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Abstract

Linear logic has been used as a foundation (and inspiration) for the development of programming languages, logical frame-
works and models for concurrency. Linear logic’s cut-elimination and the completeness of focusing are two of its fundamen-
tal properties that have been exploited in such applications. Cut-elimination guarantees that linear logic is consistent and has
the so-called sub-formula property. Focusing is a discipline for proof search that was introduced to reduce the search space,
but has proved to have more value, as it allows one to specify the shapes of proofs available. This paper formalizes linear
logic in Coq and mechanizes the proof of cut-elimination and the completeness of focusing. Moreover, the implemented
logic is used to encode an object logic, such as in a linear logical framework, and prove adequacy.
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1 Introduction

Linear Logic was proposed by Girard [12] more than 30 years ago, but it still inspires
computer scientists and proof theorists alike, being used as a foundation for programming
languages, models of concurrency [18,8,19] and logical frameworks [16]. Such develop-
ments rely on two fundamental properties of linear logic: cut-elimination [11] and the
completeness of focusing [1].

Cut-elimination states that any proof with instances of the cut-rule:

` Γ, A ` ∆, A⊥

` Γ,∆
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can be transformed into a proof of the same formula without any instance of the cut-rule.
The two main consequences of this theorem are: (1) the system’s consistency, i.e., it is not
possible to prove both ` A and ` A⊥; and (2) all proofs satisfy the sub-formula property,
i.e., a proof of a formula A, contains only sub-formulas of A. Focusing is a proof search
discipline proposed by Andreoli [1] which constraints proofs by enforcing that rules shar-
ing some structural property, like invertibility, are grouped together. The completeness of
focusing states that if a formula has a proof, then it has a focused proof.

The combination of cut-elimination and focusing allows for the construction of power-
ful linear logical frameworks. By relying on these two properties, proof search is consider-
ably improved. Moreover, these properties can be used to engineer the types of proofs, thus
allowing the specification/encoding of a number of different proof systems (e.g., sequent
calculus, natural deduction and tableaux systems) for different logics [16,17].

This paper presents a formalization of first-order classical linear logic (LL) in Coq,
including proofs for cut-elimination and completeness of focusing. Up to the best of our
knowledge, this is the first formalization the meta-theory of first-order linear logic in Coq
(see Section 6). Our main contributions are listed below:
(1) Quantifiers: Most of the formalizations of cut-elimination in the literature deal with

propositional systems (see Section 6). The first-order quantifiers of LL are fundamental
for the adequacy results in Section 5. We use the technique of Parametric HOAS [4] (i.e.,
dependent types in Coq) to encode the LL quantifiers in the meta-logic. This alleviates the
burden of specifying substitution and freshness conditions. However, it comes at a price,
as substitution lemmas and structural preservation under substitutions need to be assumed
as axioms (see details in Section 2).
(2) Focusing completeness: While cut-elimination theorems for a number of proof sys-
tems have been formalized, including propositional linear logic [3], this is, as far as we
know, the first formalization of first-order LL’s cut-elimination and LL’s focused proof sys-
tem completeness. The proof formalized is exactly the one presented by Andreoli [1]. It
involves a number of non-trivial proof transformations.
(3) Encoding proof systems: By relying on linear logic’s cut-elimination and focusing
property, it is possible to encode a number of proof systems [17,16]. Focusing is used to
achieve the highest level of adequacy (i.e., from rules to partial derivations). This is done by
engineering derivations available in the LL framework to match derivations of the encoded
proof system. We build a tactic that automatically handles the whole negative phase of the
proof, making proofs shorter and simpler for the specifier/programmer. The mechanized
proofs are similar to the paper proofs and quite direct. We demonstrate this by encoding
the system LJ for intuitionistic propositional logic into LL.
(4) Treatment of contexts: A main challenge in LL arises from the fact that contexts
are treated as multisets of formulas and not as sets (due to the lack of weakening and
contraction) . We show that the exchange rule is admissible in LL, i.e., if ` Γ is provable in
LL and Γ′ is a permutation of Γ then ` Γ′ is provable in LL. We use the library Morphisms of
Coq to easily substitute, in any proof, equivalent multisets. For doing that, we extended the
standard library for multisets in Coq with additional theorems. Moreover, we developed
tactics that handle (automatically) most of the proofs of multisets in our formalization.
(5) Induction measures: Although more relaxed measures for the height of derivations
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can be used as induction measures (e.g., the axiom rule can have height n for any n), we
decided to follow carefully the induction measures used in the proof of cut-elimination and
the completeness of focusing in, e.g., [25] and [1]. Hence, our proofs reflect exactly the
procedures described in the literature.

Our formalization is available at https://github.com/meta-logic/coq-ll and the organiza-
tion of the paper follows closely the structure of the files. Section 2 deals with the syntax
of LL and the snippets of code are from SyntaxLL.v. Section 3 deals with different sequent
calculi for LL and a focused system for it (SequentCalculi.v). Section 4 presents several
results about LL: structural properties (StructuralRules.v), cut-elimination (Cut_Elim.v) and
completeness of focusing (Completeness.v). Section 5 shows the application of our formal-
ization to prove correct the encoding of LJ into LL (LJLL.v). Section 6 discusses related and
future work. We present here some of the most important definitions and key cases in the
proofs of the theorems. It is important to note that, for the sake of presentation, we omit
some cases (e.g., in inductive definitions) and we also change marginally the notation to
improve readability. Also, in theorems’ statements, all the variables are implicitly univer-
sally quantified. The reader may always consult the complete definitions and proofs in the
source files.

2 Linear Logic Syntax

Linear logic (LL) [12] is a resource conscious logic, in the sense that formulas are con-
sumed when used during proofs, unless they are marked with the exponential ? (whose
dual is !), in which case, they behave classically. LL connectives include the additive con-
junction & and disjunction ⊕ and their multiplicative versions ⊗ and O, together with their
units and the first-order quantifiers:

literal multiplicative additive quantified exponential

A, B, . . . ::= a | A ⊗ B | 1 | A ⊕ B | 0 | ∃x.A | !A

| a⊥ | AOB | ⊥ | ANB | > | ∀x.A | ?A
(1)

The main issue when formalizing first-order logics in proof assistants is how to en-
code quantifiers. At first glance, one might consider the following naive signature for the
constructors fx and ex of universally and existentially quantified formulas, respectively:
| fx : (var→ formula)→ formula | ex : (var→ formula)→ formula

In order to define substitutions of variables for terms on such formulas, it is necessary to
define a term type as a union of, e.g., vars and functions; and also to implement substitution
from scratch. This means dealing with variable capture and equality of terms.

