . . , an) does not occur in S for any a1, . . . , an, or
– ei = si(a1, . . . , an) and c ∈ si(a1, . . . , an) occurs in S and c ∈ si(a′1, . . . , a′n)

does not occur in S for any (a′1, . . . , a
′
n) 6= (a1, . . . , an).

We write c@l for constant c annotated with label l.

Note that, at this point, the label is merely an annotation and it can be applied
correctly to every constant c ∈ A in every reachable state S, because by Lemma 1,
c can never be in more than one set of the same family, i.e., c ∈ si(a1, . . . , an)
and c ∈ si(a′1, . . . , a′N ) cannot occur in the same state S.



4.2 Labeled Transition Rules

While, in the previous definition, the labels are just an annotation that decorate
each state, we now show that we can actually modify the transition rules so that
they “generate” the labels on the right-hand side, and “pattern match” existing
labels on the left-hand side.

Definition 7. Given an AIF-ω rule r we define the corresponding labeled rule
r′ as the following modification of r:

– Every variable X ∈ VA on the left-hand side is labeled with L(X) and every
variable X ∈ VA on the right-hand side (including the fresh variables) is
labeled with R(X).

– All variables Ei,X that occur in L(X) and R(X) are added to the rule pa-
rameters of r′.

– For each variable X ∈ VA that occurs both on the left-hand side and the
right-hand side and where L(X) 6= R(X), we augment r′ with the label
modification X@L(X) 7→ X@R(X).

The semantics of r′ is defined as follows. First, the labeling symbol @ is not
treated as a mere annotation anymore, but as a binary function symbol (so labels
are treated as a regular part of terms, including variable matching on the left-
hand side). To define the semantics of the label modifications, consider a rule

r′ = r′0 · (X1@l1 7→ X1@r1) · . . . · (Xn@ln 7→ Xn@rn)

where r′0 is the basis of r′ that does not contain label modifications. We define
S ⇒σ

r′ S
′ iff S ⇒σ

r′0
S′0 and S′ is obtained from S′0 by replacing every occurrence

of σ(Xi@li) with σ(Xi@ri) for i = 1, 2, . . . , n (in this order).

Note that the order i = 1, 2, . . . , n does not matter: the distinguished semantics
requires that all distinct variables X,X ′ ∈ VA have σ(X) 6= σ(X ′) and therefore
the label replacements are on disjoint value-label pairs.

As an example, the second rule of our running example looks as follows in
the labeled model:

userUpdateKey ′(A: Honest ,S : Server ,PK : Value,NPK : Value) =
PK @(ring(A),Edb,X ) ∈ ring(A) · iknows(PK @(ring(A),Edb,X ))
=[NPK @(ring(A), 0 )]⇒ NPK @(ring(A), 0 ) ∈ ring(A) ·
iknows(sign(inv(PK @(0 ,Edb,X )), pair(A,NPK @(ring(A), 0 )))) ·
(PK @(ring(A),Edb,X ) 7→ PK @(0 ,Edb,X ));

Lemma 2. Given a set R of AIF-ω rules, and let R′ be the corresponding labeled
rules. Then R′ induces the same state space as R except that all states are
correctly labeled.

Proof. This requires two induction proofs, one showing that every R-reachable
state has its R′-reachable correspondent. The other direction, that every R′-
reachable state has an R-reachable correspondent is similar and actually not
necessary for the overall soundness, so we omit it here.



For the initial state ∅, the statement is immediate. Suppose now S1 is an
R-reachable state, S′1 is an R′-reachable state where S′1 is like S1 but correctly
labeled. Suppose further S1 ⇒σ

r S2 for some r ∈ R, some substitution σ, and
some successor state S2. We show that the corresponding rule r′ ∈ R′ allows for
a transition S1 ⇒σ′τ

r′ S′2 where S′2 is the correctly labeled version of S2 and some
substitutions σ′ and τ .

The substitution σ′ here is an adaption of σ, because untyped variables are
substituted for terms that can contain constants from A that are labeled in S′1
but unlabeled in S1. In fact, this label may even change upon transition, in this
case, σ′ contains the label of S′1. Thus, σ and σ′ only differ on untyped variables.

