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Abstract
Wadler introduced Classical Processes (CP), a calculus based on a propositions-as-types corres-
pondence between propositions of classical linear logic and session types. Carbone et al. intro-
duced Multiparty Classical Processes, a calculus that generalises CP to multiparty session types,
by replacing the duality of classical linear logic (relating two types) with a more general notion
of coherence (relating an arbitrary number of types). This paper introduces variants of CP and
MCP, plus a new intermediate calculus of Globally-governed Classical Processes (GCP). We show
a tight relation between these three calculi, giving semantics-preserving translations from GCP
to CP and from MCP to GCP. The translation from GCP to CP interprets a coherence proof as
an arbiter process that mediates communications in a session, while MCP adds annotations that
permit processes to communicate directly without centralised control.
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1 Introduction

Session types, introduced by Honda, Vasconcelos, and Kubo [11, 20], are protocols that
describe valid communication patterns in process calculi. A correspondence between process
calculi and classical linear logic was found by Abramsky [1] and Bellin and Scott [3], and
another between session types and intuitionistic linear logic by Caires and Pfenning [6, 7], in
both of which channel types correspond to propositions of linear logic, processes to proofs,
and communication to proof normalisation. Based on these, Wadler [22] introduced Classical
Processes (CP), in which session types correspond to propositions of classical linear logic,
processes to proofs, and communication to cut elimination. Key properties of session types
such as deadlock freedom follow from key properties of linear logic such as cut elimination.

Last year, Carbone et al. [9] introduced Multiparty Classical Processes (MCP), which
extends CP to the multiparty session types introduced by Honda, Yoshida, and Carbone [12].
In CP duality is defined between two propositions, whereas in MCP duality is replaced by
coherence among multiple propositions. Coherence relates a global type (a description of a
multiparty protocol) to many local types (the behaviours of each participant in a session).

MCP came at a cost as compared to CP. First, MCP required annotating logical con-
nectives with roles, and it was unclear how such annotations related to classical linear logic.
Second, MCP omitted the axiom and atomic and quantified propositions, losing support
for parametric polymorphism. Third, MCP inverted the usual interpretation of connectives
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33:2 Coherence Generalises Duality

⊗ and O, treating output as input and vice versa, which we no longer believe is a tenable
position. This work presents an updated version of MCP that overcomes these shortcomings.

Section 2 introduces our variant of CP. We modify restriction to replace a single channel
by two endpoints, yielding a logical reconstruction of the covariable formulation of session
types due to Vasconcelos [20]. We partition types into input and output types (a slight
variation of positive and negative polarities [13, 17]), which allows us to orient the axiom
rule. And, in order to align with the subsequent development, we restrict the cut of axiom
against a process to atomic variables, applying η-expansion to handle the remaining cases.

Section 3 introduces a calculus of Globally-governed Classical Processes (GCP), interme-
diate between CP and MCP. GCP uses global types to describe multiparty sessions, and
coherence to relate the global type to many local types. GCP differs from MCP in not
requiring annotations; types in GCP are the standard propositions of CP. We present a
semantics-preserving translation from GCP into CP, where a global type is translated into an
arbiter, an auxiliary process that coordinates communication. Caires and Perez [4] introduce
a medium which is similar to our arbiter; we compare our work with theirs in Section 5. We
show that under our translation GCP is simulated by CP. We also give a translation from
CP to GCP and show that it too is a simulation.

Section 4 introduces our variant of MCP. MCP augments GCP with annotations which
permit processes to communicate directly without centralised control. Whereas the original
MCP refers to sessions and roles, our variant uses a simpler formulation based exclusively
on endpoints. Our variant also restores the proper correspondence of ⊗ with output and
O with input, and supports parametric polymorphism. We present a semantics-preserving
translation of MCP into GCP, which simply consists of erasing annotations. We show under
our translation there is a bisimulation between MCP and GCP.

Section 5 discusses related and future work.
We illustrate our encodings using the classic 2-buyer protocol [12] as a running example.

Two buyers, B1 and B2, attempt to buy a book together from a seller S. First, B1 sends the
title of the book that she wishes to purchase to S, who in turn sends a quote to both B1 and
B2. Then, B1 decides on how much she wishes to contribute, and informs B2, who either
pays the rest or cancels the transaction. A similar example appears in the original paper on
MCP [9], but is degenerate in that it represents data using the unit type. There, it is not
possible to replace the unit type with a non-degenerate type because of the inversion of ⊗
and O. Here, we present non-degenerate encodings in CP, GCP, and MCP.

2 Classical Processes (CP)

We describe our version of Classical Processes (CP), originally introduced by Wadler [22].

Types We start by introducing propositions, which we interpret as session types. Let
A,B,C,D range over propositions and X,Y range over atomic propositions.

A,B,C,D ::= A⊗ B (send A, proceed as B) | AO B (receive A, proceed as B)
| A⊕ B (select A or B) | ANB (offer A or B)
| 0 (unit for ⊕) | > (unit for &)
| 1 (unit for ⊗) | ⊥ (unit for O)
| ?A (client request) | !A (server accept)
| X (atomic propositions) | X⊥ (dual of atomic proposition)
| ∃X.A (existential) | ∀X.A (universal)

We give a behavioural explanation to the types above. Proposition A⊗B is the type of a
channel over which we send a fresh channel of type A and then continue as B. Dually, AOB
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x→ yA ` x : A⊥, y : A
Axiom

P ` Γ, x : A Q ` ∆, y : A⊥

(νxAy) (P | Q) ` Γ,∆
Cut

P ` Γ, y : A Q ` ∆, x : B
x[y].(P | Q) ` Γ,∆, x : A⊗B

⊗
P ` Γ, y : A, x : B

x(y).P ` Γ, x : AOB
O

P ` Γ, x : A
x[inl].P ` Γ, x : A⊕B

⊕1
P ` Γ, x : B

x[inr].P ` Γ, x : A⊕B
⊕2

P ` Γ, x : A Q ` Γ, x : B
x.case(P,Q) ` Γ, x : ANB

N

P ` Γ, y : A
?x[y].P ` Γ, x : ?A ?