It is possible to avoid this unnecessary bureaucracy if substitution is handled by the
meta-level β-reduction. This means that a quantified formula Qx.F (Q ∈ {∀,∃}) is repre-
sented as Q(λx.F), where λ is a meta-level binder. In this case, we have:
| fx : (term→ formula)→ formula | ex : (term→ formula)→ formula

This approach is called higher-order abstract syntax (HOAS) or λ-tree syntax [21,15].
In a functional framework, the type (term→ formula) ranges over all functions of this type.
This is not desirable as it allows functions, called exotic terms [6], to pattern match on the
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term and return a structurally (or logically) different formula for each case. Note that, in
a relational framework, this is not a problem, since all definitions must have the type of
propositions on the meta-level (different from the type of formulas of the object logic).

A solution for this problem is either to require that term is an uninhabited type or to
quantifying over all types as below:
| fx : forall T, (T → formula)→ formula | ex : forall T, (T → formula)→ formula

However, in both specifications, it is impossible to write a function that computes the
size of a formula (a good description of these problems can be found at http://adam.chlipala.
net/cpdt/html/Hoas.html). A solution proposed in [4] consists of parametrizing the type T for
quantified variables not in quantifiers’ constructors, but outside the whole specification.
This approach is called parametric HOAS. Using this technique, linear logic’s syntax is
formalized as follows.
Section Sec_lExp.
Variable T: Type. (* Parameter for building variables *)
Inductive term := (* Terms *)
| var (t: T) | cte (e: A) (* variables and constants *)
| fc1 (n: nat) (t: term) | fc2 (n: nat) (t1 t2: term). (* family of functions of 1/2 argument *)
Inductive aprop := (* Atomic propositions *)
| a0: nat→ aprop (* 0-ary predicates *)
| a1: nat→ term→ aprop | a2: nat→ term→ term→ aprop. (* family of 1/2-ary predicates *)
Inductive lexp := (* Formulas *)
| atom (a : aprop) ) | perp (a: aprop) (* positive/negated atoms *)
| top | bot | zero | one (* units *)
| tensor (F G: lexp) | par (F G: lexp) (* multiplicative *)
| plus (F G: lexp) | witH (F G: lexp) (* additive *)
| bang (F: lexp) | quest (F: lexp) (* exponentials *)
| ex (f: T → lexp) | fx (f: T → lexp). (* quantifiers *)

End Sec_lExp.

The type A of constant terms is a global parameter. The signature of first-order terms
includes a family of functions fc1 and fc2 of one and two arguments respectively. In each
case, the first parameter (nat) is the identifier, i.e., the name of the function. Atomic propo-
sitions can be 0-ary (a0), unary (a1) or binary (a2) predicates. As in the case of functions, a
natural number acts as the identifier. The rest of the code should be self-explanatory. We
note that more general constructors for functions and predicate using a list (of arbitrary
length) of parameters could have been defined. However, the current signature is general
enough for our encodings and it greatly simplifies the notation.

All types defined in Section Sec_lExp are parametrized by the type T. Therefore, the type
of top, for example, is not lexp, but forall T: Type, lexp T. Hence, for any type T, the expression
top T is of type lexp T (e.g., top nat: lexp nat). Clearly, the definition of linear logic formulas
must be independent of T. In particular, it should not allow pattern matching on terms of
type T. Therefore, the type Lexp of linear logic formulas is defined over all types T (i.e., it is
a dependent type). The same holds for atoms and terms:
Definition Term := forall T: Type, term T. (* type for terms *)
Definition AProp := forall T: Type, aprop T. (* type for atomic propositions *)
Definition Lexp := forall T: Type, lexp T. (* Type for formulas *)

Note that top nat is not of type Lexp and connectives must be functions on T, e.g.,
Definition Top: Lexp := fun T⇒ top. (* formula >*)
Definition Atom (P: AProp): Lexp := fun T ⇒ atom (P T). (* building atomic propositions *)
Definition Tensor (F G: Lexp): Lexp := fun T ⇒ tensor (F T) (G T). (* formula F ⊗G *)

4

http://adam.chlipala.net/cpdt/html/Hoas.html
http://adam.chlipala.net/cpdt/html/Hoas.html


Since T is never destructed, all its occurrences in the above code can be replaced by “_”
(meaning “irrelevant”). This means that an arbitrary type T is passed as a parameter, and it
does not interfere with the structure of formulas.

Some of the forthcoming proofs proceed by structural induction on a LL formula F: Lexp.
However, since Lexp is a (polymorphic) function, not an inductive type, Coq’s usual destruct,
induction or inversion tactics do not work. Following [4], the solution is to define inductively
the notion of closed formulas as follows:
Inductive ClosedT: Term→ Prop :=
| cl_cte: forall C, ClosedT (Cte C)
| cl_fc1: forall n t1, ClosedT t1→ ClosedT (FC1 n t1)
| cl_fc2: forall n t1 t2, ClosedT t1→ ClosedT t2→ ClosedT (FC2 n t1 t2).

Inductive ClosedA : AProp→ Prop :=
| cl_a0: forall n, ClosedA (A0 n)
| cl_a1: forall n t, ClosedT t→ ClosedA (fun _⇒ a1 n (t _)).
| cl_a2: forall n t t’, ClosedT t→ ClosedT t’→ ClosedA (fun _⇒ a2 n (t _) (t’ _)).

Inductive Closed : Lexp→ Prop :=
| cl_atom: forall A, ClosedA A→ Closed (Atom A )
| cl_perp: forall A, ClosedA A→ Closed (Perp A )
| cl_one: Closed One
| cl_tensor: forall F G, Closed F→ Closed G→ Closed (Tensor F G)
| cl_fx: forall FX, Closed (Fx FX)
[...]

Such definitions rule out the occurrences of the open term var x in the type Term and,
consequently, in atomic propositions and formulas. Now we need the axioms that only
closed structures can be built.
Axiom ax_closedT: forall X: Term, ClosedT X.
Axiom ax_closedA: forall A: AProp, ClosedA A.
Axiom ax_closed : forall F: Lexp, Closed F.

The statements above cannot be proved in Coq, mainly because it is not possible to in-
duct on function types (such as Term). This would require, e.g., a meta-model of the Calculus
of Inductive Constructions [2] itself inside Coq. Let us give some intuition of why those
axioms are consistent with the theory of Coq. This will also clarify the closeness condition
we impose on Lexp. If 1 is the identifier for the predicate P and c is a constant of type A, the
atomic proposition P(c) can be defined as Definition Pc: Lexp := fun T: Type⇒ atom (a1 1 (cte c)).

However, the same exercise does not work for P(x) when x is a free variable. If we were to
write Definition Px: Lexp := fun T: Type⇒ atom (a1 1 (var ??)). , then “??” must be an inhabitant of T.
Since we do not know anything about T, we cannot name an element of it and Px will never
type check. Hence, both terms and formulas are necessarily closed (without free variable).

Another consequence of the functional representation of terms is that we require the
axiom of Functional Extensionality of the standard library of Coq to check whether two
terms/formulas are the same:
Axiom functional_extensionality_dep : forall {A} {B : A→ Type},
forall (f g : forall x : A, B x), (forall x, f x = g x) → f = g.