The substitution τ is for all variables Ei,X that occur in the label variables
of r′. We show the statement for the following choice of τ : for each label variable
Ei,X that occurs in r′ (where by construction X ∈ VA is a variable that occurs
in r′ and 1 ≤ i ≤ N), we set τ(Ei,X) = ei(X) if e(X) = (e1(X), . . . , eN (X))
is the correct label of σ(X) in S1. Note that τ is a grounding substitution and
does not interfere with σ or σ′.

To prove that S1 ⇒σ′τ
r′ S′2, we first consider the matching of r on S1 and r′

on S′1. We have to show that despite the additional labels, essentially the same
match is still possible. Consider thus any variable X ∈ VA that occurs on the
left-hand side of r and thus X@L(X) occurs correspondingly on the left-hand
side of r′. We have to show that the correct label for σ(X) in S1 is indeed
σ(τ(L(X))). For 1 ≤ i ≤ N , we distinguish three cases:

– Li(X) = si(A1, . . . , An), then S+ of r contains the positive set condition
X ∈ si(A1, . . . , An) and thus σ(X ∈ si(A1, . . . , An)) occurs in S1. Thus
σ(τ(Li(X))) = σ(si(A1, . . . , An)) is the i-th part of the correct label of
σ(X).

– Li(X) = 0, then S− of r contains the negative set condition X /∈ si( )
and thus σ(X) ∈ si(a1, . . . , an) does not occur in S1 for any ai. Thus
σ(τ(Li(X))) = 0 is the i-th part of the correct label of σ(X).

– Li(X) = Ei,X . In this case the rule neither requires nor forbids X to be
member of some set of family si. Since τ(Ei,X) = ei(X) where ei(X) is i-th
component of the correct label for σ(X), we have that σ(τ(Li(X))) = ei(X)
is the i-th component of the correct label for σ(X).

Thus in all cases, σ(τ(L(X)) is the correct label for σ(X) in S1. Since S′1 is
correctly labeled, all occurrences of σ(X) in S′1 are labeled σ(τ(L(X)), and
thus the rule r′ is applicable to S′1 under σ′τ (where σ′ adapts to labels in the
substitution of untyped variables). It remains to show that under this match we
obtain the desired successor state S′2.

To that end, we first show that for any variable X ∈ A that occurs in the
right-hand side of r, σ(τ(R(X)) is the correct label for σ(X) in S2. For 1 ≤ i ≤ N ,
we distinguish three cases:

– Ri(X) = s1(A1, . . . , An). Then X ∈ si(A1, . . . , An) occurs in RS of r and
thus σ(X ∈ si(A1, . . . , An)) is in S2. Thus σ(τ(Ri(X))) = σ(si(A1, . . . , An))
is the i-th component of the correct label for σ(X) in S2.



– Ri(X) = 0. Then either X ∈ si(. . .) occurs in S+ or X ∈ si( ) occurs in
S−, or X is a fresh variable, and but X ∈ si(. . .) does not occur in RS,
so σ(X ∈ si(a1, . . . , an)) is not contained in S2 for any aj , and therefore
σ(τ(Ri(X))) = 0 is the i-th component of the correct label for σ(X) in S2.

– Ri(X) = Ei,X . Then the set membership of X with respect to family si does
not change on the transition, and σ(τ(Ri(X))) = ei(X) is the correct label
for σ(X) also in S2.

Thus in all cases, σ(τ(R(X))) is the correct label for σ(X) in S2. Finally, the
label replacements of r′ ensure that for all c@l that occur in S′1 and where the
label of c has changed upon transition to S′2 to label l′ will be updated. Thus S′2
is the correctly labeled version of S2. ut

4.3 Labeled Concrete Model without Set Conditions

Since every label correctly represents the set memberships of the involved con-
stants, we can just do without set membership facts, i.e., remove from the labeled
rules the S+, S− and RS part. We obtain states that do not contain any s ∈ si(·)
conditions anymore, but only handle this information in the labels of the con-
stants. It is immediate from Lemma 2 that this changes the model only in terms
of representation:

Lemma 3. The labeled model without set conditions has the same reachable
states as the labeled model, except that states have no more explicit set conditions.

4.4 Reachable Abstract Facts

All the previous steps were only changing the representation of the model, but
besides that the models are all equivalent. Now we finally come to the actual
abstraction step that transforms the model into an abstract over-approximation.

We define a representation function η that maps terms and facts of the con-
crete model to ones of the abstract model:

Definition 8.