P ` ?Γ, y : A
!x(y).P ` ?Γ, x : !A ! P ` Γ

P ` Γ, x : ?A Weaken

P ` Γ, x : B[A/X]
x[A].P ` Γ, x : ∃X.B ∃

P ` Γ, x : B X /∈ ftv(Γ)
x(X).P ` Γ, x : ∀X.B ∀

P ` Γ, y : ?A, z : ?A
P{x/y, x/z} ` Γ, x : ?A Contract

x[] ` x : 1 1 P ` Γ
x().P ` Γ, x : ⊥ ⊥ (no rule for 0) x.case() ` Γ, x : > >

Figure 1 CP, Type Rules.

is the type of a channel over which we receive a channel of type A and then continue as
B. Proposition A⊕ B is the type of a channel over which we can select to proceed either
with type A or with type B. Dually, A N B is the type of a channel offering a choice of
proceeding with either type A or type B. Propositions 0, >, 1 and ⊥ are units for ⊕, N, ⊗
and O, respectively. Proposition ?A is the type of a channel over which a client may request
multiple invocations of a server. Dually, !A is the type of a channel over which a server may
accept multiple invocations from a client. Atomic propositions X and X⊥, and universal
propositions ∃X.A and ∀X.A model polymorphic channels [22].

Each type in the left-hand column is dual to the corresponding type in the right-hand
column. We write A⊥ for the dual of A. We refer to types on the left as output types, and
types on the right as input types. Our output and input types correspond, respectively, to
the standard notions in logic of positive and negative types [13]. The one exception are
the exponentials: we classify ? as an output type and ! as an input type, while logicians
classify ? as negative and ! as positive. Exponentials are already known to have a less strong
correspondence with positive and negative types than other connectives. For instance, negative
types have invertible rules while positive types do not, the exception being exponentials,
where the rule for ! is invertible while the rules for weakening and contraction are not.

Processes In CP, proofs correspond to proof terms, expressed in a π-calculus with sessions.
Let x, y, and z range over channel endpoints. The syntax of processes is given by the proof
terms (denoted in red) shown in Figure 1. In an output operation the sent object is always
contained in square brackets [. . .], and, dually, in an input operation the received variable is
always bound in round parentheses (. . .). As in the internal π-calculus [18], the object y in a
send x[y].(P | Q) and in a client request ?x[y].P is bound (this is not the case in selection
and send type). A link process x→ yB forwards communications from x to y. A restriction
(νxAy)

(
P | Q) pairs two endpoints x and y into a session (as done by Vasconcelos [20]).

We give the type rules for CP in Figure 1. All rules are standard CLL rules. In the logic,
link corresponds to axiom and restriction to cut. Their interpretation as proof terms follows
that of Wadler [22], with rules Axiom and Cut adopting the new syntax.

CONCUR 2016



33:4 Coherence Generalises Duality

Structural equivalence (Processes)

y → xA⊥
≡ x→ yA (νyA⊥

x) (Q | P ) ≡ (νxAy) (P | Q)
(νwBz) (P | (νxAy) (Q | R)) ≡ (νxAy) ((νwBz) (P | Q) | R)

η-expansions (Processes)

x→ yA⊗B −→ x(u).y[v].(u→ vA | x→ yB) x→ y1 −→ x().y[]
x→ yA⊕B −→ x.case(y[inl].x→ yA, y[inr].x→ yB) x→ y0 −→ x.case()
x→ y?A −→ !x(u).?y[v].u→ vA x→ y∃X.A −→ x(X).y[X].x→ yA

β-reductions (Processes)

(νxXy) (w → xX | Q) −→ Q{w/y}
(νxA⊗By) (x[u].(P | Q) | y(v).R) −→ (νuAv) (P | (νxBy) (Q | R))

(νx1y) (x[] | y().P ) −→ P

(νxA⊕By) (x[inl].P | x.case(Q,R)) −→ (νxAy) (P | Q)
(νxA⊕By) (x[inr].P | x.case(Q,R)) −→ (νxBy) (P | R)

(no rule for 0 with >)
(νx?Ay) (?x[u].Q | !y(v).P ) −→ (νuAv) (P | Q)

(νx?Ay) (P | !y(v).Q) −→ P

(νx?Ay) (P{x/x′, x/x′′} | !y(v).Q) −→ (νx′?A
y′) (((νx′′?A

y′′) (P | !y′(v).Q)) | !y′′(v).Q)
(νx∃X.By) (x[A].P | y(X).Q) −→ (νxB{A/X}y) (P | Q{A/X})

Figure 2 CP, Structural Equivalence and Reduction Rules.

Semantics CLL is equipped with proof transformations that give semantics to CP processes.
Figure 2 displays structural equivalence rules, η-expansions and β-reductions for processes
and cuts. Structural equivalences permit swapping the names in a link and in a restriction,
and reassociating two restrictions. The η-expansions for link do not appear in the original
presentation of CP [22], but are standard and appear elsewhere [16]. We reformulate CP to
use them, as they prove helpful in defining GCP in the next section. The expansion replaces
a link, step-by-step, by processes that perform the communications required by its type. The
β-reductions of CP correspond to the cut elimination rules in CLL, and are standard.