Roughly, given two function f and g, we conclude f = g whenever f (x) = g(x) for all x.
Substitutions. According to the definition of quantifiers, substitutions should be performed
on formulas of type T → lexp, where T is a parameter. Following the same idea as before (and
as in [4]), we define a type Subs for such formulas as a (closed) dependent type:
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Definition Subs := forall T: Type, T→ lexp T. By quantifying over all Ts, we prevent functions that
destruct the term and change the structure of the formula. Now we need to define a wrapper
for substitutions. This substitution function will take as parameters S: Subs and X: Term, and
return a Lexp. The first step is to apply Coq’s β-reduction to S, the type of X (instantiating
the forall) and X (first argument). The result of this reduction is of type lexp (term T), which
is different from Lexp, defined as forall T: lexp T. A lexp T is constructed by the function
flatten: lexp (term T)→ lexp T, which is defined in a section parametrized by T.
Definition Subst (S: Subs) (X: Term) : Lexp := fun T: Type ⇒ flatten (S (term T) (X T)).

As an example, the steps below apply λx.>⊗Q( f (x), c), to the constant d. The resulting
inhabitant of Lexp is commented out.
Definition S: Subs := fun (T: Type) (x: T) ⇒ tensor top (atom (a2 1 (fc1 1 (var x)) (cte c))).
Definition t1: Term := fun T⇒ (cte d).
Eval compute in Subst S t1. (* fun T:Type ⇒ tensor one (atom (a2 4 (fc1 1 (cte d)) (cte c))) *)

Formula complexity. Even if it is now possible to reason on the structure of the formula
via the Closed definition, some of our proofs proceed by induction on the weight of a for-
mula. Our definition follows the standard one (i.e., W(>) = 0,W(F⊗G) = 1+W(F)+W(G),
etc). It should be the case that W(F[t/x]) = W(F[t′/x]) for any two terms t and t′. This
is true since substitutions cannot perform “case analysis” on the term t to return a different
formula. This simple fact requires extra work in Coq. First, we define when two formulas
are equivalent modulo renaming of bound variables (some cases are omitted):
Inductive xVariantT: term T→ term T’→ Prop :=
| xvt_var: forall x y, xVariantT (var x) (var y)
| xvt_cte: forall c, xVariantT (cte c) (cte c)
[...]
Inductive xVariantA: aprop T→ aprop T’→ Prop :=
| xva_eq: forall n, xVariantA (a0 n) (a0 n)
| xva_a1: forall n t t’, xVariantT t t’→ xVariantA (a1 n t) (a1 n t’)
[...]
Inductive EqualUptoAtoms: lexp T→ lexp T’→ Prop :=
| eq_atom: forall A A’, xVariantA A A’→ EqualUptoAtoms (atom A) (atom A’)
| eq_ex: forall FX FX’, (forall t t’, EqualUptoAtoms (FX t) (FX’ t’)) → EqualUptoAtoms (ex (FX )) (ex (FX’))
[...]

For similar arguments as the ones given above for closeness, we need to add as axioms
that inhabitants of Subs and Lexp cannot make choices based on its arguments:
Axiom ax_subs_uptoAtoms: forall (T T’: Type) (t: T) (t’: T’) (FX: Subs), EqualUptoAtoms (FX T t) (FX T’ t’).
Axiom ax_lexp_uptoAtoms: forall (T T’: Type) (F: Lexp), EqualUptoAtoms (F T) (F T’).

The needed results for the weight function (defined as Exp_weight) can thus be proved:
Theorem subs_weight: forall (FX: Subs) x y, Exp_weight(Subst FX x) = Exp_weight(Subst FX y).

We also formalized propositional linear logic, including all the theorems in this sec-
tion as well as those in Sections 3 and 4 (see https://github.com/meta-logic/coq-ll). In the
propositional case, the type of formulas is a standard inductive type and there is no need
for parametric (polymorphic) definitions. Hence, none of the axioms above were needed.
In the first-order case, removing those axioms will amount to, e.g., formalize in a finer
level the binders and substitutions. This is definitely not an easy task (see e.g., [9,10])
and we would not get for free all the benefits inherited from the PHOAS approach (e.g.,
substitutions are, by definition, capture avoiding).
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` a⊥, a
I

` Γ1, A ` Γ2, B
` Γ1,Γ2, A ⊗ B

⊗
` 1 1

` Γ, A, B
` Γ, AOB

O ` Γ

` Γ,⊥
⊥
` Γ, A[x/e]
` Γ,∀x.F ∀

` Γ, A[x/t]
` Γ,∃x.F ∀d

` Γ, A ` Γ, B
` Γ, A & B &

` Γ,>
>

` Γ, A
` Γ, A ⊕ B

⊕1
` Γ, B
` Γ, A ⊕ B

⊕2
` ?A1, . . . , ?An, A
` ?A1, . . . , ?An, ! A !

` Γ, A
` Γ, ?A ?

` Γ

` Γ, ?A
W
` Γ, ?A, ?A
` Γ, ?A

C

Fig. 1. Linear logic introduction rules: e is fresh, i.e., does not appear in Γ.

3 Sequent Calculi

The proof system for one-sided (classical) first-order linear logic is depicted in Figure 1.
A sequent has the form ` Γ where Γ is a multiset of formulas (i.e., exchange is implicit).
While this system is the one normally used in the literature, LL’s focused proof system is
equipped with some more structure. As shown by Andreoli [1], it is possible to incorporate
contraction (C) and weakening (W) into the introduction rules. The key observation is that
formulas of the form ?F can be contracted and weakened. This means that such formulas
can be treated as in classical logic, while the remaining formulas are treated linearly. This
is reflected into the syntax in the so called dyadic sequents which have two contexts:

` Θ, F : Γ

` Θ : Γ, ?F ?
` Θ, F : Γ, F
` Θ, F : Γ

copy
` Θ : a⊥, a

I
` Θ : Γ1, A ` Θ : Γ2, B
` Θ : Γ1,Γ2, A ⊗ B

⊗
` Θ : Γ, A ` Θ : Γ, B
` Θ : Γ, A & B &

Here Θ is a set of formulas and Γ a multiset of formulas. The sequent ` Θ : Γ is interpreted
as the linear logic sequent ` ?Θ,Γ where ?Θ = {?A | A ∈ Θ}. It is then possible to define a
proof system for LL without explicit weakening (implicit in rule I above) and contraction
(implicit in e.g., copy and ⊗ above). Notice that only the linear context Γ is split among the
premises in the ⊗ rule. The complete proof system can be found in [1].

Rules of the dyadic system are specified as inductively defined predicates. The follow-
ing code is an excerpt of the definition of the dyadic system (called sig2 in our files):
Inductive sig2: list Lexp→ list Lexp→ Prop :=
| sig2_init : forall B L A, L =mul= (A +) :: [A −] → ` B ; L
| sig2_bang: forall B F L , L =mul= [! F] → ` B ; [F] → ` B ; L
| sig2_ex : forall B L FX M t, L =mul= E{FX} :: M → ` B ; (Subst FX t) :: M → ` B ; L
| sig2_fx : forall B L FX M, L =mul= (F{FX}) :: M → (forall x, ` B ; [Subst FX x] ++ M) → ` B ; L
[...]