η(t@(e1, . . . , eN )) = val(e1, . . . , eN ) for t ∈ A ∪ VA
η(f(t1, . . . , tn)) = f(η(t1), . . . , η(tn))

for any function or fact symbol f of arity n

We show that the abstract rules allow for the derivation of the abstract
representation of every reachable fact f of the concrete model:

Lemma 4. For an AIF-ω rule set R, let R′ be the corresponding rule set in the
labeled model without, f be a fact in a reachable state of R′ (i.e. ∅ →∗R′ S and
f ∈ S for some S). Let [[R]] be the translation into Horn clauses of the rules R
according to Definition 4, and Γ = LFP([[R]]). Then η(f) ∈ Γ .

Due to lack of space we refer to Appendix A for a complete proof: this lemma
is simply adapting the corresponding result for AIF [10]. From Lemmata 2, 3
and 4 immediately follows that the over-approximation is sound:



Theorem 1. Given an AIF-ω specification with rules R. If an attack state is
reachable with R, then attack ∈ LFP([[R]]).

5 Encoding in SPASS and ProVerif

We now want to use SPASS and ProVerif for checking the property attack ∈
LFP([[R]]). Three aspects in our definition of LFP need special considerations.

First, SPASS is a theorem prover for standard first-order logic FOL (and
the Horn clause resolution in ProVerif is very similar, but more geared towards
protocol verification). The problem here is that the Horn clauses [[R]] always have
the trivial model where the interpretation of all facts is set simply to true, and
in this model, attack holds. We are interested in the “least” model and terms
to be interpreted in the Herbrand universe, i.e., the free term algebra TΣ . The
common “Herbrand trick” is to try to prove the FOL formula [[R]] =⇒ attack ,
i.e., that in every model of the Horn clauses, attack is true. If that is valid, then
also in the least Herbrand model, attack is true. Vice-versa, if the formula is not
valid, then there are some models in which attack does not hold, and then also
in the least Herbrand model. This trick is also part of the setup of ProVerif.

The second difficulty is the encoding of the user-defined types. For instance,
the declaration A = {. . .} leads to the extension [[A]] = {an | n ∈ N} for some
new constant symbols an, and then by definition, LFP([[R]]) contains the infinite
set {isA(an) | n ∈ N}. We could encode this by Horn clauses

isA(mkA(0)) ∧ ∀X.isA(mkA(X))→ isA(mkA(s(X)))

for new function symbols mkA and s. Note that this encoding only makes sense
in the least Herbrand model (standard FOL allows to interpret s as the identity).
However, it easily leads to non-termination in tools. A version that works how-
ever, is simply saying ∀X.isA(mkA(X)). Interpreting this in the least Herbrand
model, X can be instantiated with any term from TΣ (which is countable).

The third and final difficulty are the →→ facts that have a special meaning in
LFP([[R]]): whenever both C[s] and s →→ t in LFP([[R]]) then also C[t] (for any
context C[·]). We can encode this into Horn clauses because we can soundly limit
the set of contexts C[·] that need to be considered: it is sufficient to consider
right-hand side facts of rules in R in which a variable X ∈ VA occurs (note
that a fact may have more than one such occurrence). Define thus the finite set
Con = {C[·] | C[X] is a RHS fact in R,X ∈ VA}. We generate the additional
Horn clauses: {∀X,Y.C[X] ∧ (X →→ Y )→ C[Y ] | C[·] ∈ Con} .

Lemma 5. The encoding of →→ into Horn clauses is correct.

Proof. Suppose C[s] and s →→ t are in the fixedpoint. Then C[s] is the conse-
quence of some Horn clause A → B, i.e., C[s] = σ(B) such that σ(A) is part
of the fixedpoint. We distinguish two cases. First B = C ′[X] for some X ∈ VA,
some context C ′[·] and σ(C ′[·]) = C[·], i.e., s = σ(X) is directly the instance of
a VA variable, and thus our Horn clause encoding covers C[·]. Second, the only



Number of Agents Backend

Honest Dishon Server ProVerif SPASS

AIF

1 1 1 0.025s 0.891s

2 1 1 0.135s 324.696s

2 2 1 0.418s Timeout

3 3 1 2.057s Timeout

AIF-ω ω ω ω 0.034s 0.941s

Table 1. AIF vs. AIF-ω on the key-server example.