We omit commuting conversions, which lift prefixes out of cuts on different endpoints;
they are as in [22]. Structural equivalence and reductions apply inside a cut, but not inside
a prefix. We use juxtaposition for the composition of relations, write R+ for the transitive
closure and R∗ for the transitive reflexive closure of relation R. We write =⇒ for ≡−→≡.

I Theorem 1 (Subject reduction for CP). If P ` Γ and P =⇒ Q, then Q ` Γ.

I Theorem 2 (Cut elimination for CP). If P ` Γ then there exists a Q such that P =⇒∗ Q
and Q is not a cut.

The proof of cut elimination for CP is standard [22]. All other theorems in this paper follow
by straightforward induction.

I Example 3. We now describe the 2-buyer protocol in CP.
First, we proceed by providing a set of suitable types for the endpoints along which B1,

B2, and S communicate. We assume that cost,name,addr are atomic propositions. In CP,
B1’s endpoint has type name⊗ cost⊥O cost⊗ 1, B2’s endpoint has type cost⊥O cost⊥O(
(addr⊗ 1)⊕ 1

)
, and S’s endpoint has type name⊥ O cost⊗ cost⊗

(
(addr⊥ O ⊥)N⊥

)
.

In terms of traditional multiparty sessions, these types amount to local types, but with the
roles erased.
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Px
def= x[y].(y[inl].y[] | x[inl].x[]) Qx

def= x[y].(y[inr].y[] | x[inr].x[])

y[] ` y : 1 1

y[inl].y[] ` y :1⊕1
⊕1

x[] ` x : 1 1

x[inl].x[] ` x :1⊕1
⊕1

Px ` x : (1⊕ 1)⊗ (1⊕ 1)
⊗

w().Px ` w : ⊥, x : (1⊕ 1)⊗ (1⊕ 1) ⊥

y[] ` y : 1 1

y[inr].y[] ` y :1⊕1
⊕1

x[] ` x : 1 1

x[inr].x[] ` x :1⊕1
⊕1

Qx ` x : (1⊕ 1)⊗ (1⊕ 1)
⊗

w().Qx ` w : ⊥, x : (1⊕ 1)⊗ (1⊕ 1) ⊥

w.case(w().Px, w().Qx) ` w : ⊥N⊥, x : (1⊕ 1)⊗ (1⊕ 1)
N

x(w).w.case(w().Px, w().Qx) ` x : (⊥N⊥) O ((1⊕ 1)⊗ (1⊕ 1))
O

Figure 3 Example: duplicating a bit

Second, we define an arbiter process over three endpoints, b1, b2, s, one each for commu-
nication with B1, B2, and S, respectively.

b1(b′1).s[s′].(b′1 → s′
name | s(s′).b1[b′1].(s′ → b′1

cost |
s(s′).b2[b′2].(s′ → b′2

cost | b1(b′1).b2[b′2].(b′1 → b′2
cost |

b2.case(s[inl].b2(b′2).s[s′].(b′2 → s′
addr | b1().b2().s[]), s[inr].b1().b2().s[])))))

The arbiter process mediates between the parties, incorporating the missing role information
that would normally appear in local types. In terms of traditional multiparty sessions, the
arbiter corresponds to the dual of a global type.

Finally, an instantiation of the protocol must cut implementations of B1, B2, and S

against the arbiter process.

Directing link and restriction We make a useful observation here that does not appear
in [22]. A link or a restriction will always be between an input type and its dual output type.
The swap rule y → xA

⊥ ≡ x→ yA may always be applied to orient a link so that the input
type is on the left and the output type on the right, and in this case the flow of information
in the link will always be from left to right. Similarly, the swap rule may always be applied
to orient a restriction so that the output type is on the left and the input type on the right,
and in this case the flow of information in the restriction will always be from left to right.
These descriptions are pleasingly similar, but note that input and output swap positions in
the description of link and restriction!

May one invert output and input? The original presentation of MCP [9] states: “Our work
inverts the interpretation of ⊗ as output and O as input given in [3]. This makes our process
terms in line with previous developments of multiparty session types, where communications
go from one sender to many receivers [10].” Implicit is the claim that whether one assigns ⊗
to output and O to input is a convention that may be inverted without harm. Here we argue
that such a view is not tenable. As an illustration, consider the derivation in Figure 3; it
types a process that inputs a single bit (or, more precisely, offers a choice between two units)
and outputs two copies of that bit (or, more precisely, twice makes a selection between two
units, both times echoing the choice made on input).

Would it make sense to modify our interpretation of the process terms (in red), so that
inputs are considered as outputs and vice versa? Absolutely not! The interpretation of N as
offering a choice and ⊕ as making a selection is uncontroversial (it is also accepted in [9]).
Once the interpretations of N and ⊕ are fixed then in this example the only way to view
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33:6 Coherence Generalises Duality

O is as input and ⊗ is as output. Nor is it possible to assign a sensible view if we swap
the interpretations of N and ⊕, since then the process would input two bits which must be
identical and output one bit which is equal to both inputs; this would eliminate the idea
that each channel can have its value chosen independently, and we cannot see how to make
sense of the process calculus that would result. More generally, it makes perfect sense when
outputting one channel along another channel to assign the behaviour of the output channel
and of remaining behaviour of the original channel to two separate processes (as happens
when ⊗ is interpreted by output), and when inputting one channel along another channel to
assign the behaviour of both channels to a single process (as happens when O is interpreted
by input). But it makes no sense to take the inverse interpretation, and when inputting one
channel along another channel assign the behaviour of the input channel and the behaviour
of the remainder of the original channel to two separate processes—then the behaviour of the
input could have no effect on the behaviour of the remainder of the original channel, which
contradicts the notion of how input is intended to behave. (We are grateful to Bob Atkey for
this general argument about input and output.)