Given an atomic proposition A:Aprop, A+ and A− stand, respectively, for Atom(A) (A) and Perp(A)
(A⊥). Given a substitution FX:Subs, the LL quantifiers are represented as E{FX} and F{FX}.
The rule for the universal quantifier relies on Coq’s (dependent type constructor) forall that
takes care of generating a fresh variable. Finally, ++ stands for concatenation of lists.

Given two multisets of formulas M and N, M=mul=N denotes that M is multiset equivalent to
N. Coq’s library Coq.Sets.Multiset defines multisets as bags (of type A → nat), thus specifying
the number of occurrences for each element of a given type A. Reasoning about such bags
is hard and automation becomes trickier. Using lists as representation of multisets seems
to be a better (and cleaner) choice. In fact, the library CoLoR (http://color.inria.fr/) fol-
lows that direction. CoLoR is quite general and formalizes, among several other theorems,
properties about data structures such as relations, finite sets, vectors, etc. CoLoR trans-
forms the lists M and N to Coq.Sets.Multiset and uses the multiplicity definition of Coq in
order to define multiset equivalence. Our Multisets module does not use this transforma-
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tion. Instead, it uses directly Coq.Lists that features mechanisms to count the number of
occurrences of a given element. We also added some useful theorems for our formalization
and implemented automatic techniques (e.g., solve_permutation) that discharge most of the
proofs about multisets we needed in our developments.
Inductive Measures. In our proofs, we usually require measures for the height of the
derivation as well as for the number (and complexity) of the cuts used. For this reason,
we also specified other variants of the sequent rules where such measures are explicit. For
instance, the proof of cut-elimination was performed on the following system:
Inductive sig3: nat→ nat→ list lexp→ list lexp→ Prop :=
| sig3_init : forall (B L: list lexp) A, L =mul= (A +) :: [A −] → 0 ` 0 ; B ; L
| sig3_CUT : forall (B L: list lexp) n c w h, sig3_cut_general w h n c B L→ S n ` S c ; B ; L
[...]
with sig3_cut_general : nat→ nat→ nat→ nat→ list lexp→ list lexp→ Prop :=
| sig3_cut : forall ... L =mul= (M ++ N) → m ` c1;B ; F :: M → n ` c2 ; B ; F :: N → sig3_cut_general ...
| sig3_ccut : forall ... L =mul= (M ++ N) → m ` c1;B ; (! F) :: M → n ` c2 ; F◦:: B ; N → sig3_cut_general ...

Note that there are two cut-rules: Cut (sig3_cut) and Cut! (sig3_ccut). The second rule
is needed in the proof of cut-elimination as shown in Section 4.1. We later show that the
system with only the Cut rule (sig2) is equivalent to sig3. Sequents in sig3 take the form
n ` c; B; L where n is the height of the derivation, c the number of times the cut-rule was
used and B and L the classical and linear contexts respectively. Definition sig3_cut_general
makes also explicit the following measures : w (the complexity of the cut formula) and
h = m + n (the cut-height, including the height of the two premises of the cut-rule). Such
measures will be useful in Section 4.1.

3.1 Focused System

Focusing was first proposed by Andreoli [1] as a discipline on proofs in order to reduce
non-determinism. Proofs are organized in two alternating phases: the negative phase con-
tains only invertible rules, and the positive phase contains only non-invertible rules. The
connectives O,⊥,&,>, ?,∀ have invertible introduction rules and are thus classified as neg-
ative. The remaining connectives ⊗, 1,⊕, !,∃ are positive. Formulas inherit their polarity
according to their main connective, e.g., A ⊗ B is positive and AOB is negative.

In LL’s focused proof system LLF (also called triadic system), there are two types of
sequents where Θ is a set of formulas, Γ a multiset of formulas, and L a list of formulas:

• ` Θ : Γ ⇑ L belongs to the negative phase. During this phase, all negative formulas in L
are introduced and all positive formulas and atoms are moved to Γ.

• ` Θ : Γ ⇓ A belongs to the positive phase. During this phase, all positive connectives at
the root of A are introduced.

Let us present some rules (the complete system is depicted in the Appendix):

` Θ : Γ ⇑ A, L ` Θ : Γ ⇑ B, L
` Θ : Γ ⇑ A & B, L

` Θ : Γ1 ⇓ A ` Θ : Γ2 ⇓ B
` Θ : Γ1,Γ2 ⇓ A ⊗ B

` Θ : Γ ⇓ P
` Θ : Γ, P ⇑

D1
` Θ, P : Γ ⇓ P
` Θ, P : Γ ⇑

D2
` Θ : Γ ⇑ N
` Θ : Γ ⇓ N

R

Notice that focusing (⇓) persists on the premises of the ⊗ rule. The negative phase ends
when the list of formulas L is empty. Then, the decision rules D1 (linear) and D2 (classical)
are used to start a new positive phase. Finally, the release rule switches to a negative phase
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when the current focused formula is negative. This restriction on proofs has two main
applications: it considerably reduces proof search space and it allows specifiers to engineer
proofs as we illustrate in Section 5.

The rules of the focused system (TriSystem) were formalized as the previous ones. We
used `B ; M ; UP L to denote the negative phase and `B ; M ; DW F for a positive phase focused
on F. Similar to the (unfocus) sequent systems sig2, we also defined for the triadic system
a version with explicit height of derivation (TriSystemh) that we later show to be equivalent.

An interesting feature of TriSysem is that we can define automatic tactics to handle the
negative phase. For instance the formula p−Oq−O⊥O(?p+)O(?q+) is proved as follows:
Example sequent: ` [] ; [] ; UP( [ ( p− & q−) O ⊥ O ?p+ O ?q+ ] ).
Proof with unfold p;unfold q;InvTac.
NegPhase. (* Negative phase *)
eapply tri_dec2 with (F:= p+) ... (* apply the decision rule on the classical context *)
eapply tri_dec2 with (F:= q+) ...
Qed.

We first decompose all the negative connectives and store the atoms (NegPhase). Then, we
have to prove two sequents (due to the & rule). For proving those sequents, we only need
to decide to focus on the formulas p+ and q+ respectively. The “...” notation in Coq applies
the tactic InvTac that solves all the needed intermediary results (e.g., checking the polarities
of the atoms and applying the initial rules when needed).

3.2 Structural Properties

Using strong induction on the height of the derivation, we show several structural properties
for the above systems. For instance, we proved that equivalent multisets prove the same
formulas (preserving the height of the derivation):
Theorem sig2h_exchange: B1 =mul= B2→ L1 =mul= L2→ n ` B1; L1→ n ` B2; L2.