other possibility for σ(B) = C[s] is that B contains an untyped variable that
matches s or a super-term of it in C[s]. By the rule shape, this untyped variable
is also part of the assumptions A. Since σ(A) is already in the fixedpoint, we
can by an inductive argument conclude that for every C0[s] of σ(A) also C0[t] is
in the fixedpoint. In both cases, we conclude that C[t] is derivable. ut

5.1 Experimental Results

Table 1 compares the run times of our key-server example for AIF and AIF-ω,
taken on a 2.66 GHz Core 2 Duo, 8 GB of RAM. In AIF we have to specify a fixed
number of honest and dishonest users and servers, while in AIF-ω we can have an
unbounded set for each of them (denoted ω in the Figure). Observe that in AIF
the run times “explode” when increasing the number of agents. It is clear why
this happens when looking at an example: when we specify the sets ring(User)
in AIF, User needs to be a finite set (the honest and dishonest users) and this
gets first translated into n different sets when we specify n users. Since these
sets are by construction all disjoint, we can specify in AIF-ω instead ring(User !)
turning the n sets of the AIF abstraction into a single family of sets in the AIF-ω
abstraction—and then allowing even for a countably infinite set User . Observe
that the run times for AIF-ω for infinitely many agents are indeed very close
to the ones of AIF with one agent. Thus, even when dealing with finitely many
agents, AIF-ω allows for a substantial improvement of performance whenever we
can exploit the uniqueness, i.e., can specify set(Type!) instead of set(Type).

The key server is in fact our simplest example, a kind of “NSPK” of stateful
protocols. We updated our suite of case studies for AIF to benefit in the same way
from the AIF-ω extension [3]. These include the ASW protocol (one of the orig-
inal motivations for developing AIF and also for extending it to AIF-ω), an in-
depth analysis of the Secure Vehicle Communication protocols SEVECOM [11],
and a model of and analysis of PKCS#11 tokens [9] that replicates the attacks
reported in [6] and verifies the proposed fixes.

6 Conclusions

In this paper we introduced the language AIF-ω and showed how it can be
used to model cryptographic systems with unbounded numbers of agents and



databases pertaining to these agents. AIF-ω extends our previous language AIF
by introducing types with countably infinite constants and allowing families of
sets to range over such types. The only requirement to this extension is that the
sets of all infinite families are kept pairwise disjoint.

We defined the semantics of this extension and proposed an analysis tech-
nique that translates AIF-ω models into Horn clauses, which are then solved
by standard off-the-shelf resolution-based theorem provers. We proved that our
analysis is sound w.r.t. the transition system defined by the semantics: if an
attack is reachable, then it is also derivable in the Horn clause model.

Finally, the experimental results show that the clauses produced by AIF-ω,
for the protocol with unbounded agents, can be solved in running times similar
to their AIF counterparts for just one agent of each type, both in ProVerif
and SPASS. In contrast, adding agents to the bounded AIF model produces an
exponential increase in running times.

To our knowledge, this is the first work that proposes a fully automated
technique for analyzing stateful cryptographic protocols with unbounded agents.
This work is a direct extension of our previous work on AIF [10], which allows to
model infinite transition systems with bounded agents. Its relation with AIF-ω
has been extensively described throughout this paper. Another work that uses
the set-abstraction is our work on Set-π [4], which extends the Applied π-calculus
by similarly introducing a notion of a fixed number of sets. Set-π presents a
modeling interface that is more familiar to the user, and the process-calculus
specification exposes a great deal of details (e.g. locking, replications) that are
abstracted away by the AIF rules. This reduces the gap to the system imple-
mentation, but as a modeling language Set-π has essentially the same expressive
power of AIF. We believe that a similar extension can be devised for our process
algebraic interface, possibly using AIF-ω as an intermediate representation.

Another related work is StatVerif [1], which extends the Applied π-calculus
with global cells that can be accessed and modified by the processes. As the
number of cells is finite and fixed for a model, the amount of state that one
can finitely represent is limited. However, the particular encoding of StatVerif is
more precise in capturing state transitions synchronized over multiple cells. We
claim that the two approaches are orthogonal, and we have not succeeded so far
in combining the advantages of both with an encoding into Horn clauses.

The Tamarin prover [8] and its process calculus interface SAPIC [7] use mul-
tiset rewriting rules to describe cryptographic protocols, and a semi-automated
search procedure to find a solution for the models. This formalism is very expres-
sive and allows to prove security properties in stateful protocols with unbounded
agents, but expressiveness comes at the price of usability, as the search procedure
needs to be guided by introducing lemmas in the models.