3 Globally-governed Classical Processes (GCP)

In CP, communications between two parties take place over a binary cut. In this section, we
introduce GCP, by replacing the binary cut in CP with a multiparty cut (called coherence
cut), where communications among multiple parties are governed by a global type.

Types Coherence, introduced in [9], generalises the notion of duality found in classical
linear logic. Two propositions A and B are dual if each output type in A is matched by
an input type in B and vice versa. Duality ensures that two processes can be composed
safely, by connecting two respective endpoints that have compatible interfaces (dual types).
In GCP, we wish to also compose more than two processes, and therefore, we need a notion
that generalises duality to compatibility among n processes. The notion of coherence serves
this purpose and it is given as a proof system whose judgements have the form G � Γ where
Γ is a set of compatible types and G, called the global type, is the corresponding proof term.

Global types give the flow of communications that sessions must follow. Their syntax is
given by the proof terms (in red) in Figure 4. Let G,H range over global types, and write x̃
to abbreviate the sequence (xi)i. In x̃→ y(G).H, endpoints x̃ each send a message to y to
create a new session of type G and then continue as H. In x̃→ y, endpoints x̃ each send a
message to y to terminate the session. In x→ ỹ.case(G,H), endpoint x sends a choice to
endpoints ỹ on whether to proceed as G or H. In x→ ỹ.case(), x sends an empty choice to
ỹ. In !x→ ỹ(G), client x sends a request to servers ỹ to create a session of global type G. In
x → ỹ.(X)G, endpoint x sends a type to endpoints ỹ and the protocol proceeds as G. In
xA → y, x is connected to y. Thus, a coherence cut in which the global type is an axiom
behaves exactly like a binary cut.

Types for endpoints in GCP are identical to those of CP. Then, coherence, denoted by �,
is defined by the rules given in Figure 4. Rule ⊗O says that if we have some endpoints of
type Ai ⊗Bi and an endpoint of type C OD then a communication can happen (denoted as
x̃→ y in the global type) which will create a new session with endpoints of type (Ai)i and
C, and the old session will continue as Γ, (Bi)i, D. All other rules are similar.

The rules and the proof terms for GCP are identical to those of CP save that the standard
binary cut Cut is replaced by the coherence cut CCut, given in Figure 4, with the proof
term (νx̃Ã : G) (P̃ ). In CCut, the use of coherence becomes clear: the global type G governs
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G � (xi : Ai)i, y : C H � Γ, (xi : Bi)i, y : D
x̃→ y(G).H � Γ, (xi : Ai ⊗Bi)i, y : C OD

⊗O
x̃→ y � (xi : 1)i, y : ⊥ 1⊥

G � Γ, x : A, (yi : Ci)i H � Γ, x : B, (yi : Di)i

x→ ỹ.case(G,H) � Γ, x : A⊕B, (yi : Ci NDi)i
⊕N

x→ ỹ.case() � Γ, x : 0, (yi : >)i
0>

G � x : A, (yi : Bi)i

!x→ ỹ(G) � x : ?A, (yi : !Bi)i
?!

G � Γ, x : A, (yi : Bi)i X /∈ ftv(Γ)
x→ ỹ.(X)G � Γ, x : ∃X.A, (yi : ∀X.Bi)i

∃∀

xA → y � x : A, y : A⊥
Axiom

(Pi ` Γi, xi : Ai)i G � (xi : Ai)i

(νx̃Ã : G) (P̃ ) ` Γ̃
CCut

Figure 4 GCP, Coherence Rules and Coherence Cut.

all communication between the processes P̃ . Each endpoint xi in each Pi is bound with
type Ai, and the coherence relation G � (xi : Ai)i ensures that such processes can safely
communicate on such endpoints. The types Ã adorning the endpoints x̃ are superfluous,
since they are determined by G, but will come in handy when we write the translation from
GCP to CP. It will follow from the translation, presented below, that if G � (xi : Ai)i holds
then ` (A⊥i )i is derivable in classical linear logic. As in the original formulation of MCP [9],
the restriction of coherence to two parties is exactly duality: G � x : A, y : B if and only if
A = B⊥. But, as we shall see at the end of this section, the connection between coherence
and duality goes deeper than this.

Semantics Figure 5 displays the interesting structural equivalences, η-expansions, and β-
reductions of GCP. In addition we retain the structural equivalence for axiom and η-expansions
of processes from Figure 2. We omit the straightforward commuting conversions, each one
allowing a prefix to be lifted out of a coherence cut; see [9]. The β-rules are similar to CP,
but engage multiple parties and all communication is coordinated by global types. Structural
equivalence and reduction applies inside a coherence cut (including inside a global type), but
not inside a prefix. Note that η-expansion on processes is necessary for cut-elimination to hold.
For example, the process (νxA⊗ByA⊥OCzD : x→ y(G).H) (w → xA⊗B | y(y′).P | Q) can
only reduce if we first expand w → xA⊗B to w(w′).x[x′].(w′ → x′

A | w → xB).

I Theorem 4 (Subject reduction for GCP). If P ` Γ and P =⇒ Q, then Q ` Γ.

I Theorem 5 (Cut elimination for GCP). If P ` Γ, then there exists Q such that P =⇒∗ Q
and Q is not a cut.