Moreover, using the library Morphisms, we are able to easily substitute equivalent multisets
during proofs (using the tactic rewrite). Moreover, we proved height preserved weakening
and contraction for the classical context:
Theorem weakening_sig2h: n ` B; L→ n ` B ++ D; L.
Theorem contraction_sig2h: n ` F :: F :: B; L → n ` F :: B; L.

Similar properties were proved for the triadic system. The only interesting case is
exchange for the focused context (needed in the proof of completeness):
Theorem EquivUpArrow : n ` B ; M ; UP L → L =mul= L’→ exists m, m ` B ; M ; UP L’.

In this case, the height of the derivation is not preserved since the last context is a
list and not a multiset. The proof of such theorem required some lemmata showing the
invertibility of the negative connectives. In particular, in a sequent `B ; M ; UP L + + [a] + + L’,
if a is a negative connective, then, it can be applied any time during the proof. Those results
correspond to the following theorems (all the variables are universally quantified):
Theorem EquivAuxTop : ` B ; M ; UP (L ++ [>] ++ L’).
Theorem EquivAuxBot : ` B ; M ; UP (L ++ L’) → ` B ; M ; UP (L ++ [⊥] ++ L’).
Theorem EquivAuxWith : ` B;M ;UP (L++[F]++ L’)→ ` B ;M ; UP (L++[G] ++ L’) → ` B; M ; UP (L ++ [F&G] ++ L’).
Theorem EquivAuxPar : n ` B ; M ; UP (L ++ [F ; G] ++ L’) → ` B ; M ; UP (L ++ [F O G] ++ L’).
Theorem EquivAuxSync : ∼ Asynchronous F→ ` B ; M ++ [F] ; UP (L ++ L’) → ` B ; M ; UP (L ++ [F] ++ L’).
Theorem EquivAuxForAll : (forall x, ` B ; M; UP (L++[Subst FX x]++ L’)) → ` B ; M; UP (L ++ [F{FX}] ++ L’).
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Theorem EquivAuxQuest : n ` B ++ [F] ; M ; UP (L ++ L’) → ` B ; M ; UP (L ++ [? F] ++ L’).

The proofs of these lemmas proceed by induction on the sum of the complexity of the
formulas in L (i.e., summing up the complexities of the formulas in L). The Asynchronous F
predicate asserts that F is a negative formula.

4 Meta-Theory

This section presents the main results formalized in our system: cut-elimination (for the
dyadic system) and completeness of the focused system. Hence, as a corollary, we show the
equivalence of all these systems (dyadic, triadic, with/without cut rules and with/without
measures) and prove the consistency of LL. We show the key cases and relevant strategies
to complete the proofs of the main theorems. For that, we shall use the following notation.
We start listing, using “H” ids, the relevant hypotheses of the theorem and the current Goal
(using “G” ids). Then, we write the relevant steps (using Coq’s comments) to generate new
hypotheses or transform the current goal. For instance,
HI : forall m <=n, m ` B ; M ; UP L → exists x, x ` B ; M ++ L (* inductive hypothesis *)
H1: n ` B ; M ; UP L
G: ` B ; M ++ L (* current goal *)
(* apply HI in H1 to conclude H2 *) H2 : exists x, x ` B ; M ++ L
(* using inversion in H2 we show H2’ *) H2’ : x ` B ; M ++ L
(* conclude G by using adequacy (with/without measures) in H2’ *)

In proofs involving the triadic system (Section 4.2), the focusing discipline determines
easily the next step/goal in the proof. In those cases, we do not use comments to explain the
proof but we use directly Coq’s tactics. Roughly, those tactics correspond to one application
of a logical rule of the triadic system (TriSystem). Finally, some of the proofs in Section 4.1
correspond to standard sequent transformations that we show in Appendix B.

4.1 Cut Elimination

The proof is structured as follows. The main theorem consists in showing that a proof with
one cut can be replaced with a proof with zero cuts. Recall that the measure of the number
of cuts is explicit (as c) in the system sig3:
Lemma cut_elimination_base: n ` 1 ; B ; L → exists m, m ` 0 ; B ; L.

This lemma represents the case where we are eliminating the upper-most cut in a deriva-
tion tree. The proof, proceeds by double induction on the complexity of the cut-formula
(w) and the cut-height (h), i.e., the sum of the premises’ heights of the cut-rule. The proof
of this lemma requires several additional lemmas/cases:
(i) The base case corresponds to w = h = 0. The cut-formula is one of the units or an
atomic proposition. Moreover, since h = 0, both premises are either the initial rule or >.
We grouped those cases in the following theorem.
Theorem cut_aux: L =mul= M1 ++ M2→ 0 ` 0 ; B ; F :: M1 → 0 ` 0 ; B ; F◦ :: M2 → exists m, m ` 0 ; B ; L.

(ii) In the cases where the formula is not principal, one has to permute the cut and reduce the
inductive measure h. For instance, the case where rule ⊕ is used in one of the cut-premises
is proved as follows (see item (i) in Appendix B):
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H : n1 ` 0; B; a :: F :: T (* 0 cuts, height n1. "a" is the cut-formula *)
Hn1 : S n1 ` 0; B; a :: F ⊕ G :: T
Hn2 : n2 ` 0; B; a◦ :: M2 (* 0 cuts, height n2 *)
HI : forall h<= n1 + n2→ inductive hypothesis on the cut−height
G: exists m : nat, m ` 0; B; F ⊕ G :: T ++ M2
(* apply cut on H and Hn2 to conclude Hc*) Hc: S(max n1 n2) ` 1 ; B; F :: T ++ M2
(* use HI to produce a cut-free proof Hc’ *) Hc’: x ` 0 ; B; F :: T ++ M2
(* using exists with t:= S x the new goal is G’ *) G’ : S x ` 0; B; F ⊕ G :: T++ M2
(* conclude G’ from Hc’ and the rule ⊕ *)

(iii) When the cut formula is principal in both premises, we perform (possible several) cuts
with simpler formulas. For instance, the case of ⊗ is (see item (ii) in App. B):
H1 : S (max n m) ` 0; B; F ⊗ G :: (M1 ++ M2) (* cut formula is F * G *)
H2 : S n0 ` 0; B; F◦ O G◦ :: D
H3 : m ` 0; B; F :: M1
H4 : n ` 0; B; G :: M2
H5 : n0 ` 0; B; G◦ :: F◦ :: D
HI : forall w<= w(F ⊗ G) → inductive hypothesis on the weight
G: exists m0 : nat, m0 |− 0; B; M1 ++ M2 ++ D
(* apply cut on H4 and H5 to conclude H6 *) H6 : S(max n n0) ` 1 ; B; F◦ :: (M2 ++ D)
(* use HI on H6 to produce a cut-free proof H6’ *) H6’ : x ` 0 ; B; F◦ :: (M2 ++ D)
(* apply cut on H3 and H6 to conclude H7 *) H7 : S(max m x) ` 1 ; M1 + + M2 + + D
(* use HI on H7 to produce a cut-free proof H7’ *) H7’ : y ` 0 ; M1 + + M2 + + D
(* conclude G from H7’ *)

The case when ! is the cut-formula and principal requires and additional rule Cut !