Finally, we believe that bounded-agents results like [5] can be also derived
for AIF-ω, since the resolution will never run into distinguishing single agents.
The experimental results, however, suggest that for our verification it is more
efficient to avoid the enumeration of concrete agents where possible.
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A Proofs

Proof (Lemma 4). We show this by induction over reachability. The initial state
∅ is clear. Let now S be any reachable state and η(f) ∈ Γ for every f ∈ S. We
show that for every S′ that is reached by one rule application and every f ∈ S′
also η(f) ∈ Γ .

Let the considered rule be

r(X: T ) = LF =[F ]⇒ RF · LM

where LM are the label modifications (see Definition 7)—being part of the
labeled model without set conditions there are no set conditions in the rule.
By our constructions, the Horn clauses [[R]] contain a similar rule, namely

[[r]] = Types · η(LF )→ η(RF ) · η(LM)

where and Types is the typing requirement for user-defined types and where we
extend η to sets of facts as expected. The extension of η to label modifications
(and sets thereof in η(LM)) is also straightforward:

η(t@l 7→ t@l′) = val(l)→→ val(l′)

Consider now state transition S →σ
r S′. Then for all variables X of user-

defined types σ(X) satisfies Types. Further, σ(LF ) ⊆ S and thus η(σ(LF )) ⊆
η(S). Thus the Horn clause [[r]] is applicable and therefore η(σ(RF )) ⊆ Γ . It
remains only to show that all the modifications of facts by the label modification
rule are also contained in Γ .

To that end, consider any fact f [c@l] ∈ σ(S ∪ RF ) that has exactly one
occurrence of c@l and LM contains the rule t@l 7→ t@l′ for some t with σ(t) = c.
Since l→→ l′ is part of the term implication of [[r]] and since we have η(f [c@l]) ∈
Γ , we also have η(f [c@l′]) ∈ Γ . If there is more than one occurrence of a constant
c ∈ A in a fact that is affected by a label modification, then we can repeatedly
apply this argument. Note that the term implication of the (generalized) Horn
clauses only replace one occurrence at a time. The reason is that from the label
l we cannot be sure that all its occurrences correspond to the same constant c@l
in the concrete model, so replacement of only part of the labels is included.

We have thus shown that all the facts in S′ are also contained in Γ , modulo
the representation function η.



B Complete Translation of the running example

[[keyReg ]] = isUser(A) · isServer(S )→ iknows(val(ring(A), db(S ,A, valid)))

[[userUpdateKey ]] = isHonest(A) · isServer(S ) · iknows(val(ring(A),Edb,PK ))
→ iknows(sign(inv(val(0 ,Edb,PK )), pair(A, val(ring(A), 0 )))) ·
val(ring(A),Edb,PK )→→ val(0 ,Edb,PK )

[[serverUpdateKey ]] = isUser(A) · isServer(S ) ·
iknows(sign(inv(val(Ering,PK , db(S ,A, valid))), pair(A, val(Ering,NPK , 0 ))))
→ iknows(inv(val(Ering,PK , db(S ,A, revoked)))) ·
val(Ering,PK , db(S ,A, valid))→→ val(Ering,PK , db(S ,A, revoked)) ·
val(Ering,NPK , 0 )→→ val(Ering,NPK , db(S ,A, valid))

[[iAgents]] = isAgent(A)→ iknows(A)

[[iSign]] = iknows(M1 ) · iknows(M2 )→ iknows(sign(M1 ,M2 ))

[[Open]] = iknows(sign(M1 ,M2 ))→ iknows(M2 )

[[iPair ]] = iknows(M1 ) · iknows(M2 )→ iknows(pair(M1 ,M2 ))

[[iProj ]] = iknows(pair(M1 ,M2 ))→ iknows(M1 ) · iknows(M2 )

[[dishonKey ]] = isDishon(A) · iknows(val(ring(A),Edb,PK ))→ iknows(inv(ring(A),Edb,PK ))

[[attdef ]] = isHonest(A) · isServer(S ) · iknows(inv(val(Ering,PK , db(S ,A, valid))))
→ attack · val(Ering,PK , db(S ,A, valid))→→ val(Ering,PK , 0 )
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