Cut elimination in GCP depends crucially on the η-expansions both in processes and in
global types. One could prove cut elimination directly for GCP, but instead we will appeal
to the standard cut elimination result for CP.

As with the original MCP [9], it is sound to swap independent actions in global types in
GCP (and our new variant of MCP). We omit these rules, which are the expected ones [9].

I Example 6. We continue with the exposition of our running example. To represent the
2-buyer protocol in GCP, it is no longer necessary to construct an unwieldy arbiter process
as in Example 3 in CP, but rather construct a global type, which is easily derived in GCP.
Let G be the global type:

B1 → S(B1
name → S). S → B1(Scost → B1).

S → B2(Scost → B2). B1 → B2(B1
cost → B2).

B2 → S.case(B2 → S(B2
addr → S).(B1, B2)→ S, (B1, B2)→ S))

CONCUR 2016



33:8 Coherence Generalises Duality

Structural equivalence (Global types and processes)

yA⊥
→ x ≡ xA → y

(νw̃, y, x, z̃ : G) (P̃ | R | Q | S̃) ≡ (νw̃, x, y, z̃ : G) (P̃ | Q | R | S̃)
(νz, w̃ : H) ((νx, ỹ : G) (P | R̃) | Q̃) ≡ (νx, ỹ : G) ((νz, w̃ : H) (P | Q̃) | R̃)

η-expansions (Global types)

xA⊗B → y −→ x→ y(xA → y).xB → y x1 → y −→ x→ y

xA⊕B → y −→ x→ y.case(xA → y, xB → y) x0 → y −→ x→ y.case()
x?A → y −→ !x→ y(xA → y) x∃X.A → y −→ x→ y.(X)xA → y

β-reductions (Global types and processes)

(νx̃, y, z̃ : x̃→ y(G).H) ((xi[x′i].(Pi | Qi))i | y(y′).R | S̃) −→
(νx̃′, y′ : G{x̃′/x̃, y′/y}) (P̃ | (νx̃, y, z̃ : H) (Q̃ | R | S̃))

(νx̃, y : x̃→ y) ((xi[])i | y().P ) −→ P

(νx, ỹ, z̃ : x→ ỹ.case(G,H)) (x[inl].P | (yi.case(Qi, Ri))i | S̃) −→ (νx, ỹ, z̃ : G) (P | Q̃ | S̃)
(νx, ỹ, z̃ : x→ ỹ.case(G,H)) (x[inr].P | (yi.case(Qi, Ri))i | S̃) −→ (νx, ỹ, z̃ : H) (P | R̃ | S̃)

(νx, ỹ : !x→ ỹ(G)) (?x[x′].P | (!yi(y′i).Q)i) −→ (νx′, ỹ′ : G{x′/x, ỹ′/ỹ}) (P | Q̃)
(νx, ỹ : !x→ ỹ(G)) (P | (!yi(y′i).Q)i) −→ P , if x /∈ fv(P )

(νx, ỹ : !x→ ỹ(G)) (P{x/w, x/z} | (!yi(y′i).Q)i) −→
(νw, ỹ : !w → ỹ(G{w/x})) ((νz, ỹ : !z → ỹ(G{z/x})) (P | (!yi(y′i).Q)i) | (!yi(y′i).Q)i)

(νx, ỹ : x→ ỹ.(X)G) (x[A].P | (xi(X).Qi)) −→ (νx, ỹ : G{A/X}) (P | (Q̃){A/X})
(νx, y : xX → y) (w → xX | Q) −→ Q{w/y}
(νx, y : yX → x) (x→ wX | Q) −→ Q{w/y}

Figure 5 GCP, Structural Equivalence and Reduction Rules.

Then, we can immediately prove the following coherence judgement:

G �
B1 : name⊗ cost⊥ O cost⊗ 1,
B2 : cost⊥ O cost⊥ O ((addr⊗ 1)⊕ 1),
S : name⊥ O cost⊗ cost⊥ ⊗ ((addr⊥ O⊥) N⊥)

Using this global type in a CCut, we can compose the three processes for B1, B2, and S.

Translations Translations from GCP to CP (J−K) and from CP to GCP (L−M) are given in
Figure 6. The function J−K from GCP to CP is a homomorphism on all process forms except
coherence cut. Coherence cut is translated into a series of binary cuts where the global type
becomes an arbiter process that mediates all communication. The function L−M maps CP
processes to GCP. It is a homomorphism on all process forms except binary cut. Binary cut
is translated into a coherence cut with two processes in which the global type is a link.

Why η-expansion? We now pause to explain how η-expansion simplifies the system. In the
current formulation, the axiom cut rules apply only at atomic types. If we attempt to allow
axiom cut at other types, then we need some way of reducing a coherence cut over an axiom
process in which the global type is not itself an axiom. For instance, consider (νx1

1, x2
⊥ :

x1 → x2) (P | x2 → w1). Translating to CP, we obtain (νx1
1y1) (P | (νx2

⊥y2) (x2 →
w1 | y1().y2[])) which reduces by the unrestricted axiom cut rule to (νx1

1y1) (P | y1().w[]).
An obstacle to mapping this reduction back to GCP is that the substitution of w for y2
occurs inside the arbiter process, that is, the image of a global type. In order to support this
substitution we must generalise the CCut rule to allow free variables in global types. This
in turn necessitates further reduction rules to prevent free variables in global types from
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Global cut as binary cut