` Θ : ∆, ! F ` Θ, F⊥ : Γ

` Θ : ∆,Γ

that we show to be admissible (Theorem sig2_iff_sig3 below). This rule is encoded in
the sig3 system (constructor sig3_ccut). We then transform an application of Cut into an
application of Cut !, reducing the cut-height (see item (iii) in Appendix B):
H1 : S n |− 0; B; [! F]
H2 : S n0 |− 0; B; ? F◦ :: L
H3 : n |− 0; B; [F]
H4 : n0 |− 0; F◦ :: B; L
HI : forall h <= S (n + n0) → inductive hypothesis on cut−height
G: exists m0 : nat, m0 ` 0; B; L
(* apply ccut on H1 and H4 to conclude H5*) H5 : S(max (S n) n0) ` 1; B ; L
(* use HI to obtain the cut-free proof H5’ *) H5’ : x ` 0; B ; L
(* conclude G from H5’ *)

(iv) The cases for eliminating an application of Cut! are similar.
Using all the lemmas above, the proof of cut-elimination considers all the cases (in-

cluding the symmetric ones) generated by Coq. The final step is to show that a proof with
an arbitrary number of cuts can be transformed into a proof without cuts. This can be easily
done by induction on the number of cuts and using the previous results:
Theorem cut_elimination : forall B L n c, n |− c ; B ; L → exists m, m |− 0 ; B ; L.

As a corollary, we can show the consistency of LL:
Theorem consistency : ∼ sig3 n c [] [] ∧ ∼ sig3 n c [] [0] ∧ ∼ sig3 n c [] [⊥].

Now we can prove that the Cut! rule is admissible and hence, the systems with (sig3)
and without (sig2) this rule are equivalent:
Theorem sig2_iff_sig3: sig2 B; L↔ sig3 B; L.

The most interesting (inductive) case in the proof considers the transformation of an appli-
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cation of Cut! into an application of Cut (see item (iv) in Appendix B).

4.2 Completeness of Focusing

The following theorem shows that focused proofs can be mimicked by the dyadic system:
Theorem Soundness : LexpPos M→ n |−F− B ; M ; A → |−− B ; M ++ (Arrow2LL A).

where the predicate LexpPos states that all the formulas in the list/multiset M are all positive
and the function Arrow2LL simply transforms “⇑ L” into L and “⇓ F“ into the list [F]. The
proof is easy by induction on the height of the derivation n: we just need to apply exactly
the same rule used in the focused proof.

The proof of the inverse theorem, i.e., completeness, is of course more involved. First,
we proved the invertibility theorems in Section 3.1 (for the negative connectives). Then we
proved that applications of positive rules can be switched:
Theorem InvCopy : |−F− B ++ [F] ; M ; UP (F :: L) → LexpPos M→ |−F− B ++ [F] ; M ; UP L .
Theorem InvEx : |−F− B ; M ; UP (Subst FX t :: L) → LexpPos M→ |−F− B ; M ++ [E{ FX}] ; UP L .
Theorem InvPlus : |−F− B ; M ; UP (F :: L) → LexpPos M→ |−F− B ; M ++ [F ⊕ G] ; UP L .
Theorem InvTensor : LexpPos (M ++ M’) → |−F− B ; M ; UP (F :: L) → |−F− B; M’; UP (G :: L’) →

|−F− B ; M ++ M’ ++ [F ⊗ G] ; UP (L ++ L’) .

In [1] Andreoli detailed the proof of the case for ⊗ (InvTensor). Let us explain the case
for ⊕. First we define the following predicates:
Definition RUp (n:nat) := forall B L M F G, LexpPos M→

n |−F− B ; M; UP (L ++ [F]) → |−F− B ; M ++ [F ⊕ G]; UP L.
Definition RDown (n:nat) := forall B M H F G, LexpPos M→ PosOrNegAtom F→

n |−F− B ; M ++ [F] ; DW H → |−F− B ; M ++ [F ⊕ G] ; DW H.
Definition RInd (n:nat) := RUp n ∧ RDown (n −1).

The predicate RUp determines how ⊕ permutes with the negative connectives. We pro-
ceed by induction on n. In the inductive cases, we consider two cases, namely, when L is
empty or not. Let us explain the first case. We consider the last rule applied. The cases of
the negative connectives are easy, e.g., the case ⊥ is as follows:
Hyp1: S n |−F− B; M1; UP [⊥]
G1: |−F− B; M1 ++ [⊥ ⊕G]; UP [] eapply tri_dec1 with (F:= ⊥ ⊕G) ...
G2: |−F− B; M1 ++ []; DW (⊥ ⊕G) eapply tri_plus1 ...
G3: |−F− B; M1 ++ []; DW ⊥ eapply tri_rel ...
G4: |−F− B; M1 (2++·) []; UP⊥ (* conclude by using AdequacyTri1 and Hyp1 *)

The last step (AdequacyTri1) uses the adequacy result relating the system with measures (se-
quent in Hyp1) and the current goal.

The interesting case is the store case, i.e., when the the formula F is an atom or a
positive formula. Then we have the following situation:
HDown : RDown (n −1)
Hyp1 : n |−F− B; M1 ++ [F]; UP [ ]

Since the sequent in Hyp1 is provable, due to focusing, we know that it is provable by
using a decision rule. We then need to consider three cases, namely, focusing on either
F, on a formula in M1 or on a formula in B. Let us consider the second case. We have the
following situation (after some substitutions):
HDown : RDown (n’)
Hyp1’ : n’ |−F− B; M1’ ++ [F]; DW F’
HML : M1 =mul= F’ :: M1’
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G1: |−F− B; (F’ :: M1’) ++ [F ⊕ G]; UP [] eapply tri_dec1 with (F:=F0) ...
G2: |−F− B; M1’ ++ [F ⊕ G]; DW F’

The proof of G2 ends by applying the inductive hypotheses HDown in Hyp1’.
The second predicate (RDown) allows us to permute two positive phases in the proof. We

proceed by induction on n and consider all the cases for H in DW H. Let us show the case
when H = ∃x.H′. The main hypotheses and goal are:
HDown : RDown n’
H : n’ |−F− B; M ++ [F]; DW (Subst FX t)
G1 : |−F− B; M ++ [F ⊕ G]; DW ( E{FX}) apply tri_ex with (t:=t) ...
G2: |−F− B; M ++ [F ⊕ G]; DW (Subst FX t)

The proof ends by applying the inductive hypothesis HDown in H. The other cases are
similar (see the case of ⊗ in the Appendix B.1).

5 Applications

In [16], LL was used as the logical framework for specifying a number of logical and com-
putational systems. The idea is to use two meta-level predicates b·c and d·e for identifying
objects that appear on the left or on the right side of the sequents in the object logic. Hence,
for instance, object-level sequents of the form B1, . . . , Bn ` C1, . . . ,Cm (where n,m ≥ 0)
are specified as the multiset bB1c, . . . , bBnc, dC1e, . . . , dCme. Here, as an application of our
developments, we specify an encoding of intuitionistic propositional logic (LJ) into LL and
prove the adequacy of the encoding. The machinery we develop is general enough to mech-
anize the proof of other adequacy theorems for logical systems [16] and also for concurrent
computational systems [18,19].

