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We present Asterix calculus (also denoted *X calculus), built from names
instead of variables. Asterix is designed to stand in computational correspon-
dence with classical logic represented in the sequent calculus. More precisely,
in the sequent system G1 [1], featuring explicit structural rules weakening
and contraction.

It is possible to define many variants of Gentzen sequent systems. The
basic Genzen systems for classical and intuitionistic logic denoted as G1, G2
and G3 are formalized in [2] and later revisited in [1]. In brief, the essential
difference between G1 and G3 is the presence or absence of explicit structural
rules. The distinguishing point of G2 is the use of the so-called mix instead
of a cut rule.

In the context of the Curry-Howard paradigm, we have the following
correspondence between classical logic’s system G1 and *X -terms:

Proofs ⇔ Terms
Propositions ⇔ Types

Cut ellimination ⇔ Reduction

Having explicit terms for weakening and contraction at hand is an advan-
tage strategically speaking. On the one hand we reveal the computational
role of these constructors (erasure and duplication, respectively).

On the other hand, having these terms explicit, and thus a very fine
grained calculus, we can identify which syntactically different terms (proofs)
should be considered the same; by providing equations identifying terms
up-to trivial rules-permutation.

Of course the calculus retains the desirable properties of its predecessors:
type preservation, linearity preservation, strong normalisation of typed terms.
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Besides Asterix (*X ) [3, 4] there is also Obelix (X calculus) [5, 6]. In-
formally speaking, these calculi are classical analogues of intuitionistic λlxr,
featuring explicit substitution, weakening and contraction [7], and λx, fea-
turing explicit substitution [8], respectively.
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