J(νx̃Ã : G) (P̃ )K def= (νx1
A1y1) (JP1K | · · ·(νxn

Anyn) (JPnK | JGK{ỹ/x̃})· · ·), ỹ fresh

Global types as processes

Jx̃→ y(G).HK def= x1(u1).· · ·xn(un).y[v].(JGK{ũ/x̃, v/y} | JHK), ũ, v fresh
Jx̃→ yK def= x1().· · ·xn().y[]

Jx→ ỹ.case(G,H)K def= x.case(y1[inl].· · ·yn[inl].JGK, y1[inr].· · ·yn[inr].JHK)
Jx→ ỹ.case()K def= x.case()

J!x→ ỹ(G)K def= !x(u).?y1[v1].· · ·?yn[vn].JGK{u/x, ṽ/ỹ}, u, ṽ fresh
Jx→ ỹ.(X)GK def= x(X).y1[X].· · ·yn[X].JGK

JxA → yK def= x→ yA

Binary cut as global cut

L(νxAy) (P | Q)M = (νx, y : yA → x) (LP M | LQM)

Figure 6 Translations Between CP and GCP.

blocking reduction. A more complex system including an unrestricted axiom cut rule is of
practical interest as it admits implementations that take advantage of type erasure, but is
beyond the scope of this paper.

I Theorem 7 (Type preservation from GCP to CP).
1. If P ` Γ in GCP, then JP K ` Γ in CP.
2. If G � Γ in GCP, then JGK ` Γ⊥ in CP.
A coherence judgement G � Γ translates to a judgement JGK ` Γ⊥, where JGK is an arbiter
processes acting as an intermediary between the processes of a global session. It is typed in
the dual of the environment in which we type the global type G. Write −→η for η-expansion.

I Theorem 8 (Simulation of GCP in CP).
1. If P ` Γ and P ≡ Q in GCP, then JP K ≡ JQK in CP.
2. If P ` Γ and P −→η Q in GCP, then JP K −→η JQK in CP.
3. If G � Γ and G −→η H in GCP, then JGK −→η JHK in CP.
4. If P ` Γ and P −→ Q in GCP, then JP K =⇒+ JQK in CP.
Each reduction in GCP is simulated by one or more reductions in CP. For instance, a cut
involving a global type x̃→ y(G).H performs a series of sends to the arbiter along x̃ followed
by a receive from the arbiter along y. Theorem 8 shows that GCP is strongly normalising,
by strong normalisation of CP (a standard result for classical linear logic).

I Theorem 9 (Reflection of CP in GCP). If P ` Γ in GCP and JP K −→ Q′ in CP, then there
exists Q such that P =⇒ Q in GCP and Q′ =⇒∗ JQK in CP.

Theorem 9 shows that cut-elimination (Theorem 5), and hence deadlock-freedom, holds for
GCP, by cut-elimination for CP. For if P does not reduce, then JP K must not reduce either,
which means it is not a cut, which in turn means that P is not a cut.

I Theorem 10 (Type preservation from CP to GCP). If P ` Γ, then LP M ` Γ.

I Theorem 11 (Simulation of CP in GCP).
1. If P ` Γ and P ≡ Q in CP, then LP M ≡ LQM in GCP.
2. If P ` Γ and P −→ Q in CP, then LP M −→+ LQM in GCP.
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Structural equivalence in CP is simulated by structural equivalence in GCP. Each reduction
in CP is simulated by one or two reductions in GCP. Before performing the main reduction,
it is sometimes necessary to η-expand a global link.

Coherence generalises duality It is well known that axiom at any type is admissible given
axiom at atomic types, and that the proof of admissibility corresponds to η-expansion [19,
Chapter 6]. If we restrict axioms to atomic propositions, then every cut-free derivation of a
judgement ` A⊥, A in CLL corresponds to the η-expansion of a link process x→ yA. Note
the close relation between η-expansion and the translation of global types. For instance,
compare the η-expansion of O⊗ in CP with the translation of the global type for O⊗ in
GCP. For CP, we have that x→ yA⊗B expands to

x(u).y[v].(P | Q)

where P = u→ vA and Q = x→ yB , while for GCP, we have that x̃→ y(G).H translates to

x1(u1).· · ·xn(un).y[v].(P | Q)

where P = JGK{ũ/x̃, v/y} and Q = JHK. The relation is similarly close for each of the other
logical connectives. Hence, duality corresponds to η-expansion and coherence corresponds to
a straightforward generalisation of η-expansion.

4 Multiparty Classical Processes (MCP)

The semantics of GCP is governed, unlike in standard multiparty session types [12]. For
example, process x[w].(P | Q) in GCP does not say to which other endpoint the message
should be routed; a communication can happen only under a restriction with a global type
that pairs such output action with an input action, e.g., when in a context such as in
(νxyz̃ : x→ y(G).H) (x[w].(P | Q) | R̃). Thus, a global type is a central point of control.
In standard multiparty session types, this is avoided by annotating actions with the endpoint
that they should interact with. In our example, the process becomes xy[w].(P | Q), meaning
that this output can synchronise only with an input performed at endpoint y (which, dually,
has to express that it intends to synchronise with an output from x). In this section, we
define a variant of the calculus of Multiparty Classical Processes (MCP) [9], which follows the
standard methodology of multiparty session types, simply by annotating types and processes
of GCP with endpoints. Formally, MCP is defined as GCP with the following modifications.

Types The coherence relation for MCP, given in Figure 7, is identical to that of GCP,
except from the type connectives, which are now annotated with the names of the endpoints
with which they are supposed to interact. By an abuse of notation, we now let A,B,C,D
range over types with annotations. Rule Axiom is also slightly different then that of GCP. In
its premise, we use the operation |A|, which removes all annotations from a given proposition
A. For instance, |B1 ⊗x B2| = |B1| ⊗ |B2|. The syntax of global types is the same as that
given for GCP, with the exception of the extra annotation in the term for the axiom.