We first specify the syntax of LJ in the usual way:
Inductive LForm :Set :=
| bot (* false *) | atom : nat→ LForm (* atomic propositions *)
| conj : LForm→ LForm→ LForm (* conjunction *)
| disj : LForm→ LForm→ LForm (* disjunction *)
| impl : LForm→ LForm→ LForm. (* intuitionistic implication *)

and the logical rules:
Inductive sq : list LForm→ nat→ LForm→ Prop :=
| init : forall (L L’ : list LForm) a, L =mul= atom a :: L’ → L ; 0 |−P− atom a
| cR : forall L F G n m , L ; n |−P− F → L ; m |−P− G → L ; S (max n m) |−P− conj F G
| cL : forall L G G’ F L’ n, L =mul= (conj G G’) :: L’ → G :: G’ :: L’ ; n |−P− F → L ; S n |−P− F
[...]

We name the two meta-level predicates d·e and b·c as 1 and 3 respectively, and we also
name the (meta-level) functional symbols that represent each of the connectives in LJ:
Definition rg := 1. (* UP PREDICATE *) Definition lf := 3. (* DOWN predicate *)
Definition bt := 0. (* bottom *) Definition pr := 1. (* atoms / propositions *)
Definition cj := 2. (* conjunction *) Definition dj := 3. (* disjunction *)
Definition im := 4. (* implication *)

We note that even (resp. odd) predicates are assumed to be positive (resp. negative).
Hence, rg and l f are negative atoms and it is not possible to focus on them.

Now we are able to encode LJ’s logical rules as bipoles [16]. Roughly, a bipole is a
positive formula in which no positive connective can be in the scope of a negative one.
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Focusing on such a formula will produce a single positive and a single negative phase. This
two-phase decomposition enables the adequate capturing of the application of an object-
level inference rule by the meta-level logic. For instance, LJ initial rule is encoded as the
following LL formula:
Definition INIT :Lexp := Ex (fun _ x ⇒ tensor

(tensor (perp (a1 rg (fc1 pr (var x)))) (perp (a1 lf (fc1 pr (var x))))) top).

If we decide to focus on INIT, then, the rule ∃ requires to chose a value for x and the
focus continues on the formula (d(A1(pr(x)))⊥e⊗b(A1(pr(x)))⊥c)⊗>. Hence, the two atoms
d(A1(pr(x)))e and b(A1(pr(x)))c must be already in the context (since focusing cannot be
lost). The proof finishes by loosing the focusing on > and then, in the negative phase, by
using the rule >. In other words, in one change of polarity, we check that a given atom a is
on the right and on the left, thus finishing the proof.

The other rules follow a similar pattern. For instance, ∧R is specified as:
Definition CRIGHT :Lexp := Ex (fun _ x ⇒ ex( fun y⇒

tensor (perp (a1 rg (fc2 cj (var x) (var y))))
( witH (atom (a1 rg (var x))) (atom (a1 rg (var y))) ) )).

Again, in a positive phase, ∃ and ⊗ are applied and the atom dA1(c j(x, y))e is consumed.
Focusing is lost on & and we obtain two LL sequents. In each of them, the atoms dA1(x)e
and dA1(y)e are stored. What we observe is exactly the behavior of ∧R.

Thanks to the automatic tactics developed, the proof of soundness and completeness are
relatively simple. Let us explain the main arguments. In the case of soundness, we have:
Definition encodeSequent (L: list PL.LForm) (F: PL.LForm) :=

|−F− Theory ; (encodeFR F) :: encodeList L ; UP [].
Theorem Soundness: L |−P− n ; F → ( encodeSequent L F ).

where the function encodeFR (resp. encodeList) simply generate the needed d·e atoms
(resp. list of b·c atoms). Moreover, Theory is a list with the encoding of all the LJ rules.

We proceed by induction on n. Let us consider the case of conjunction right. It suffices
to build the focused proof, starting by focusing on the rule CRIGHT:
HI: (* Inductive hypothesis x ≤ max(n,m) *)
HF: L |−P− n; F
HG: L |−P− m; G
G1: |−F− Theory ; dc j(F,G)e :: encodeList L; UP [] eapply tri_dec2 with (F:= CRIGHT) ...
G2: |−F− Theory ; dc j(F,G)e :: encodeList L; DW CRIGHT eapply tri_ex with (t:= encodeTerm F).
G3: |−F− Theory ; dc j(F,G)e :: encodeList L; DW E{ ...} ... eapply tri_ex with (t:= encodeTerm G).
G4: |−F− Theory ; dc j(F,G)e :: encodeList L; DW AtR ⊗ (AtF & AtG) eapply tri_tensor ...
G5: |−F− Theory ; dc j(F,G)e :: encodeList L; DW AtF & AtG apply tri_rel ...
G6: |−F− Theory ; dc j(F,G)e :: encodeList L; UP AtF & AtG apply tri_with; apply tri_store ...
(* Branch F *) apply HI in HF ...
(* Branch G *) apply HI in HG ...

Recall that the “...” solves the easy cases (see Section 3.1). On the other side, completeness
is stated as follows:
Theorem Completeness : ( encodeSequent L F )→ exists n, L |−P− n ; F.

We proceed by induction on the height of the (LL) derivation. The interesting part
of this proof is that, thanks to focusing, we only need to use the inversion tactic on the
hypotheses until the goal is proved. For instance, in the inductive case (n > 0) the most
relevant hypothesis and goal are:
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H: S n |−F− Theory; encodeFR F :: encodeList L; UP []
G: exists n : nat, L |−P− n; F

Since we have the proof in H, focusing tells us that that such proof must proceed by
deciding either to focus on a formula in the classical context (Theory) or in the linear context
(encodeFR F :: encodeList L). However, atoms in the linear context are negative and we cannot
focus on them. Therefore, the only alternative is to focus on one of the formulas in Theory.
This makes the proof rather simple. For instance, consider the case INIT:
H’ : n |−F− Theory; encodeFR F :: encodeList L; DW INIT

We continue applying inversion on H’ to “generate” the consequences of having the
proof H’. The main consequence, in this case, is
H’’ : exists L’ a, L =mul= (F :: L’) ∧ F = PL.atom a

This means that F is necessarily an atom and such atom is in the list of (PL) formulas L.
Hence, the proof concludes easily by applying the initial rule of LJ.

6 Related and Future Work

Intuitionistic propositional linear logic was implemented in Coq [22] and Isabelle [14], but
the main goal of these works was to provide proof search, and thus no meta-theorems were
proved. Cut-elimination and invertibility lemmas were proved for a formalization of several
linear logic calculi in Abella [3]. Even though the paper presents only the propositional
part, the proofs for first-order and focused fragments were later completed. The first-order
implementation requires the use of the two-level logic approach, particular to this tool.