Endpoint annotations restrict which derivations we can use to prove that some types are
coherent. As an example, for some Ai, Bi, and C, consider the following annotated types:

x :A1 ⊗y B1, y :A2 Ox B2, z :A3 Ow B3, w : C

In MCP, it is necessary to eventually apply rule ⊗O to x :A1 ⊗y B1 and y :A2 Ox B2. However,
in GCP, this would not be necessary: there may also be a coherence proof in which we apply
rule ⊗O to x :A1 ⊗y B1 and z :A3 Ow B3 instead (after removing annotations).
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Coherence rules

G � (xi :Ai)i, y :C H � Γ, (xi :Bi)i, y :D
x̃→ y(G).H � Γ, (xi :Ai ⊗y Bi)i, y :C Ox̃ D

⊗O
x̃→ y � (xi :1y)i, y :⊥x̃ 1⊥

G1 � Γ, x :A, (yi :Ci)i G2 � Γ, x :B, (yi :Di)i

x→ ỹ.case(G1, G2) � Γ, x :A⊕ỹ B, (yi :CiNxDi)i

⊕N
G � x :A, (yi :Bi)i

!x→ ỹ(G) � x :?ỹA, (yi :!xBi)i

!?

x→ ỹ.case() � Γ, x :0ỹ, (yi :>x)i

0>
G � Γ, x :A, (yi :Bi)i X 6∈ ftv(Γ)

x→ ỹ.(X)G � Γ, x :∃ỹX.A, (yi :∀xX.Bi)i

∃∀

|A|⊥ = |B|
xA → yB ` x : A, y : B

Axiom

Typing rules
|A|⊥ = |B|

xA → yB ` x : A, y : B
Axiom

(Pi ` Γi, xi : Ai)i G � (xi : Ai )i

(νx̃Ã : G) (P̃ ) ` Γ̃
CCut

P ` Γ, y : A Q ` ∆, x : B
xz[y].(P | Q) ` Γ,∆, x : A⊗z B

⊗
P ` Γ, y : A, x : B

xz̃(y).P ` Γ, x : AOz̃ B
O

P ` Γ, x : A
xz̃[inl].P ` Γ, u : A⊕z̃ B

⊕1
P ` Γ, x : B

xz̃[inr].P ` Γ, x : A⊕z̃ B
⊕2

P ` Γ, x : A Q ` Γ, x : B
xz.case(P,Q) ` Γ, x : ANzB

N

P ` ?Γ, y : A
!xz(y).P ` ?Γ, x : !zA !

P ` Γ, y : A
?xz̃[y].P ` Γ, x : ?z̃A

? P ` Γ
P ` Γ, x : ?z̃A

Weaken

P ` Γ, x : B[A/X]
xz̃[A].P ` Γ, x : ∃z̃X.B

∃
P ` Γ, x : B X /∈ ftv(Γ)
xz(X).P ` Γ, x : ∀zX.B

∀
P ` Γ, y : ?w̃A, z : ?w̃A

P [x/y, x/z] ` Γ, x : ?w̃A
Contract

xz[] ` x : 1z 1 P ` Γ
xz̃().P ` Γ, x : ⊥z̃ ⊥ no rule for 0 xz.case() ` Γ, x : >z >

Figure 7 MCP, Coherence Rules and Typing Rules.

The typing rules for MCP processes are given in Figure 7. As for coherence, the typing
rules of MCP are those of GCP, but now with annotations. Importantly, the annotation of
each communication action must be the same as that of the corresponding type construct.
E.g., the send process is now written as xz[y].(P | Q), meaning that endpoint x is sending
y to endpoint z, and the corresponding ⊗ connective in the type is annotated with the same
z. Again, by an abuse of notation, we now let P,Q,R range over processes with annotations.

Semantics The semantics of MCP is the same as that of GCP, extended with the expected
endpoint annotations. The consequence of annotations is that MCP enjoys an ungoverned
semantics; it is fully distributed, as in the original theories of multiparty session types [12]
and MCP [9]. As an example, here is the η-expansion rule for O and ⊗:

xAOw̃B → yC⊗
zD −→ xw̃(u).yz[v].(uA → vC | xB → yD)

Similarly, here is the β-reduction rule for ⊗ and O:

(νz̃, x̃, y : x̃→ y(G).H) (S̃ | (xiy[x′i].(Pi | Qi))i | yx̃(y′).R) −→
(νx̃′, y′ : G{x̃′/x̃, y′/y}) (S̃ | P̃ | (νz̃, x̃, y : H) (Q̃ | R))

In the reduction above (and all other reductions of MCP), the global type of the session is
unnecessary for the communicating processes to know which others processes are involved
in the communication; that information is instead taken from the endpoint annotations of
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their respective actions. Type preservation is ensured by the annotations used to type the
processes, since that guarantees that coherence continues to hold for the reductum.

I Theorem 12 (Subject reduction for MCP). If P ` Γ and P =⇒ Q, then Q ` Γ.

I Theorem 13 (Cut elimination for MCP). If P ` Γ, then there exists Q such that P =⇒∗ Q
and Q is not a cut.

Cut elimination for MCP follows from that for GCP (by Theorems 15, 16, 17, and 18).

I Example 14. We revisit the 2-buyer protocol from Example 6 in MCP. The global type
is exactly the same (except for the axioms, which have the extra annotation on the left).
However, the types of each endpoint are now appropriately annotated.

B1 : name⊗S cost⊥ OS cost⊗B2 1S ,
B2 : cost⊥ OS cost⊥ OB1 ((addr⊗S 1S)⊕S 1S),
S : name⊥ OB1 (cost⊗B1 (cost⊗B2 ((addr⊥ OB2 ⊥B1,B2) NB2 ⊥B1,B2)))

The annotations on the connectives say that, e.g., B1 first sends a name to an implementation
of endpoint S, and then, she receives a quote from S, before sending her bid to B2.

Translations Proofs in MCP translate to proofs in GCP, by erasing annotations. We write
|P | for the erasure of annotations from P . We obtain the following type preservation results.

I Theorem 15 (Type preservation from MCP to GCP).
1. If P ` Γ in MCP, then |P | ` |Γ| in GCP.
2. If G � Γ in MCP, then |G| � |Γ| in GCP.

I Theorem 16 (Type preservation from GCP to MCP).
1. If P ` Γ in GCP, then there exist Q,∆ such that |Q| = P , |∆| = Γ, and Q ` ∆ in MCP.
2. If G � Γ in GCP, then there exist H,∆ such that |H| = G, |∆| = Γ, and H � ∆ in MCP.

We also obtain a lockstep bisimulation between MCP and GCP.

I Theorem 17 (Simulation of MCP in GCP). Assume P ` Γ and G � Γ in MCP.
1. If P ≡ Q in MCP, then |P | ≡ |Q| in GCP.
2. If P −→ Q in MCP, then |P | −→ |Q| in GCP.
3. If G −→ H in MCP, then |G| −→ |H| in GCP.

I Theorem 18 (Reflection of GCP in MCP). Assume P ` Γ and G � Γ in MCP.
1. If |P | ≡ Q in GCP, then there exists R such that |R| = Q and P ≡ R in MCP.
2. If |P | −→ Q′ in GCP, then there exists Q such that |Q| = Q′ and P −→ Q in MCP.
3. If |G| −→ H ′ in GCP, then there exists H such that |H| = H ′ and G −→ H in MCP.

Combining these results with those for the translation from GCP to CP, we obtain an
end-to-end translation of distributed multiparty sessions into arbitrated binary sessions.

5 Related and Future Work

Arbiters Caires and Perez [4] show how to translate multiparty sessions by translating a
global type to a process, which they call a medium. Their medium is similar to our arbiter,
and their translation of a global type to a medium is similar to our translation of GCP to
CP, which takes a global type to an arbiter. Their system, like ours, guarantees fidelity
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and deadlock freedom via the translation; and, like us, they extend their system to support
polymorphism. However there are several differences. Our work is based on classical linear
logic, whereas theirs is based on intuitionistic linear logic; we suspect that their approach
could be adopted to classical logic, and ours to intuitionistic. More importantly, where we
use coherence, they use the standard definition of projection [12]. Projection is closer to
the original formulation of multiparty session types [12], but lacks the tighter connection
to logic offered by coherence, in particular the way in which coherence is organised around
pairs of logical connectives, generalising duality. Unlike us, they do not consider replication
and nesting in global types. Their medium process imposes global governance, similar to our
GCP, but they offer no decentralised system based on direct communication like our MCP.

Multiparty session types Coherence logically reconstructs the notion of well-formedness
found in multiparty session types [12, 10], in the context of synchronous communication [2].
Polymorphism for binary session types is considered in a proposition-as-types setting by
Wadler [21] and Caires et al. [5]; we have generalised this notion to the multiparty case. Our
new coherence proof system extends the one presented in the original MCP [9] with rules for
polymorphism. Since coherence yields an algorithm for extracting a global type from a set of
types [9], ours is also the first work dealing with the extraction of polymorphic global types.

Issues with axiom In the original formulation of CP [22], axiom reduction applies at all
types and all reductions are independent of types. In the current formulation, axiom reduction
applies only at atomic types and other instances are handled by η-rules that depend upon
types. As a result, the implementation of type instantiation may be problematic. Alternative
implementations may seek to restore a version of axiom that applies at all types. We have
explored one variant that does so, but the formalism is more complicated as it requires free
variables in global types. We leave further exploration to future work.

Coherence Coherence in GCP may be generalised. In ⊗O, the context Γ in the conclusion
may be distributed to the two premises. Similarly, in !? a context !Γ may be added to the
premise and conclusion of the rule, splitting channels between those that retain ! in the
premise and those that lose it. While such splits are straightforward in GCP, it is unclear
how to add them without centralised control in MCP. We also leave this to future work.

Choreography Carbone et al. [8] search for a propositions-as-types correspondence for the
calculus of compositional choreographies of Montesi and Yoshida [15]. This work inspired
the notion of coherence in the original MCP [9] — typing choreographies requires a similar
handling of multiple connectives. However, it was limited to binary sessions, whereas the
original theory by Montesi and Yoshida supported multiparty sessions. This work may close
the circle: our generalisation of CP to GCP seems applicable to choreographies, and would
yield an expressive choreography language with parametric polymorphism.

Relationship with standard multiparty session types MCP is directly connected to classical
linear logic, while also bearing a close resemblance to traditional multiparty session types.
However, there remain important differences between the two. First, we do not handle
recursive behaviour [14]. Second, multiparty session types support broadcast from one sender
to many receivers, while our types gather information from many senders to one receiver – a
choice dictated by our desire to translate MCP to CP. We look forward to further studying
the relation between MCP, GCP, CP, and other systems with multiparty session types.
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