A generic method for formalizing sequent calculi in Isabelle/HOL is proposed in [5].
The meta-theorems are parametrized by the set of rules and for cut-elimination, weakening
must be admissible. The authors have applied the method to provability logics.

Completeness of focusing was proved for intuitionistic propositional logic in Twelf and
Agda [24]. The proof follows the technique developed in [20] where sequents are annotated
with terms and the problem is reduced to type-checking. Focusing follows as a corollary
of two other properties proved about the calculus. In their approach, context management
is handled in the meta-level, so much of the bureaucracy in handling multisets is avoided.
The method in [24] could be used to prove completeness of focusing of LL as well. A
possible candidate implementation is the one from [23, Chapter 6] on a modified version of
Twelf. Unfortunately this development was never carried out. Another approach for prov-
ing completeness of focusing, formalized in Coq, uses an algebraic implementation of the
calculus [13]. To use this solution, the calculus must have “dual” rules for all connectives
(harmony) and admissibility of contraction and weakening.

In the short term, we plan to use the machinery in Section 5 in order to mechanize the
proofs of adequacy of other formalisms into Linear Logic, e.g., Hybrid Linear Logic [7],
and Concurrent Constraint Process Calculi (CCP) [19]. In order to prove the adequacy of
CCP calculi featuring modalities, we have to specify also the so-called subexponentials [19]
(roughly, exponentials decorated with indexes). Finally, a more interesting outcome will
be formalizing the theorems in [16]. This should allow us to use the meta-theory of linear
logic to prove meta-theorems (e.g., cut-elimination) of other logics encoded into LL.
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Introduction Rules
` Θ : Γ ⇑ L
` Θ : Γ ⇑ L,⊥

[⊥]
` Θ : Γ ⇑ L, F,G
` Θ : Γ ⇑ L, FOG

[O]
` Θ, F : Γ ⇑ L
` Θ : Γ ⇑ L, ?F

[?]

` Θ : Γ ⇑ L,>
[>]

` Θ : Γ ⇑ L, F ` Θ : Γ ⇑ L,G
` Θ : Γ ⇑ L, F & G

[&]
` Θ : Γ ⇑ L, F[c/x]
` Θ : Γ ⇑ L,∀x F

[∀]

` Θ :⇓ 1
[1]

` Θ : Γ ⇓ F ` Θ : Γ′ ⇓ G
` Θ : Γ,Γ′ ⇓ F ⊗G

[⊗]
` Θ :⇑ F
` Θ :⇓ ! F

[!]

` Θ : Γ ⇓ F
` Θ : Γ ⇓ F ⊕G

[⊕l]
` Θ : Γ ⇓ G
` Θ : Γ ⇓ F ⊕G

[⊕r]
` Θ : Γ ⇓ F[t/x]
` Θ : Γ ⇓ ∃x F

[∃]

Identity, Reaction, and Decide rules

` Θ : A⊥p ⇓ Ap
[I1]

` Θ, A⊥p :⇓ Ap
[I2] ` Θ : Γ, S ⇑ L

` Θ : Γ ⇑ L, S
[R ⇑]

` Θ : Γ ⇓ P
` Θ : Γ, P ⇑

[D1]
` Θ, P : Γ ⇓ P
` Θ, P : Γ ⇑

[D2]
` Θ : Γ ⇑ N
` Θ : Γ ⇓ N

[R ⇓]

Fig. A.1. The focused proof system, LLF, for linear logic [1]. Here, L is a list of formulas, Θ is a multiset of formulas, Γ is a
multiset of literals and positive formulas, Ap is a positive literal, N is a negative formula, P is not a negative literal, and S is
a positive formula or a negated atom.

A Linear Logic Focused Proof System

The complete set of rules for the triadic (focused) system is in Figure A.1.

B Proof Transformations (Cut-Elimination Proof)

(i) Case ⊕ when the cut-formula is not principal:

π1
` [Ψ]; Γ,G1, F

` [Ψ]; Γ,G1 ⊕G2, F
⊕1

π2
` ∆, F⊥

` [Ψ]; Γ,G1 ⊕G2,∆ cut
 

π1
` [Ψ]; Γ,G1, F

π2
` [Ψ]; ∆, F⊥

` [Ψ]; Γ,G1,∆
cut

` [Ψ]; Γ,G1 ⊕G2,∆
⊕1

(ii) The cut-formula is principal (case ⊗):

π1
` [Ψ]; Γ1, F

π2
` [Ψ]; Γ2,G

` [Ψ]; Γ1,Γ2, F ⊗G
⊗

π3
` [Ψ]; ∆, F⊥,G⊥

` [Ψ]; ∆, F⊥OG⊥
O

` [Ψ]; Γ1,Γ2,∆
cut

 

π
` [Ψ]; Γ1, F

π2
` [Ψ]; Γ2,G

π3
` [Ψ]; ∆, F⊥,G⊥

` [Ψ]; Γ2, F⊥,∆
cut

` [Ψ]; Γ1,Γ2,∆
cut
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(iii) The cut-formula is principal (case !):

π1
` [Ψ]; !F

π2
` [Ψ, F⊥]; ∆

` [Ψ]; ∆, ?F⊥
?

` [Ψ]; ∆
cut
 

π1
` [Ψ]; !F

π2
copy

` [Ψ, F⊥]; ∆

` [Ψ]; ∆
cut!

(iv) Equivalence between the system with CUT ! and the system with only the standard
cut-rule:

π1
` [Ψ]; !F

π2
` [Ψ, F⊥]; ∆

` [Ψ]; ∆
cut!
 

π1
` [Ψ]; F
` [Ψ]; !F

π2
` [Ψ, F⊥]; ∆

` [Ψ]; ∆, ?F⊥
?

` [Ψ]; ∆
cut

B.1 Proof of the case H = H1 ⊗ H2

The case H = H1 ⊗ H2 leads to the following:
H : M’ ++ N’ =mul= [F] ++ M
HF’ : n1 |−F− B; M’; DW H1
HG’ : n2 |−F− B; N’; DW H2
G: |−F− B; M ++ [F ⊕ G]; DW (H1 ⊗ H2)

We have to consider two cases: when F is in M′ and when F is in N′. Both cases are
proved in a similar way. Consider the case F ∈ M:
HDown: RDown (S n1)
HMN: M’ =mul= [F] ++ M’’
HF’ : n1 |−F− B; M’; DW H1
HG’ : n2 |−F− B; N’; DW H2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

G’: |−F− B; (M’ ++ N’) ++ [F ⊕ G]; DW (H1 ⊗ H2) eapply tri_tensor ...
(* Case H1 *) |−F− B; M’’ ++ [F ⊕ G]; DW H1 (* proved by using HDown in HG’*)
(* Case H2 *) |−F− B; N’; DW H2 (* proved from HG’ *)
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